Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado

La pregunta: ¿Dónde me encuentro? Es una de las preguntas más básicas realizadas por la humanidad a lo largo del tiempo. El surgimiento, avance y desarrollo dentro del área de la robótica, tal como es la robótica autónoma, se ha convertido en uno de los logros más exitosos alcanzado al tiempo presen...

Full description

Autores:
Salgado Luque, Jorge Alejandro
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/18049
Acceso en línea:
http://hdl.handle.net/10654/18049
Palabra clave:
AVIONES SIN PILOTO
ROBOTICA
SLAM
Navigation
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Laser Sensor
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
SLAM
Navegación
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Sensor Láser
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
Rights
License
Derechos Reservados - Universidad Militar Nueva Granada, 2018
id UNIMILTAR2_3451967fc67d2529d21990d874e70bd8
oai_identifier_str oai:repository.unimilitar.edu.co:10654/18049
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
dc.title.translated.spa.fl_str_mv Safe and autonomous displacement in unstructured environments based on SLAM Techniques for an unmanned aerial vehicle
title Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
spellingShingle Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
AVIONES SIN PILOTO
ROBOTICA
SLAM
Navigation
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Laser Sensor
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
SLAM
Navegación
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Sensor Láser
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
title_short Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
title_full Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
title_fullStr Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
title_full_unstemmed Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
title_sort Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripulado
dc.creator.fl_str_mv Salgado Luque, Jorge Alejandro
dc.contributor.advisor.spa.fl_str_mv Solaque Guzmán, Leonardo Enrique
dc.contributor.author.spa.fl_str_mv Salgado Luque, Jorge Alejandro
dc.contributor.other.spa.fl_str_mv Sánchez, Guillermo
Rondón Cárdenas, Daniel Santiago
dc.subject.lemb.spa.fl_str_mv AVIONES SIN PILOTO
ROBOTICA
topic AVIONES SIN PILOTO
ROBOTICA
SLAM
Navigation
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Laser Sensor
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
SLAM
Navegación
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Sensor Láser
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
dc.subject.keywords.spa.fl_str_mv SLAM
Navigation
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Laser Sensor
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
dc.subject.proposal.spa.fl_str_mv SLAM
Navegación
Pioneer3DX
DJI Matrice 600 Pro
ROS
Gmapping
Sensor Láser
Spatial Advanced Navigation
ZED
move_base
robot_localization
slam_gmapping
Hokuyo
description La pregunta: ¿Dónde me encuentro? Es una de las preguntas más básicas realizadas por la humanidad a lo largo del tiempo. El surgimiento, avance y desarrollo dentro del área de la robótica, tal como es la robótica autónoma, se ha convertido en uno de los logros más exitosos alcanzado al tiempo presente; siendo que un robot por sí mismo pueda realizar tareas y aún comportamientos sin ninguna intervención humana es algo pensado, antiguamente, sólo en la ciencia ficción. La cuestión: ¿Dónde me encuentro? Se ha transformado en: ¿Cómo sabe una unidad robótica dónde se encuentra? Y para responder este interrogante el objetivo de muchas de las investigaciones en este campo de estudio ha sido el de encontrar la mejor técnica o solución que permite al robot darle capacidades de navegación en un modo autónomo. En el contexto de desplazamiento de las plataformas robóticas aéreas en entornos poco estructurados, es decir, donde no se conoce el mapa a priori; es primordial la seguridad de los agentes actuantes dentro del área de trabajo, más aún, cuando se trata de vidas humanas. Para esto, es necesario un robot aéreo capacitado con una buena instrumentación, el cual debe ser capaz de sortear situaciones de riesgo cuando realiza la ejecución de sus labores para llegar a un éxito de misión. El presente trabajo pretende abordar una estrategia de Mapeo y Localización Simultánea dentro del sistema operativo robótico ROS, de manera que una plataforma robótica terrestre (Pioneer3DX) o aérea (DJI Matrice 600 Pro) pueda desplazarse en un espacio tridimensional con capacidad de auto-localizarse y tomar decisiones en tiempo real para no colisionar con obstáculos al dirigirse a un punto de misión definido. Se logra ejecutar el algoritmo de SLAM del paquete slam_gmapping con interfaz ROS y visualización en RVIZ con la plataforma robótica terrestre y aérea; con la capacidad de evadir obstáculos estáticos y dinámicos.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-10-05T19:46:44Z
2019-12-26T22:10:50Z
dc.date.available.none.fl_str_mv 2018-10-05T19:46:44Z
2019-12-26T22:10:50Z
dc.date.issued.none.fl_str_mv 2018-08-16
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.dcmi-type-vocabulary.spa.fl_str_mv Text
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/18049
url http://hdl.handle.net/10654/18049
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ait-Jellal, R., & Zell, A. (2017, 9). Outdoor obstacle avoidance based on hybrid visual stereo SLAM for an autonomous quadrotor MAV. 2017 European Conference on Mobile Robots (ECMR), (pp. 1-8). doi:10.1109/ECMR.2017.8098686
Alaimo, A., Artale, V., Milazzo, C., Ricciardello, A., & Trefiletti, L. (2013, 5). Mathematical modeling and control of a hexacopter. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), (pp. 1043-1050). doi:10.1109/ICUAS.2013.6564793
Aulinas, J., Petillot, Y., Salvi, J., & Lladó, X. (2008). The SLAM Problem: A Survey. Proceedings of the 2008 Conference on Artificial Intelligence Research and Development: Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence (pp. 363-371). Amsterdam, The Netherlands, The Netherlands: IOS Press.
