Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study

Caffeic acid (CAF) i is a polyphenolic compound commonly found in plants, valued for its ability to act as an antioxidant. This study focused on investigating the impact of a natural antioxidant, specifically caffeic acid (CAF), compared to two synthetic antioxidants, butylated hydroxyanisole (BHA)...

Full description

Autores:
Hernández Fernández, Joaquín Alejandro
Ortiz Paternina, Katherine Liset
López Martínez, Juan
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12769
Acceso en línea:
https://hdl.handle.net/20.500.12585/12769
Palabra clave:
Caffeic acid
Antioxidant
Stability
Activation energy
MFI
Bond dissociation energy
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_f864b3adcc8b71eff747d06d798f63c6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12769
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
title Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
spellingShingle Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
Caffeic acid
Antioxidant
Stability
Activation energy
MFI
Bond dissociation energy
LEMB
title_short Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
title_full Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
title_fullStr Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
title_full_unstemmed Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
title_sort Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study
dc.creator.fl_str_mv Hernández Fernández, Joaquín Alejandro
Ortiz Paternina, Katherine Liset
López Martínez, Juan
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquín Alejandro
Ortiz Paternina, Katherine Liset
López Martínez, Juan
dc.subject.keywords.es_CO.fl_str_mv Caffeic acid
Antioxidant
Stability
Activation energy
MFI
Bond dissociation energy
topic Caffeic acid
Antioxidant
Stability
Activation energy
MFI
Bond dissociation energy
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Caffeic acid (CAF) i is a polyphenolic compound commonly found in plants, valued for its ability to act as an antioxidant. This study focused on investigating the impact of a natural antioxidant, specifically caffeic acid (CAF), compared to two synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), on the thermal stability of propylene/ethylene copolymer (C-PP/PE), Aiming to establish a theoretical framework for the advancement of novel polymeric antioxidant compounds. Theoretical calculations were conducted to determine each compound's thermodynamic properties and antioxidant activity. The phenolic hydroxyl bond dissociation enthalpy (BDE) values revealed that BHA had the lowest value (325.6 kJ mol−1), trailed by CAF (328.2 kJ mol−1) and BHT (341.3 kJ mol−1), indicating a higher electron-donating capacity of BHA. Transition energy (TS) calculations indicated that BHA had the lowest TS energy (49.29 kJ mol−1), succeeded by CAF (57.61 kJ mol−1) and then BHT (75.57 kJ mol−1), suggesting greater efficiency in radical scavenging. Additionally, the obtained rate constants showed that CAF had the highest hydrogen abstraction rate (k = 1.05 × 10⁵ M⁻1 s⁻1), followed by BHA (k = 1.17 × 10⁴ M⁻1 s⁻1), and then BHT (k = 4.2 × 10³ M⁻1 s⁻1). These results support the effectiveness of CAF as a potentially more active antioxidant. In the experimental part of this study, it was observed that C-PP/PE with BHA showed a lower melt flow index (MFI) (8.51), indicating more excellent thermal stability. On the other hand, samples containing natural caffeic acid extracts exhibited a gradual decrease in MFI with increasing