Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral.
Este trabajo de grado está enmarcado en el control de un mecanismo de cuatro barras, utilizado para rehabilitación de tobillo de niños que presentan parálisis cerebral; se emula el movimiento realizado del pie en el ciclo de marcha. Para ello se realizó el modelo cinemático y dinámico del mecanismo...
- Autores:
-
Castañeda Jimenéz, Claudia Lorena
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unimilitar.edu.co:10654/16738
- Acceso en línea:
- http://hdl.handle.net/10654/16738
- Palabra clave:
- TOBILLOS - REHABILITACION
PARALISIS CEREBRAL
Control
Rehabilitation
Ankle
Dynamic
Control
Rehabilitación
tobillo
Dinamico
- Rights
- License
- Atribución
id |
UNIMILTAR2_2a410c274d8790d903f27ce935b0c993 |
---|---|
oai_identifier_str |
oai:repository.unimilitar.edu.co:10654/16738 |
network_acronym_str |
UNIMILTAR2 |
network_name_str |
Repositorio UMNG |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
dc.title.translated.spa.fl_str_mv |
Design and simulation of control for a planar mechanism implemented in ankle therapies for children 3-7 years who have cerebral palsy |
title |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
spellingShingle |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. TOBILLOS - REHABILITACION PARALISIS CEREBRAL Control Rehabilitation Ankle Dynamic Control Rehabilitación tobillo Dinamico |
title_short |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
title_full |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
title_fullStr |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
title_full_unstemmed |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
title_sort |
Diseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral. |
dc.creator.fl_str_mv |
Castañeda Jimenéz, Claudia Lorena |
dc.contributor.advisor.spa.fl_str_mv |
Mauledoux Monroy, Maurico Felipe Avilés Sánchez, Oscar Fernando |
dc.contributor.author.spa.fl_str_mv |
Castañeda Jimenéz, Claudia Lorena |
dc.subject.lemb.spa.fl_str_mv |
TOBILLOS - REHABILITACION PARALISIS CEREBRAL |
topic |
TOBILLOS - REHABILITACION PARALISIS CEREBRAL Control Rehabilitation Ankle Dynamic Control Rehabilitación tobillo Dinamico |
dc.subject.keywords.spa.fl_str_mv |
Control Rehabilitation Ankle Dynamic |
dc.subject.proposal.spa.fl_str_mv |
Control Rehabilitación tobillo Dinamico |
description |
Este trabajo de grado está enmarcado en el control de un mecanismo de cuatro barras, utilizado para rehabilitación de tobillo de niños que presentan parálisis cerebral; se emula el movimiento realizado del pie en el ciclo de marcha. Para ello se realizó el modelo cinemático y dinámico del mecanismo que permite imitar dicho movimiento, a partir de esto se determinó y diseñó estrategias de control , demostrando el seguimiento de la trayectoria deseada. Esta, se obtuvo mediante el análisis de la cinemática del miembro inferior utilizando un modelo de péndulo doble, donde dicha trayectoria depende de los ángulos realizados por la cadera y la rodilla, los cuales se determinaron gracias a un software de simulación de la marcha humana. Para tal efecto, se diseñó el control que siguiera dicha trayectoria por servo sistema y modos deslizantes, obteniendo como resultado que el control por modos deslizantes cumplía con el seguimiento de la trayectoria deseada. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-10-26T15:46:14Z 2019-12-26T22:10:55Z |
dc.date.available.none.fl_str_mv |
2017-10-26T15:46:14Z 2019-12-26T22:10:55Z |
dc.date.issued.none.fl_str_mv |
2017-10-02 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.dcmi-type-vocabulary.spa.fl_str_mv |