Bailey, T., & Durrant-Whyte, H. (2006, 9). Simultaneous localization and mapping (SLAM): part II. IEEE Robotics Automation Magazine, 13, 108-117. doi:10.1109/MRA.2006.1678144
Botao, H. (2018, 4 17). Package Summary - dji_sdk. (L. Norman, Ed.) Retrieved from http://wiki.ros.org/dji_sdk
Brand, C., Schuster, M. J., Hirschmüller, H., & Suppa, M. (2014, 9). Stereo-vision based obstacle mapping for indoor/outdoor SLAM. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 1846-1853). doi:10.1109/IROS.2014.6942805
Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017, 9). Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2, 194-220. doi:10.1109/TIV.2017.2749181
Brown, R. G., & Hwang, P. Y. (1997). Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions. Wiley.
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., . . . Leonard, J. J. (2016, 12). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32, 1309-1332. doi:10.1109/TRO.2016.2624754
Campion, G., Bastin, G., & D'Andrea-Novel, B. (1993, 5). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. [1993] Proceedings IEEE International Conference on Robotics and Automation, (pp. 462-469 vol.1). doi:10.1109/ROBOT.1993.292023
Chad, R., & Mike, O. (2013, 3 3). urg_node - Package Summary. (T. Baltovski, Ed.) Retrieved from http://wiki.ros.org/urg_node, https://github.com/ros-drivers/urg_node
Conley, K. (2010, 9 18). REP-1: REP Purpose and Guidelines. (K. Conley, Ed.) Retrieved from http://www.ros.org/reps/rep-0001.html
Corke, P. (2011). Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Berlin Heidelberg
Dell, I. (2014, 10 1). Alienware Alpha .
Dellaert, F., & Kaess, M. (2006). Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. The International Journal of Robotics Research, 25, 1181-1203. doi:10.1177/0278364906072768
Dissanayake, G., Huang, S., Wang, Z., & Ranasinghe, R. (2011, 8). A review of recent developments in Simultaneous Localization and Mapping. 2011 6th International Conference on Industrial and Information Systems, (pp. 477-482). doi:10.1109/ICIINFS.2011.6038117
Dissanayake, M. W., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001, 6). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17, 229-241. doi:10.1109/70.938381
DJI. (2017, 7 30). Matrice 600 Pro. User Manual.
Doucet, A., Smith, A., Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. Springer New York.
Durrant-Whyte, H., & Bailey, T. (2006, 6). Simultaneous localization and mapping: part I. IEEE Robotics Automation Magazine, 13, 99-110. doi:10.1109/MRA.2006.1638022
Fernández, E., Romero, A. M., Crespo, L. S., & Martinez, A. (2015). Learning ROS for Robotics Programming: Your One-stop Guide to the Robot Operating System. Packt Publishing.
Fox, D., Burgard, W., & Thrun, S. (1997, 3). The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine, 4, 23-33. doi:10.1109/100.580977
Fraundorfer, F., & Scaramuzza, D. (2012, 6). Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications. IEEE Robotics Automation Magazine, 19, 78-90. doi:10.1109/MRA.2012.2182810
Gerkey, B., Grisetti, G., Stachniss, C., & Burgard., W. (2012, 3 10). OpenSLAM: Gmapping and ROS gmapping. (B. Gerkey, Ed.) Retrieved from https://openslam-org.github.io/gmapping.html, https://github.com/ros-perception/slam_gmapping.
Gómez, D. H. (2015). Desarrollo de una técnica SLAM para ambientes dinámicos tridimensionales. mathesis, Universidad Nacional de Colombia.
Grewal, M., & Andrews, A. (2011). Kalman filtering: theory and practice using MATLAB (Vol. 5). doi:10.1007/1-4020-0613-6_9753
Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A Tutorial on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine, 2, 31-43. doi:10.1109/MITS.2010.939925
Grisetti, G., Stachniss, C., & Burgard, W. (2007, 2). Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 23, 34-46. doi:10.1109/TRO.2006.889486
Guerrero, J. (2011, 1 1). Técnicas de procesamiento de imágenes estereoscópicas. Master's thesis, Universidad Complutense de Madrid.
Huang, S., & Dissanayake, G. (2016, 10). A critique of current developments in simultaneous localization and mapping. 13.
Jacobs, O. L. (1993). Introduction to control theory. Oxford University Press, Incorporated.
Jurić-Kavelj, S. (2012, 10 25). ROSARIA - Package Summary. (J.-K. Srećko, M. Ivan, & H. Reed, Eds.) Retrieved from http://robots.mobilerobots.com/wiki/ARIA, https://github.com/amor-ros-pkg/rosaria, http://wiki.ros.org/ROSARIA
Kalman, R. E. (1960). A New Approach to Linear Filtering And Prediction Problems. ASME Journal of Basic Engineering
Khairuddin, A. R., Talib, M. S., & Haron, H. (2015, 11). Review on simultaneous localization and mapping (SLAM). 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), (pp. 85-90). doi:10.1109/ICCSCE.2015.7482163
Kim, C., Sakthivel, R., & Chung, W. K. (2007, 4). Unscented FastSLAM: A Robust Algorithm for the Simultaneous Localization and Mapping Problem. Proceedings 2007 IEEE International Conference on Robotics and Automation, (pp. 2439-2445). doi:10.1109/ROBOT.2007.363685
Kohlbrecher, S., & Meyer, J. (2012, 1 31). Tutorials: How to set up hector_slam for your robot. (J. M. Stefan Kohlbrecher, Ed.) Retrieved from http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot
Kohlbrecher, S., Meyer, J., Stryk, O., & Klingauf, U. (2011, 11). A Flexible and Scalable SLAM System with Full 3D Motion Estimation. Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR).