CAF concentration (MFI of 9.4, 8.82, 7.59, 6.44, and 5.98 for concentrations of 0.025, 0.05, 0.075, 0.1, and 0.125 ppm, respectively), suggesting a progressive improvement in the thermal stability of C-PP/PE with increasing natural antioxidant. In TGA analyses, decomposition was observed around 340 °C in samples without additives and those containing 0.1 ppm of BHA. In contrast, samples with different concentrations of CAF showed delayed degradation, observed in the temperature range of 380–400 °C. This delay in degradation indicates that CAF imparts more excellent thermal stability to C-PP/PE copolymer, as it reaches temperatures above 400 °C before starting its decomposition. These findings support the feasibility of using natural antioxidants such as CAF to improve the thermal properties of copolymers.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-15T21:19:34Z
dc.date.available.none.fl_str_mv 2024-11-15T21:19:34Z
dc.date.issued.none.fl_str_mv 2024-08-12
dc.date.submitted.none.fl_str_mv 2024-11-15
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Hernández Fernández, J. A., Ortiz Paternina, K. L., & López Martínez, J. (2024). Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study. Current Research in Green and Sustainable Chemistry, 9. https://doi.org/10.1016/j.crgsc.2024.100422
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12769
dc.identifier.doi.none.fl_str_mv 10.1016/j.crgsc.2024.100422
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández Fernández, J. A., Ortiz Paternina, K. L., & López Martínez, J. (2024). Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study. Current Research in Green and Sustainable Chemistry, 9. https://doi.org/10.1016/j.crgsc.2024.100422
10.1016/j.crgsc.2024.100422
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12769
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.publisher.faculty.es_CO.fl_str_mv Ingeniería
dc.source.es_CO.fl_str_mv Current Research in Green and Sustainable Chemistry
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/1/1-s2.0-S2666086524000274-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/4/1-s2.0-S2666086524000274-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/5/1-s2.0-S2666086524000274-main.pdf.jpg
bitstream.checksum.fl_str_mv d359cf6e72d8da3c4a0d82cc9713645e
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
49a4553332536ca0cf8d481cb7129dc3
63cb02dc7c6119541c93915fdf24a874
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1834107691163713536
spelling Hernández Fernández, Joaquín Alejandro5c97a10b-cbe8-4ee8-ae3d-5d53f31efd44Ortiz Paternina, Katherine Liset12ecf621-61be-4cb2-9d63-0971353690cbLópez Martínez, Juan86010480-29e9-41bf-b515-e310a88cfa992024-11-15T21:19:34Z2024-11-15T21:19:34Z2024-08-122024-11-15Hernández Fernández, J. A., Ortiz Paternina, K. L., & López Martínez, J. (2024). Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study. Current Research in Green and Sustainable Chemistry, 9. https://doi.org/10.1016/j.crgsc.2024.100422https://hdl.handle.net/20.500.12585/1276910.1016/j.crgsc.2024.100422Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarCaffeic acid (CAF) i is a polyphenolic compound commonly found in plants, valued for its ability to act as an antioxidant. This study focused on investigating the impact of a natural antioxidant, specifically caffeic acid (CAF), compared to two synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), on the thermal stability of propylene/ethylene copolymer (C-PP/PE), Aiming to establish a theoretical framework for the advancement of