Text |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10654/16738 |
url |
http://hdl.handle.net/10654/16738 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
https://tobilloypie.wordpress.com/2015/12/05/metatarso-anatomia-y- siologia/ agosto 2017. J. S. Shilt, L. S. Haruno, and L. A. Karol, Neuromuscular Disorders. McGraw-Hill Education, 2017. P. R. Carney and J. D. Geyer, Pediatricpractice Neurology. The McGraw-Hill Companies, 2010. https://revistas.unal.edu.co/index.php/revfacmed/article/view/39694/47271, 12 julio 2017. P. L. D. M. G. P. M. T. R. R. P. B. R. del Rio; Psic Fredy Santiesteban Macario; Lic Ma. Elena Garcia Valdes; Psic Martha Morales Eniquez; Psic Laura Garcia Leanos, Carga percibida del cuidador primario del paciente con paralisis cerebral infantil severa del centro de rehabilitacion infantil teleton, Medicina Fisica y Rehabilitacion, 2008. F. M. S. R. F. F. M. G. M. P. E. C. P. Cappa, Estimation of multivariable dynamic ankle impedance after botulinum toxin injection in children with cerebral palsy, 2016 IEEE International Symposium on Medical Measurements and Applications, 2016. I. M. J. T. S. R. M. P. F. P. P. Cappa, Evaluation of the e ects on stride-to-stride variability and gait asymmetry in children with cerebral palsy wearing the wake-up ankle module, 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016. M. S. S. K. B. B. F. Kirchner, "Active ankle - an almost-spherical parallel mechanism" 47st International Symposium on Robotics, 2016. S. Rahmatian, M. J. Mahjoob, and M. R. Hanachi, "Continuous estimation of ankle joint angular position based on the myoelectric signals" in 2016 Arti cial Intelligence and Robotics (IRANOPEN), Institute of Electrical and Electronics Engineers (IEEE), apr 2016. F.-Z. Low, M. D. Ali, J. Kapur, J. H. Lim, and C.-H. Yeow, "A soft robotic sock device for ankle rehabilitation and prevention of deep vein thrombosis," in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Institute of Electrical and Electronics Engineers (IEEE), jun 2016. E. M. Ficanha, G. A. Ribeiro, and M. Rastgaar, Design and evaluation of a 2 dof instrumented platform for estimation of the ankle mechanical impedance in the sagittal and frontal planes, IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 2531 2542, oct 2016. M. Moltedo, T. Bacek, K. Junius, B. Vanderborght, and D. Lefeber, Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Institute of Electrical and Electronics Engineers (IEEE), jun 2016. Y. Z. N. W. F. G. K. W. Q. W. Z. Zhoua, A proprioceptive neuromuscular facilitation integrated robotic ankle foot system for post stroke rehabilitation, Robotics and Autonomous Systems, 2015. G. C. P. Q. Z. G. H. Yu, Mechanical design and evaluation of a compact portable knee ankle foot robot for gait rehabilitation, Robotics and Autonomous Systems, 2015. F. Cao, C. Li, and Y. Li, "Robust sliding mode adaptive control for lower extremity exoskeleton, " in Proc. Chinese Automation Congress (CAC), pp. 400 405, Nov. 2015. M. M. Moghadam, H. Shahi, and A. Youse -Koma, An improvement on impedance control performance of an exoskeleton suit in the presence of uncertainty, in Proc. 3rd RSI Int. Conf. Robotics and Mechatronics (ICROM), pp. 412 417, Oct. 2015. P. K. Jamwal, S. Hussain, M. H. Ghayesh, and S. V. Rogozina, Impedance control of an intrinsically compliant parallel ankle rehabilitation robot, IEEE Transactions on Industrial Electronics, vol. 63, pp. 3638 3647, jun 2016. J. Chen, X. Zhang, and L. Zhu, Kinematics analysis and three-dimensional simulation of the rehabilitation lower extremity exoskeleton robot, F. C. Romero, Desarrollo de la etapa tobillo pie de un sistema de rehabilitacion de