Koubaa, A. (2016). Robot Operating System (ROS): The Complete Reference. Springer International Publishing.
Lemoine, F. G., & Center, G. S. (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. National Aeronautics and Space Administration, Goddard Space Flight Center.
Leonard, J. J., & Durrant-Whyte, H. F. (1991, 6). Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7, 376-382. doi:10.1109/70.88147
Li, J., Cheng, L., Wu, H., Xiong, L., & Wang, D. (2012, 6). An overview of the simultaneous localization and mapping on mobile robot. 2012 Proceedings of International Conference on Modelling, Identification and Control, (pp. 358-364).
Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. J. (2016, 2). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32, 1-19. doi:10.1109/TRO.2015.2496823
Marder-Eppstein, E. (2016, 3 26). Package Summary - move_base. (D. V. Lu, M. Ferguson, & A. Hoy, Eds.) Retrieved from http://wiki.ros.org/move_base
Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010, 5). The Office Marathon: Robust navigation in an indoor office environment. 2010 IEEE International Conference on Robotics and Automation, (pp. 300-307). doi:10.1109/ROBOT.2010.5509725
Maybeck, P. S. (1982). Stochastic Models, Estimation, and Control. Academic Press.
Meeussen, W. (2010, 10 28). REP-105: Coordinate Frames for Mobile Platforms. (W. Meeussen, Ed.) Retrieved from http://www.ros.org/reps/rep-0105.html
MobileRobots, I. (2006, 1 30). Pioneer 3 Operations Manual with Advanced Robot Control & Operations Software .
Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. Eighteenth National Conference on Artificial Intelligence (pp. 593-598). Menlo Park, CA, USA: American Association for Artificial Intelligence.
Montemerlo, M., Thrun, S., Roller, D., & Wegbreit, B. (2003). FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping That Provably Converges. Proceedings of the 18th International Joint Conference on Artificial Intelligence (pp. 1151-1156). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Moore, T. (2014, 4 28). Package Summary - robot_localization. (T. Moore, Ed.) Retrieved from http://docs.ros.org/melodic/api/robot_localization/html/index.html
Moore, T., & Stouch, D. (2014, 7). A Generalized Extended Kalman Filter Implementation for the Robot Operating System. Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer.
Moreno, L., Garrido, S., Blanco, D., & Muñoz, M. L. (2009, 4). Differential Evolution Solution to the SLAM Problem. Robot. Auton. Syst., 57, 441-450. doi:10.1016/j.robot.2008.05.005
Mori. (2009, 6 1). Scanning Laser Range Finder URG-04LX-UG01. Specifications
Murphy, K. P. (1999). Bayesian Map Learning in Dynamic Environments. Proceedings of the 12th International Conference on Neural Information Processing Systems (pp. 1015-1021). Cambridge: MIT Press.
Navigation, A. (2017, 1 30). Advanced Navigation Driver. (A. Navigation, Ed.) Retrieved from http://wiki.ros.org/advanced_navigation_driver, https://github.com/ros-drivers/advanced_navigation_driver
Navigation, A. (2017, 1 30). Spatial Reference Manual.
Open Source Initiative, O. S. (2017). The 3-Clause BSD License. (O. S. Open Source Initiative, Ed.) Retrieved from https://opensource.org/licenses/BSD-3-Clause
Open Source Robotic Foundation, O. S. (2017). ROS: About ROS. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/about-ros/
Open Source Robotic Foundation, O. S. (2017). Why ROS? : A Distributed, Modular Design. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/is-ros-for-me/
Open Source Robotic Foundation, O. S. (2017). Why ROS? : Permissive Licensing. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/is-ros-for-me/
P Gerkey, B., & Konolige, K. (2008, 1). Planning and control in unstructured terrain.
Panchpor, A. A., Shue, S., & Conrad, J. M. (2018, 1). A survey of methods for mobile robot localization and mapping in dynamic indoor environments. 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES), (pp. 138-144). doi:10.1109/SPACES.2018.8316333
Rojas-Perez, L. O., & Martinez-Carranza, J. (2017, 10). Metric monocular SLAM and colour segmentation for multiple obstacle avoidance in autonomous flight. 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), (pp. 234-239). doi:10.1109/RED-UAS.2017.8101672
Saeedi, S., Trentini, M., Seto, M., & Li, H. (2016, 1). Multiple-Robot Simultaneous Localization and Mapping: A Review. J. Field Robot., 33, 3-46. doi:10.1002/rob.21620
Scaramuzza, D., & Fraundorfer, F. (2011, 12). Visual Odometry [Tutorial]. IEEE Robotics Automation Magazine, 18, 80-92. doi:10.1109/MRA.2011.943233
Siciliano, B., & Khatib, O. (2008). Springer Handbook of Robotics. Springer Berlin Heidelberg.
Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to Autonomous Mobile Robots. Bradford Book.