novel polymeric antioxidant compounds. Theoretical calculations were conducted to determine each compound's thermodynamic properties and antioxidant activity. The phenolic hydroxyl bond dissociation enthalpy (BDE) values revealed that BHA had the lowest value (325.6 kJ mol−1), trailed by CAF (328.2 kJ mol−1) and BHT (341.3 kJ mol−1), indicating a higher electron-donating capacity of BHA. Transition energy (TS) calculations indicated that BHA had the lowest TS energy (49.29 kJ mol−1), succeeded by CAF (57.61 kJ mol−1) and then BHT (75.57 kJ mol−1), suggesting greater efficiency in radical scavenging. Additionally, the obtained rate constants showed that CAF had the highest hydrogen abstraction rate (k = 1.05 × 10⁵ M⁻1 s⁻1), followed by BHA (k = 1.17 × 10⁴ M⁻1 s⁻1), and then BHT (k = 4.2 × 10³ M⁻1 s⁻1). These results support the effectiveness of CAF as a potentially more active antioxidant. In the experimental part of this study, it was observed that C-PP/PE with BHA showed a lower melt flow index (MFI) (8.51), indicating more excellent thermal stability. On the other hand, samples containing natural caffeic acid extracts exhibited a gradual decrease in MFI with increasing CAF concentration (MFI of 9.4, 8.82, 7.59, 6.44, and 5.98 for concentrations of 0.025, 0.05, 0.075, 0.1, and 0.125 ppm, respectively), suggesting a progressive improvement in the thermal stability of C-PP/PE with increasing natural antioxidant. In TGA analyses, decomposition was observed around 340 °C in samples without additives and those containing 0.1 ppm of BHA. In contrast, samples with different concentrations of CAF showed delayed degradation, observed in the temperature range of 380–400 °C. This delay in degradation indicates that CAF imparts more excellent thermal stability to C-PP/PE copolymer, as it reaches temperatures above 400 °C before starting its decomposition. These findings support the feasibility of using natural antioxidants such as CAF to improve the thermal properties of copolymers.Universidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costa15 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Current Research in Green and Sustainable ChemistryPotential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental studyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Caffeic acidAntioxidantStabilityActivation energyMFIBond dissociation energyLEMBCartagena de IndiasIngenieríaF. Shahidi, P.K. Janitha, P.D. Wanasundara, Phenolic antioxidants, Crit. Rev. Food Sci. Nutr. 32 (1) (Jan. 1992) 67–103, https://doi.org/10.1080/ 10408399209527581/ASSET//CMS/ASSET/00671894-52C7-4989-98A9- 6D1BA087E409/10408399209527581.FP.PNG.M. Herrero, E. Ib´a˜nez, A. Cifuentes, Analysis of natural antioxidants by capillary electromigration methods, J. Separ. Sci. 28 (9–10) (Jun. 2005) 883–897, https:// doi.org/10.1002/JSSC.200400104.J. Pokorný, Are natural antioxidants better - and safer - than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 109 (6) (2007) 629–642, https://doi.org/ 10.1002/EJLT.200700064.stability by migration and chemical reaction of Santonox® R in branched polyethylene under anaerobic and aerobic conditions, Polym. Degrad. Stabil. 91 (5) (May 2006) 1071–1078, https://doi.org/10.1016/J. POLYMDEGRADSTAB.2005.07.010.J. Mall´egol, D.J. Carlsson, L. Deschˆenes, A comparison of phenolic antioxidant performance in HDPE at 32–80◦C, Polym. Degrad. Stabil. 