Sistema de recomendación para detectar patrones climáticos utilizando estrategias de machine learning
A medida que la humanidad ha avanzado en la recopilación y análisis de datos climáticos, su uso para la toma de decisiones ha cobrado gran relevancia, especialmente en un contexto donde el cambio climático intensifica fenómenos como inviernos extremos y sequías prolongadas. La prevención y la acción...
- Autores:
-
Ríos Sánchez, Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/5410
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/5410
- Palabra clave:
- Sistemas de recomendación
Clustering
Temperatura
Temperatura de punto de rocío
Precipitación
Humedad relativa
Velocidad del viento
Presión atmosférica
Aprendizaje automático (Inteligencia artificial)
Análisis de datos
Cambios climáticos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Summary: | A medida que la humanidad ha avanzado en la recopilación y análisis de datos climáticos, su uso para la toma de decisiones ha cobrado gran relevancia, especialmente en un contexto donde el cambio climático intensifica fenómenos como inviernos extremos y sequías prolongadas. La prevención y la acción ante estos eventos se han vuelto esenciales para proteger a las comunidades y mitigar los impactos de los desastres naturales. En este sentido, la inteligencia artificial y el machine learning ofrecen herramientas valiosas al identificar patrones climáticos que permiten anticipar eventos extremos y mejorar la preparación para emergencias. El análisis realizado sobre datos climáticos ha revelado patrones estacionales que ayudan a prever fenómenos naturales y a mitigar riesgos en sectores clave como la agricultura y la energía. Además, se observaron correlaciones significativas entre variables como presión atmosférica, humedad y velocidad del viento, que pueden funcionar como indicadores tempranos de condiciones severas. Estos patrones y correlaciones permiten desarrollar modelos predictivos que refuerzan los sistemas de alerta y mejoran la capacidad de respuesta ante situaciones adversas. Finalmente, los modelos empleados, como las regresiones múltiples, han demostrado ser efectivos en la predicción a corto y mediano plazo de fenómenos climáticos específicos. Esto refuerza la idea de que la integración de la ciencia de datos y la inteligencia artificial es un componente crucial para enfrentar los desafíos actuales del cambio climático y tomar decisiones informadas que salvaguarden a la sociedad. |
---|