Smith, R. C., & Cheeseman, P. (1986). On the Representation and Estimation of Spatial Uncertainty. The International Journal of Robotics Research, 5, 56-68. doi:10.1177/027836498600500404
Sorenson, H. W. (1970, 7). Least-squares estimation: from Gauss to Kalman. IEEE Spectrum, 7, 63-68. doi:10.1109/MSPEC.1970.5213471
StereoLabs, I. (2016, 10 24). ZED Documentation. (I. StereoLabs, Ed.) Retrieved from https://www.stereolabs.com/zed/
StereoLabs, I. (2016, 10 24). ZED ROS Wrapper. (I. StereoLabs, Ed.) Retrieved from https://docs.stereolabs.com/integrations/ros/zed_node/, https://github.com/stereolabs/zed-ros-wrapper/releases
Tully Foote, M. P. (2010, 10 8). REP-103: Standard Units of Measure and Coordinate Conventions. (M. P. Tully Foote, Ed.) Retrieved from http://www.ros.org/reps/rep-0103.html
Unités, T. C. (2006). The International System of Units (SI). Comité International des Poids Mesures, 38, 95. Retrieved from https://www.bipm.org/en/publications/si-brochure/
Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill. Chapel Hill, NC, USA: University of North Carolina at Chapel Hill.
Zaman, S., Slany, W., & Steinbauer, G. (2011, 4). ROS-based mapping, localization and autonomous navigation using a Pioneer 3-DX robot and their relevant issues. 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), (pp. 1-5). doi:10.1109/SIECPC.2011.5876943
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Militar Nueva Granada, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas
rights_invalid_str_mv Derechos Reservados - Universidad Militar Nueva Granada, 2018
https://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Calle 100
dc.publisher.department.spa.fl_str_mv Facultad de Ingenieríad
dc.publisher.program.spa.fl_str_mv Ingeniería en Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Ingeniería - Ingeniería en Mecatrónica
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/18049/1/SalgadoLuque_JorgeAlejandro_2018.pdf.jpg
http://repository.unimilitar.edu.co/bitstream/10654/18049/2/SalgadoLuque_JorgeAlejandro_2018.pdf
http://repository.unimilitar.edu.co/bitstream/10654/18049/3/license.txt
bitstream.checksum.fl_str_mv 52f13948a39e7e121dfe7fd0f34577ad
b69658f7e794aab83d9f6178658f8018
755421b5a8b45ce61d1a5793576f9a78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1837098417330847744
spelling Solaque Guzmán, Leonardo EnriqueSalgado Luque, Jorge AlejandroIngeniero en MecatrónicaSánchez, GuillermoRondón Cárdenas, Daniel SantiagoCalle 1002018-10-05T19:46:44Z2019-12-26T22:10:50Z2018-10-05T19:46:44Z2019-12-26T22:10:50Z2018-08-16http://hdl.handle.net/10654/18049La pregunta: ¿Dónde me encuentro? Es una de las preguntas más básicas realizadas por la humanidad a lo largo del tiempo. El surgimiento, avance y desarrollo dentro del área de la robótica, tal como es la robótica autónoma, se ha convertido en uno de los logros más exitosos alcanzado al tiempo presente; siendo que un robot por sí mismo pueda realizar tareas y aún comportamientos sin ninguna intervención humana es algo pensado, antiguamente, sólo en la ciencia ficción. La cuestión: ¿Dónde me encuentro? Se ha transformado en: ¿Cómo sabe una unidad robótica dónde se encuentra? Y para responder este interrogante el objetivo de muchas de las investigaciones en este campo de estudio ha sido el de encontrar la mejor técnica o solución que permite al robot darle capacidades de navegación en un modo autónomo. En el contexto de desplazamiento de las plataformas robóticas aéreas en entornos poco estructurados, es decir, donde no se conoce el mapa a priori; es primordial la seguridad de los agentes actuantes dentro del área de trabajo, más aún, cuando se trata de vidas humanas. Para esto, es necesario un robot aéreo capacitado con una buena instrumentación, el cual debe ser capaz de sortear situaciones de riesgo cuando realiza la ejecución de sus labores para llegar a un éxito de misión. El presente trabajo pretende abordar una estrategia de Mapeo y Localización Simultánea dentro del sistema operativo robótico ROS, de manera que una plataforma robótica terrestre (Pioneer3DX) o aérea (DJI Matrice 600 Pro) pueda desplazarse en un espacio tridimensional con capacidad de auto-localizarse y tomar decisiones en tiempo real para no colisionar con obstáculos al dirigirse a un punto de misión definido. Se logra ejecutar el algoritmo de SLAM del paquete slam_gmapping con interfaz ROS y visualización en RVIZ con la plataforma robótica terrestre y aérea; con la capacidad de evadir obstáculos estáticos y dinámicos.1. Introducción 1.1 Planteamiento del Problema 1.2 Objetivos 1.2.1 Objetivo General 1.2.2 Objetivos Específicos 1.3 Justificación 1.4 Metodología 2 Marco Teórico 2.1 Mapeo y Localización Simultánea (SLAM) 2.1.1 Características de SLAM 2.1.2 Formulación y estructura del problema de SLAM 2.2 Modelo Cinemático - Plataforma Robótica Móvil Terrestre 2.3 Modelo Cinemático - Plataforma Robótica Móvil Aérea 2.4 Filtro de Kalman 