73 (2) (Jan. 2001) 259–267, https://doi.org/10.1016/S0141-3910(01)00086-6.J.L. Koontz, J.E. Marcy, S.F. O’Keefe, S.E. Duncan, T.E. Long, R.D. Moffitt, Polymer processing and characterization of LLDPE films loaded with α-tocopherol, quercetin, and their cyclodextrin inclusion complexes, J. Appl. Polym. Sci. 117 (4) (Aug. 2010) 2299–2309, https://doi.org/10.1002/APP.32044.M. Peltzer, J.R. Wagner, A. Jim´enez, Thermal characterization of UHMWPE stabilized with natural antioxidants, J. Therm. Anal. Calorim. 87 (2) (Feb. 2007) 493–497, https://doi.org/10.1007/S10973-006-7453-1.F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, Biological effects of essential oils – a review, Food Chem. Toxicol. 46 (2) (Feb. 2008) 446–475, https://doi.org/ 10.1016/J.FCT.2007.09.106A. Sousa, I.C.F.R. Ferreira, L. Barros, A. Bento, J.A. Pereira, Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives ‘alcaparras, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 41 (4) (May 2008) 739–745, https://doi.org/10.1016/J.LWT.2007.04.003.M. Taghvaei, S.M. Jafari, Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives, J. Food Sci. Technol. 52 (3) (Mar. 2015) 1272–1282, https://doi.org/10.1007/S13197-013-1080-1/FIGURES/1.A. Jurado, M. Walther, M.S. Díaz-Cruz, Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain, Sci. Total Environ. 663 (May 2019) 285–296, https://doi.org/10.1016/J.SCITOTENV.2019.01.270.J. Toch´aˇcek, J. Janˇc´aˇr, J. Kalfus, P. Zboˇrilov´a, Z. Bur´aˇn, Degradation of polypropylene impact-copolymer during processing, Polym. Degrad. Stabil. 93 (4) (Apr. 2008) 770–775, https://doi.org/10.1016/J. POLYMDEGRADSTAB.2008.01.027.P. Cerruti, M. Malinconico, J. Rychly, L. Matisova-Rychla, C. Carfagna, Effect of natural antioxidants on the stability of polypropylene films, Polym. Degrad. Stabil. 94 (11) (Nov. 2009) 2095–2100, https://doi.org/10.1016/J. POLYMDEGRADSTAB.2009.07.023.U.N. Ratnayake, B. Haworth, D.J. Hourston, Preparation of polypropylene–clay nanocomposites by the co-intercalation of modified polypropylene and short-chain amide molecules, J. Appl. Polym. Sci. 112 (1) (Apr. 2009) 320–334, https://doi. org/10.1002/APP.29371J. Pospíˇsil, Z. Hor´ak, J. Pilaˇr, N.C. Billingham, H. Zweifel, S. Neˇspůrek, Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation, Polym. Degrad. Stabil. 82 (2) (Jan. 2003) 145–162, https://doi. org/10.1016/S0141-3910(03)00210-6.M.D. Samper, E. Fages, O. Fenollar, T. Boronat, R. Balart, The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene, J. Appl. Polym. Sci. 129 (4) (Aug. 2013) 1707–1716, https://doi.org/10.1002/ APP.38871.A. Jim´enez, V. Berenguer, J. L´opez, A. S´anchez, Thermal degradation study of poly (vinyl chloride): kinetic analysis of thermogravimetric data, J. Appl. Polym. Sci. 50 (9) (Dec. 1993) 1565–1573, https://doi.org/10.1002/APP.1993.070500910.J. Pospíˇsil, Mechanistic action of phenolic antioxidants in polymers—a review, Polym. Degrad. Stabil. 20 (3–4) (Jan. 1988) 181–202, https://doi.org/10.1016/ 0141-3910(88)90069-9.U.D. Chavan, F. Shahidi, M. Naczk, Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents, Food Chem. 75 (4) (Dec. 2001) 509–512, https://doi.org/10.1016/S0308-8146(01)00234-5.I. Gülçin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid), Toxicology 217 (2–3) (Jan. 2006) 213–220, https://doi.org/10.1016/J. TOX.2005.09.011.J. Psotov´a, J. Lasovský, and J. Viˇcar, “METAL-CHELATING PROPERTIES, ELECTROCHEMICAL BEHAVIOR, SCAVENGING AND CYTOPROTECTIVE ACTIVITIES OF SIX NATURAL PHENOLICS”.B.C. Challis, C.D. Bartlett, Possible cocarcinogenic effects of coffee constituents, Nature 254 (5500) (Apr. 1975) 532–533, https://doi.org/10.1038/254532a0, 1975 254:5500.T.