2.4.1 Proceso de Estimación 2.4.2 Introducción de orígenes computacionales del Filtro de Kalman 2.4.3 Algoritmo del Filtro Discreto de Kalman 2.5 Filtro de Kalman Extendido (EKF) 2.5.1 Orígenes Computacionales del Filtro de Kalman Extendido 2.6 Filtro de Partículas Rao-Blackwellized 3 Software 3.1 Robotic Operating System (ROS) 3.2 ROS Enhancement Proposals (REPs) 3.2.1 REP-103 3.2.2 REP-105 3.3 Paquetes de ROS Utilizados 3.3.1 SLAM con Gmapping (slam_gmapping) 3.3.2 Move Base 3.3.3 Robot Localization 3.3.4 DJI SDK 3.3.5 ZED ROS Wrapper 3.3.6 URG Node 3.3.7 Advanced Navigation Driver 3.3.8 RosAria 4 Hardware 4.1 Cámara Estereoscópica - ZED 4.2 Sensor Láser – Hokuyo 4.3 Spatial Advanced Navigation 4.4 Plataforma Robótica Móvil Terrestre – Pioneer3DX 4.5 Plataforma Robótica Móvil Aérea - DJI Matrice 600 Pro 4.6 Sistema de Procesamiento – AlienWare Alpha 4.7 Sistema de Procesamiento – Dell Portátil 5 Simulaciones 6 Resultados Experimentales 6.1 Plataforma Terrestre 6.2 Plataforma Aérea 7 Conclusiones y Trabajos Futuros 8 AnexosThe question: Where am I? It is one of the most basic questions asked by humanity over time. The emergence, advancement and development within the area of robotics, such as autonomous robotics, has become one of the most successful achievements reached at the time; Being that a robot by itself can perform tasks and even behaviors without any human intervention is something thought, formerly, only in science fiction. The question: Where am I? It has been transformed into: How does a robotic unit know where it is? And to answer this question the objective of many of the investigations in this field of study has been to find the best technique or solution that allows the robot to give navigation capabilities in an autonomous mode. In the context of the displacement of aerial robotic platforms in unstructured environments, that is, where the a priori map is not known; the safety of the agents acting within the workspace area is paramount, especially when it comes to human lives. For this, a trained aerial robot with a good instrumentation is necessary, which must be able to overcome situations of risk when it carries out its tasks to reach a mission success. This paper aims to address a strategy of simultaneous location and mapping within the robotic operating system ROS, so that a terrestrial robot platform (Pioneer3DX) or aerial (DJI Matrice 600 Pro) can move in a three-dimensional space with the ability to auto-locate and make decisions in real time so that do not collide with obstacles when going to a defined mission target. It is possible to execute the SLAM algorithm of the slam_gmapping package with ROS interface and visualization in RVIZ with the terrestrial and aerial robotic platform; with the ability to evade static and dynamic obstacles.Pregradoapplication/pdfspaDerechos Reservados - Universidad Militar Nueva Granada, 2018https://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadashttp://purl.org/coar/access_right/c_abf2Desplazamiento seguro y autónomo en entornos poco estructurados basado en técnicas de SLAM para un vehículo aéreo no tripuladoSafe and autonomous displacement in unstructured environments based on SLAM Techniques for an unmanned aerial vehicleinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoTexthttp://purl.org/coar/resource_type/c_7a1fAVIONES SIN PILOTOROBOTICASLAMNavigationPioneer3DXDJI Matrice 600 ProROSGmappingLaser SensorSpatial Advanced NavigationZEDmove_baserobot_localizationslam_gmappingHokuyoSLAMNavegaciónPioneer3DXDJI Matrice 600 ProROSGmappingSensor LáserSpatial Advanced NavigationZEDmove_baserobot_localizationslam_gmappingHokuyoFacultad de IngenieríadIngeniería en MecatrónicaIngeniería - Ingeniería en MecatrónicaUniversidad Militar Nueva GranadaAit-Jellal, R., & Zell, A. (2017, 9). Outdoor obstacle avoidance based on hybrid visual stereo SLAM for an autonomous quadrotor MAV. 2017 European Conference on Mobile Robots (ECMR), (pp. 1-8). doi:10.1109/ECMR.2017.8098686Alaimo, A., Artale, V., Milazzo, C., Ricciardello, A., & Trefiletti, L. (2013, 5). Mathematical modeling and control of a hexacopter. 2013 International Conference on Unmanned Aircraft Systems (ICUAS), (pp. 1043-1050). doi:10.1109/ICUAS.2013.6564793Aulinas, J., Petillot, Y., Salvi, J., & Lladó, X. (2008). The SLAM Problem: A Survey. Proceedings of the 2008 Conference on Artificial Intelligence Research and Development: Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence (pp. 363-371). Amsterdam, The Netherlands, The Netherlands: IOS Press.Bailey, T., & Durrant-Whyte, H. (2006, 9). Simultaneous localization and mapping (SLAM): part II. IEEE Robotics Automation Magazine, 13, 108-117. doi:10.1109/MRA.2006.1678144Botao, H. (2018, 4 17). Package Summary - dji_sdk. (L. Norman, Ed.) Retrieved from http://wiki.ros.org/dji_sdkBrand, C., Schuster, M. J., Hirschmüller, H., & Suppa, M. (2014, 9). Stereo-vision based obstacle mapping for indoor/outdoor SLAM. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 1846-1853). doi:10.1109/IROS.2014.6942805Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017, 9). Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2, 194-220. doi:10.1109/TIV.2017.2749181Brown, R. G., & Hwang, P. Y. (1997). Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions. Wiley.Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., . . . Leonard, J. J. (2016, 12). Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32, 1309-1332. doi:10.1109/TRO.2016.2624754Campion, G., Bastin, G., & D'Andrea-Novel, B. (1993, 5). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. [1993] Proceedings IEEE International Conference on Robotics and Automation, (pp. 462-469 vol.1). doi:10.1109/ROBOT.1993.292023Chad, R., & Mike, O. (2013, 3 3). urg_node - Package Summary. (T. Baltovski, Ed.) Retrieved from http://wiki.ros.org/urg_node, https://github.com/ros-drivers/urg_nodeConley, K. (2010, 9 18). REP-1: REP Purpose and Guidelines. (K. Conley, Ed.) Retrieved from http://www.ros.org/reps/rep-0001.htmlCorke, P. (2011). Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Berlin HeidelbergDell, I. (2014, 10 1). Alienware Alpha .Dellaert, F., & Kaess, M. (2006). Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. The International Journal of Robotics Research, 25, 1181-1203. doi:10.1177/0278364906072768Dissanayake, G., Huang, S., Wang, Z., & Ranasinghe, R. (2011, 8). A review of recent developments in Simultaneous Localization and Mapping. 2011 6th International Conference on Industrial and Information Systems, (pp. 477-482). doi:10.1109/ICIINFS.2011.6038117Dissanayake, M. W., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001, 6). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17, 229-241. doi:10.1109/70.938381DJI. (2017, 7 30). Matrice 600 Pro. User Manual.Doucet, A., Smith, A., Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. Springer New York.Durrant-Whyte, H., & Bailey, T. (2006, 6). Simultaneous localization and mapping: part I. IEEE Robotics Automation Magazine, 13, 99-110. doi:10.1109/MRA.2006.1638022Fernández, E., Romero, A. M., Crespo, L. S., & Martinez, A. (2015). Learning ROS for Robotics Programming: Your One-stop Guide to the Robot Operating System. Packt Publishing.Fox, D., Burgard, W., & Thrun, S. (1997, 3). The dynamic window approach to collision avoidance. IEEE Robotics Automation Magazine, 4, 23-33. doi:10.1109/100.580977Fraundorfer, F., & Scaramuzza, D. (2012, 6). Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications. IEEE Robotics Automation Magazine, 19, 78-90. doi:10.1109/MRA.2012.2182810Gerkey, B., Grisetti, G., Stachniss, C., & Burgard., W. (2012, 3 10). OpenSLAM: Gmapping and ROS gmapping. (B. Gerkey, Ed.) Retrieved from https://openslam-org.github.io/gmapping.html, https://github.com/ros-perception/slam_gmapping.Gómez, D. H. (2015). Desarrollo de una técnica SLAM para ambientes dinámicos tridimensionales. mathesis, Universidad Nacional de Colombia.Grewal, M., & Andrews, A. (2011). Kalman filtering: theory and practice using MATLAB (Vol. 5). doi:10.1007/1-4020-0613-6_9753Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A Tutorial on Graph-Based SLAM. IEEE Intelligent Transportation Systems Magazine, 2, 31-43. doi:10.1109/MITS.2010.939925Grisetti, G., Stachniss, C., & Burgard, W. (2007, 2). Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 23, 34-46. doi:10.1109/TRO.2006.889486Guerrero, J. (2011, 1 1). Técnicas de procesamiento de imágenes estereoscópicas. Master's thesis, Universidad Complutense de Madrid.Huang, S., & Dissanayake, G. (2016, 10). A critique of current developments in simultaneous localization and mapping. 13.Jacobs, O. L. (1993). Introduction to control theory. Oxford University Press, Incorporated.Jurić-Kavelj, S. (2012, 10 25). ROSARIA - Package Summary. (J.-K. Srećko, M. Ivan, & H. Reed, Eds.) Retrieved from http://robots.mobilerobots.com/wiki/ARIA, https://github.com/amor-ros-pkg/rosaria, http://wiki.ros.org/ROSARIAKalman, R. E. (1960). A New Approach to Linear Filtering And Prediction Problems. ASME Journal of Basic EngineeringKhairuddin, A. R., Talib, M. S., & Haron, H. (2015, 11). Review on simultaneous localization and mapping (SLAM). 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), (pp. 85-90). doi:10.1109/ICCSCE.2015.7482163Kim, C., Sakthivel, R., & Chung, W. K. (2007, 4). Unscented FastSLAM: A Robust Algorithm for the Simultaneous Localization and Mapping Problem. Proceedings 2007 IEEE International Conference on Robotics and Automation, (pp. 2439-2445). doi:10.1109/ROBOT.2007.363685Kohlbrecher, S., & Meyer, J. (2012, 1 31). Tutorials: How to set up hector_slam for your robot. (J. M. Stefan Kohlbrecher, Ed.) Retrieved from http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobotKohlbrecher, S., Meyer, J., Stryk, O., & Klingauf, U. (2011, 11). A Flexible and Scalable SLAM System with Full 3D Motion Estimation. Proc. IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR).Koubaa, A. (2016). Robot Operating System (ROS): The Complete Reference. Springer International Publishing.Lemoine, F. G., & Center, G. S. (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. National Aeronautics and Space Administration, Goddard Space Flight Center.Leonard, J. J., & Durrant-Whyte, H. F. (1991, 6). Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7, 376-382. doi:10.1109/70.88147Li, J., Cheng, L., Wu, H., Xiong, L., & Wang, D. (2012, 6). An overview of the simultaneous localization and mapping on mobile robot. 2012 Proceedings of International Conference on Modelling, Identification and Control, (pp. 358-364).Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. J. (2016, 2). Visual Place Recognition: A Survey. IEEE Transactions on Robotics, 32, 1-19. doi:10.1109/TRO.2015.2496823Marder-Eppstein, E. (2016, 3 26). Package Summary - move_base. (D. V. Lu, M. Ferguson, & A. Hoy, Eds.) Retrieved from http://wiki.ros.org/move_baseMarder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010, 5). The Office Marathon: Robust navigation in an indoor office environment. 2010 IEEE International Conference on Robotics and Automation, (pp. 300-307). doi:10.1109/ROBOT.2010.5509725Maybeck, P. S. (1982). Stochastic Models, Estimation, and Control. Academic Press.Meeussen, W. (2010, 10 28). REP-105: Coordinate Frames for Mobile Platforms. (W. Meeussen, Ed.) Retrieved from http://www.ros.org/reps/rep-0105.htmlMobileRobots, I. (2006, 1 30). Pioneer 3 Operations Manual with Advanced Robot Control & Operations Software .Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. Eighteenth National Conference on Artificial Intelligence (pp. 593-598). Menlo Park, CA, USA: American Association for Artificial Intelligence.Montemerlo, M., Thrun, S., Roller, D., & Wegbreit, B. (2003). FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping That Provably Converges. Proceedings of the 18th International Joint Conference on Artificial Intelligence (pp. 1151-1156). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.Moore, T. (2014, 4 28). Package Summary - robot_localization. (T. Moore, Ed.) Retrieved from http://docs.ros.org/melodic/api/robot_localization/html/index.htmlMoore, T., & Stouch, D. (2014, 7). A Generalized Extended Kalman Filter Implementation for the Robot Operating System. Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer.Moreno, L., Garrido, S., Blanco, D., & Muñoz, M. L. (2009, 4). Differential Evolution Solution to the SLAM Problem. Robot. Auton. Syst., 57, 441-450. doi:10.1016/j.robot.2008.05.005Mori. (2009, 6 1). Scanning Laser Range Finder URG-04LX-UG01. SpecificationsMurphy, K. P. (1999). Bayesian Map Learning in Dynamic Environments. Proceedings of the 12th International Conference on Neural Information Processing Systems (pp. 1015-1021). Cambridge: MIT Press.Navigation, A. (2017, 1 30). Advanced Navigation Driver. (A. Navigation, Ed.) Retrieved from http://wiki.ros.org/advanced_navigation_driver, https://github.com/ros-drivers/advanced_navigation_driverNavigation, A. (2017, 1 30). Spatial Reference Manual.Open Source Initiative, O. S. (2017). The 3-Clause BSD License. (O. S. Open Source Initiative, Ed.) Retrieved from https://opensource.org/licenses/BSD-3-ClauseOpen Source Robotic Foundation, O. S. (2017). ROS: About ROS. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/about-ros/Open Source Robotic Foundation, O. S. (2017). Why ROS? : A Distributed, Modular Design. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/is-ros-for-me/Open Source Robotic Foundation, O. S. (2017). Why ROS? : Permissive Licensing. (O. S. Open Source Robotic Foundation, Ed.) Retrieved from http://www.ros.org/is-ros-for-me/P Gerkey, B., & Konolige, K. (2008, 1). Planning and control in unstructured terrain.Panchpor, A. A., Shue, S., & Conrad, J. M. (2018, 1). A survey of methods for mobile robot localization and mapping in dynamic indoor environments. 2018 Conference on Signal Processing And Communication Engineering Systems (SPACES), (pp. 138-144). doi:10.1109/SPACES.2018.8316333Rojas-Perez, L. O., & Martinez-Carranza, J. (2017, 10). Metric monocular SLAM and colour segmentation for multiple obstacle avoidance in autonomous flight. 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), (pp. 234-239). doi:10.1109/RED-UAS.2017.8101672Saeedi, S., Trentini, M., Seto, M., & Li, H. (2016, 1). Multiple-Robot Simultaneous Localization and Mapping: A Review. J. Field Robot., 33, 3-46. doi:10.1002/rob.21620Scaramuzza, D., & Fraundorfer, F. (2011, 12). Visual Odometry [Tutorial]. IEEE Robotics Automation Magazine, 18, 80-92. doi:10.1109/MRA.2011.943233Siciliano, B., & Khatib, O. (2008). Springer Handbook of Robotics. Springer Berlin Heidelberg.Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to Autonomous Mobile Robots. Bradford Book.Smith, R. C., & Cheeseman, P. (1986). On the Representation and Estimation of Spatial Uncertainty. The International Journal of Robotics Research, 5, 56-68. doi:10.1177/027836498600500404Sorenson, H. W. (1970, 7). Least-squares estimation: from Gauss to Kalman. IEEE Spectrum, 7, 63-68. doi:10.1109/MSPEC.1970.5213471StereoLabs, I. (2016, 10 24). ZED Documentation. (I. StereoLabs, Ed.) Retrieved from https://www.stereolabs.com/zed/StereoLabs, I. (2016, 10 24). ZED ROS Wrapper. (I. StereoLabs, Ed.) Retrieved from https://docs.stereolabs.com/integrations/ros/zed_node/, https://github.com/stereolabs/zed-ros-wrapper/releasesTully Foote, M. P. (2010, 10 8). REP-103: Standard Units of Measure and Coordinate Conventions. (M. P. Tully Foote, Ed.) Retrieved from http://www.ros.org/reps/rep-0103.htmlUnités, T. C. (2006). The International System of Units (SI). Comité International des Poids Mesures, 38, 95. Retrieved from https://www.bipm.org/en/publications/si-brochure/Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill. Chapel Hill, NC, USA: University of North Carolina at Chapel Hill.Zaman, S., Slany, W., & Steinbauer, G. (2011, 4). ROS-based mapping, localization and autonomous navigation using a Pioneer 3-DX robot and their relevant issues. 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), (pp. 1-5). doi:10.1109/SIECPC.2011.5876943THUMBNAILSalgadoLuque_JorgeAlejandro_2018.pdf.jpgIM Thumbnailimage/jpeg5035http://repository.unimilitar.edu.co/bitstream/10654/18049/1/SalgadoLuque_JorgeAlejandro_2018.pdf.jpg52f13948a39e7e121dfe7fd0f34577adMD51ORIGINALSalgadoLuque_JorgeAlejandro_2018.pdfTesisapplication/pdf2390069http://repository.unimilitar.edu.co/bitstream/10654/18049/2/SalgadoLuque_JorgeAlejandro_2018.pdfb69658f7e794aab83d9f6178658f8018MD52LICENSElicense.txttext/plain2915http://repository.unimilitar.edu.co/bitstream/10654/18049/3/license.txt755421b5a8b45ce61d1a5793576f9a78MD5310654/18049oai:repository.unimilitar.edu.co:10654/180492020-06-30 13:06:53.107Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIApzdXMgYW5leG9zIGVuIGZvcm1hdG8gZGlnaXRhbCBvIGVsZWN0csOzbmljby4KClkgYXV0b3JpemEgYSBsYSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuOgoKTGV5IDIzIGRlIDE5ODItIExleSA0NCBkZSAxOTkzLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLSBEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgCnV0aWxpY2UgeSB1c2UgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCAKdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKUEFSw4FHUkFGTzogTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBubyBzw7NsbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0bwpvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIHZpcnR1YWwsIGVsZWN0csOzbmljbywgZGlnaXRhbCwgeSBjdXlvIHVzbyBzZSBkZSBlbiByZWQsIGludGVybmV0LCBleHRyYW5ldCwgaW50cmFuZXQsIGV0Yy4sIAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KCkVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIApkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLgoKUEFSw4FHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgCnNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gCmF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpBZGVtw6FzLCBMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5IHJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIApsbyBwcmVjZXB0dWFkbyBlbiBsYSBsZXkgMTU4MSBkZSAyMDEyIHkgZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIHF1ZSBkZXNhcnJvbGxhbiBlbCBwcmluY2lwaW8gY29uc3RpdHVjaW9uYWwgcXVlIHRpZW5lbiB0b2RhcyBsYXMgCnBlcnNvbmFzIGEgY29ub2NlciwgYWN0dWFsaXphciB5IHJlY3RpZmljYXIgdG9kbyB0aXBvIGRlIGluZm9ybWFjacOzbiByZWNvZ2lkYSBvLCBxdWUgaGF5YSBzaWRvIG9iamV0byBkZSB0cmF0YW1pZW50byBkZSBkYXRvcyAKcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZSBkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyIHN1IGF1dG9yaXphY2nDs24sIApwYXJhIHF1ZSwgZGUgbWFuZXJhIGxpYnJlLCBwcmV2aWEsIGV4cHJlc2EsIHZvbHVudGFyaWEsIHkgZGViaWRhbWVudGUgaW5mb3JtYWRhLCBwZXJtaXRhIGEgdG9kYXMgbnVlc3RyYXMgZGVwZW5kZW5jaWFzIGFjYWTDqW1pY2FzIAp5IGFkbWluaXN0cmF0aXZhcywgcmVjb2xlY3RhciwgcmVjYXVkYXIsIGFsbWFjZW5hciwgdXNhciwgY2lyY3VsYXIsIHN1cHJpbWlyLCBwcm9jZXNhciwgY29tcGlsYXIsIGludGVyY2FtYmlhciwgZGFyIHRyYXRhbWllbnRvLCBhY3R1YWxpemFyIAp5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUgaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUgZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIAplbGVjdHLDs25pY29zIGRlIHRvZG8gdGlwbyBjb24gcXVlIGN1ZW50YSBsYSBVbml2ZXJzaWRhZC4KIApFc3RhIGluZm9ybWFjacOzbiBlcyB5IHNlcsOhIHV0aWxpemFkYSBlbiBlbCBkZXNhcnJvbGxvIGRlIGxhcyBmdW5jaW9uZXMgcHJvcGlhcyBkZSBsYSBVbml2ZXJzaWRhZCBlbiBzdSBjb25kaWNpw7NuIGRlIGluc3RpdHVjacOzbiBkZSAKZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEgZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcy4KIApMZcOtZG8gbG8gYW50ZXJpb3IsICJDb25zaWVudG8geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIE1pbGl0YXIgTnVldmEgR3JhbmFkYSBkZSBtYW5lcmEgcHJldmlhLCBleHByZXNhIGUgaW5lcXXDrXZvY2EgcGFyYSBxdWUgCm1pcyBkYXRvcyBwZXJzb25hbGVzIHNlYW4gdHJhdGFkb3MgY29uZm9ybWUgYSBsbyBwcmV2aXN0byBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8iLgo=