-W. Chung, et al., Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism, Faseb. J. 18 (14) (Nov. 2004) 1670–1681, https://doi.org/10.1096/FJ.04-2126COMT. Konoshima, I. Yasuda, Y. Kashiwada, K.H. Lee, L.M. Cosentino, Anti-aids agents, 21. Triterpenoid saponins as anti-hiv principles from fruits of gleditsia japon1ca and gymnocladus chinensis, and a structure-activity correlation, J. Nat. Prod. 58 (9) (1995) 1372–1377, https://doi.org/10.1021/NP50123A006/ASSET/ NP50123A006.FP.PNG_V03.A.D.M. Sørensen, et al., Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates, J. Agric. Food Chem. 62 (52) (Dec. 2014) 12553–12562, https://doi.org/10.1021/JF500588S/SUPPL_FILE/JF500588S_SI_ 001.PDF.M. Laguerre, et al., What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox, Crit. Rev. Food Sci. Nutr. 55 (2) (2015) 183–201, https://doi.org/10.1080/10408398.2011.650335.Y.Y. Zhang, et al., Effect of natural polyphenol on the oxidative stability of pecan oil, Food Chem. Toxicol. 119 (Sep. 2018) 489–495, https://doi.org/10.1016/J. FCT.2017.10.001.P. Fei, et al., Non-radical synthesis of amide chitosan with p-coumaric acid and caffeic acid and its application in pork preservation, Int. J. Biol. Macromol. 222 (Dec. 2022) 1778–1788, https://doi.org/10.1016/J.IJBIOMAC.2022.09.263.M.N. Lund, et al., Emulsifier-phenol bioconjugates as antioxidants. Molecular descriptors based on density functional theory in quantitative structure–activity relationships, Food Res. Int. 54 (1) (Nov. 2013) 230–238, https://doi.org/ 10.1016/J.FOODRES.2013.07.014.N. Nenadis, M.P. Sigalas, A DFT study on the radical scavenging potential of selected natural 3′,4′-dihydroxy aurones, Food Res. Int. 44 (1) (Jan. 2011) 114–120, https://doi.org/10.1016/J.FOODRES.2010.10.054.C.S. Abraham, et al., Spectroscopic profiling (FT-IR, FT-Raman, NMR and UV-Vis), autoxidation mechanism (H-BDE) and molecular docking investigation of 3-(4- chlorophenyl)-N,N-dimethyl-3-pyridin-2-ylpropan-1-amine by DFT/TD-DFT and molecular dynamics: a potential SSRI drug, Comput. Biol. Chem. 77 (Dec. 2018) 131–145, https://doi.org/10.1016/J.COMPBIOLCHEM.2018.08.010.A. Ami´c, Z. Markovi´c, E. Klein, J.M. Dimitri´c Markovi´c, D. Milenkovi´c, Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives, Food Chem. 246 (Apr. 2018) 481–489, https://doi.org/ 10.1016/J.FOODCHEM.2017.11.100H. Jabeen, S. Saleemi, H. Razzaq, A. Yaqub, S. Shakoor, R. Qureshi, Investigating the scavenging of reactive oxygen species by antioxidants via theoretical and experimental methods, J. Photochem. Photobiol., B 180 (Mar. 2018) 268–275, https://doi.org/10.1016/J.JPHOTOBIOL.2018.02.006.K. Luo, G. You, X. Zhao, L. Lu, W. Wang, S. Wu, Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: insights from experiments and molecular simulations, Mater. Des. 181 (Nov. 2019) 107944, https://doi.org/10.1016/J.MATDES.2019.107944.Y. Guo, et al., Hydrogen atom transfer from HOO. To ortho-quinones explains the antioxidant activity of polydopamine, Angew. Chem. Int. Ed. 60 (28) (Jul. 2021) 15220–15224, https://doi.org/10.1002/ANIE.202101033.H.H. Horowitz, G. Metzger, A new analysis of thermogravimetric traces, Anal. Chem. 35 (10) (1963) 1464–1468, https://doi.org/10.1021/AC60203A013/ ASSET/AC60203A013.FP.PNG_V03.A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data, Nature 201 (4914) (1964) 68–69, https://doi.org/10.1038/201068a0, 1964 201:4914.S. Grimme, Semiempirical hybrid density functional with perturbative secondorder correlation, J. Chem. Phys. 124 (3) (Jan. 2006), https://doi.org/10.1063/ 1.2148954/567092.Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry, Acc. Chem. Res. 41 (2) (Feb. 2008) 157–167, https://doi.org/10.1021/ AR700111A/ASSET/IMAGES/MEDIUM/AR-2007-00111A_0011.G.L.C. De Souza, K.A. Peterson, Benchmarking antioxidant-related properties for gallic acid through the use of DFT, MP2, CCSD, and CCSD(T) approaches, J. Phys. Chem. A 125 (1) (Jan. 2021) 198–208, https://doi.org/10.1021/ACS. JPCA.0C09116/SUPPL_FILE/JP0C09116_SI_001.PDF.J.L.F. Santos, A.C. Kauffmann, S.C. da Silva, V.C.P. Silva, G.L.C. de Souza, Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone, J. Mol. Model. 26 (9) (Sep. 2020) 1–8, https://doi.org/ 10.1007/S00894-020-04469-3/TABLES/3.E.N. Maciel, I.N. Soares, S.C. da Silva, G.L.C. de Souza, A computational study on the reaction between fisetin and 2,2-diphenyl-1-picrylhydrazyl (DPPH), J. Mol. Model. 25 (4) (Apr. 2019) 1–8, https://doi.org/10.1007/S00894-019-3969-8/ TABLES/3.E.N. Maciel, S.K.C. Almeida, S.C. da Silva, G.L.C. de Souza, Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation, J. Mol. Model. 24 (8) (Aug. 2018) 1–12, https://doi.org/10.1007/S00894-018-3745-1/TABLES/2.DFT study: ranking of antioxidant activity of various candidate molecules, Archive - UNEC Journal of Engineering and Applied Sciences 2 (1) (2022) [Online]. Available: https://unec-jeas.com/articles/volume-2-2012/a-dft-studyranking- of-antioxidant-activity-of-various-candidate-molecules. (Accessed 1 May 2024)G. Wang, et al., Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones, Food Chem. 171 (Mar. 2015) 89–97, https://doi.org/10.1016/J.FOODCHEM.2014.08.106.R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem. 27 (4) (Feb. 1988) 734–740, https://doi.org/10.1021/ IC00277A030/ASSET/IC00277A030.FP.PNG_V03.Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (1–3) (May 2008) 215–241, https://doi.org/10.1007/S00214-007-0310-X/METRICSA. Galano, J.R. Alvarez-Idaboy, Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods, J. Comput. Chem. 35 (28) (Oct. 2014) 2019–2026, https://doi.org/10.1002/ JCC.23715.Y. Zhao, D.G. Truhlar, How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J. Phys. Chem. A 112 (6) (Feb. 2008) 1095–1099, https://doi.org/10.1021/JP7109127/SUPPL_ FILE/JP7109127-FILE003.PDFA. Galano, J. Raúl Alvarez-Idaboy, Computational strategies for predicting free radical scavengers’ protection against oxidative stress: where are we and what might follow? Int. J. Quant. Chem. 119 (2) (Jan. 2019) e25665 https://doi.org/ 10.1002/QUA.25665.Y. Zhao, N.E. Schultz, D.G. Truhlar, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions, J. Chem. Theor. Comput. 2 (2) (2006) 364–382, https://doi.org/10.1021/CT0502763/SUPPL_FILE/ CT0502763SI20060105_044952.PDF.A. Galano, J.R. Alvarez-Idaboy, A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity, J. Comput. Chem. 34 (28) (Oct. 2013) 2430–2445, https:// doi.org/10.1002/JCC.23409.E. Velez, et al., A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase, J. Phys. Org. Chem. 22 (10) (Oct. 2009) 971–977, https://doi.org/10.1002/POC.1547.T. Furuncuoǧlu, I. Uǧur, I. Degirmenci, V. Aviyente, Role of chain transfer agents in free radical polymerization kinetics, Macromolecules 43 (4) (Feb. 2010) 1823–1835, https://doi.org/10.1021/MA902803P/SUPPL_FILE/MA902803P_SI_ 001.PDF.D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, Current status of transition-state theory, J. Phys. Chem. 100 (31) (Aug. 1996) 12771–12800, https://doi.org/ 10.1021/JP953748QM.G. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 31 (0) (Jan. 1935) 875–894, https://doi.org/10.1039/TF9353100875.H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3 (2) (Feb. 1935) 107–115, https://doi.org/10.1063/1.1749604J. Tello, M. Viguera, L. Calvo, Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide, J. Supercrit. Fluids 59 (Nov. 2011) 53–60, https://doi.org/10.1016/J.SUPFLU.2011.07.018.ISO 1133:2005 - plastics — determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics [Online]. Available, https://www.iso.org/standard/31267.html. (Accessed 1 May 2024).S. Neˇspůrek, Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation, Polym. Degrad. Stabil. 82 (2) (Jan. 2003) 145-162.O. Olejnik, A. Masek, A. Kiersnowski, Thermal analysis of aliphatic polyester blends with natural antioxidants, Polymers 12 (1) (Jan. 2020), https://doi.org/ 10.3390/POLYM12010074Leo Reich, S.S. Stivala, Elements of polymer degradation (1971) 361 [Online]. Available: https://books.google.com/books/about/Elements_of_Polymer_Degradat ion.html?hl=es&id=UPuFAAAAIAAJ. (Accessed 1 May 2024).A.H.I. Mourad, Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends, Mater. Des. 31 (2) (Feb. 2010) 918–929, https://doi.org/10.1016/J.MATDES.2009.07.031.C. Walling, O.H. Basedow, E.S. Savas, Some extensions of the reaction of trivalent phosphorus derivatives with alkoxy and thiyl radicals; a new synthesis of thioesters, J. Am. Chem. Soc. 82 (9) (Mar. 1960) 2181–2184, https://doi.org/ 10.1021/JA01494A023/ASSET/JA01494A023.FP.PNG_V03.C. Walling, M.S. Pearson, Some radical reactions of trivalent phosphorus derivatives with mercaptans, peroxides, and olefins. A new radical cyclization, J. Am. Chem. Soc. 86 (11) (Jun. 1964) 2262–2266, https://doi.org/10.1021/ JA01065A032/ASSET/JA01065A032.FP.PNG_V03.Stabilization of polymeric materials - hans zweifel - google libros [Online]. Available, https://books.google.com.co/books?hl=es&lr=&id=8e 7tCAAAQBAJ&oi=fnd&pg=PA1&ots=jJTgLuwZ5w&sig=tfhvlekzDCyze3We P1yxGNjpeJk&redir_esc=y#v=onepage&q&f=false. (Accessed 6 July 2024).A. Nanni, M. Parisi, M. Colonna, Wine by-products as raw materials for the production of biopolymers and of natural reinforcing fillers: a critical review, Polymers 13 (3) (Jan. 2021) 381, https://doi.org/10.3390/POLYM13030381, 2021, Vol. 13, Page 381.D.K. Thbayh, B. Fiser, Computational study of synthetic and natural polymer additives — antioxidant potential of BHA, TBHQ, BHT, and curcumin, Polym. Degrad. Stabil. 201 (Jul. 2022) 109979, https://doi.org/10.1016/J. POLYMDEGRADSTAB.2022.109979.R.A. Mendes, V.A.S. da Mata, A. Brown, G.L.C. de Souza, A density functional theory benchmark on antioxidant-related properties of polyphenols, Phys. Chem. Chem. Phys. 26 (11) (Mar. 2024) 8613–8622, https://doi.org/10.1039/ D3CP04412B.http://purl.org/coar/resource_type/c_6501ORIGINAL1-s2.0-S2666086524000274-main.pdf1-s2.0-S2666086524000274-main.pdfapplication/pdf6753462https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/1/1-s2.0-S2666086524000274-main.pdfd359cf6e72d8da3c4a0d82cc9713645eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S2666086524000274-main.pdf.txt1-s2.0-S2666086524000274-main.pdf.txtExtracted texttext/plain81240https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/4/1-s2.0-S2666086524000274-main.pdf.txt49a4553332536ca0cf8d481cb7129dc3MD54THUMBNAIL1-s2.0-S2666086524000274-main.pdf.jpg1-s2.0-S2666086524000274-main.pdf.jpgGenerated Thumbnailimage/jpeg8321https://repositorio.utb.edu.co/bitstream/20.500.12585/12769/5/1-s2.0-S2666086524000274-main.pdf.jpg63cb02dc7c6119541c93915fdf24a874MD5520.500.12585/12769oai:repositorio.utb.edu.co:20.500.12585/127692024-11-16 00:15:00.814Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=