marcha para ninos con paralisis cerebral, Master's thesis, Instituto Politécnico Nacional, 2017. B. J. T. a. F. H. F. a. B. M. a. D. V. a. M. N. a. J. P. a. K. Draenert, Orthopedic Surgery. McGraw-Hill Education, 2014. D. R. C. C. P. R. C. J. D. Geyer, Pediatric Practice: Neurology; cap 11. Cerebral Palsy. Access Pediatrics, 2010. R. S. Rust and D. K. Urion, Chapter 554. Cerebral Palsy and Static Encephalopathies. The McGraw-Hill Companies, 2011. M. a. S. M. M. a. P. J. M. M. Mary Ann E. Keenan, Chapter 12. Rehabilitation. The McGraw-Hill Companies, 2014. F. D. N. A. M. E. M. . L. B. S. F. V. A. M. K. y A Nascimbeni, Myoelectric activity of antagonist ankle-muscles in 6-to-8-year-old children during walking, Intelligent Solutions in Embedded Systems (WISES),, 2015. J. William W. Hay, M. J. Levin, R. R. Deterding, and M. J. Abzug, Cerebral Palsy. New York, NY: McGraw-Hill Education, 2017. D. A. M. a. K. B. F. a. K. H. Albertine, Chapter 37. Leg. The McGraw-Hill Companies, 2011. P. Acosta, Biomecanica de la marcha, J. Brach, C. Rosano, and S. Studenski, Mobility. New York, NY: McGraw-Hill Education, 2017. C. A. Bohoquez, Estudio sobre la marcha humana, Ingenio. I. M. T. Piovan, CAPITULO 2 MECANISMOS. 2014. http://ocw.uv.es/ciencias/2/1-2/112733mats50.pdf, agosto 2017. http://www.udesantiagovirtual.cl/moodle2/mod/book/view.php?id=24924 agosto 2017. M. A. R. Erazo, Derivadas parciales, derivada parcial total y derivada parcial de funciones compuestas, 2014. http://opensim.stanford.edu/work/index.html; agosto 2017. C. Silva, Modelamiento de la marcha humana con protesis de miembro inferior mediante herramienta de simulacion dinýmica (üna aplicacion en opensim"), 2015. E. G. Rosario Avila Chauurand, Lilia Prado, Dimenciones antropometricas de la poblacion Latinoamericana. i. A. P. ing. Mario Alberto and B. E. perez, Introduccion a los sisitemas de control y modelos matematicos para sistemas lineales invariantes en el tiempo. 2008. "http://dea.unsj.edu.ar/control2/clase08a-controlporrealimentaciondeestados.pdf agosto 2017. L. Fridman, Introduccion al control con modos deslizantes. 2017. "https://www.mathworks.com/products/simmechanics.html, agosto 2017." |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
57 páginas : ilustraciones, gráficos y diagramas, fotos a color. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Calle 100 |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ingenieríad |
dc.publisher.program.spa.fl_str_mv |
Ingeniería en Mecatrónica |
dc.publisher.faculty.spa.fl_str_mv |
Ingenieria - Ingenieria en Mecatrónica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Militar Nueva Granada |
institution |
Universidad Militar Nueva Granada |
bitstream.url.fl_str_mv |
http://repository.unimilitar.edu.co/bitstream/10654/16738/1/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf.txt http://repository.unimilitar.edu.co/bitstream/10654/16738/2/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf.jpg http://repository.unimilitar.edu.co/bitstream/10654/16738/3/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf http://repository.unimilitar.edu.co/bitstream/10654/16738/4/license.txt |
bitstream.checksum.fl_str_mv |
935796e2836dd207f82825fc9bfdb2c5 436569c58f3e2d7e54fa7d4f46e0f1c6 52665f29413e94635483087921552055 57c1b5429c07cf705f9d5e4ce515a2f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UMNG |
repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
_version_ |
1837098503232290816 |
spelling |
Mauledoux Monroy, Maurico FelipeAvilés Sánchez, Oscar FernandoCastañeda Jimenéz, Claudia LorenaIngeniero en MecatrónicaIngeniero en MecatrónicaCalle 1002017-10-26T15:46:14Z2019-12-26T22:10:55Z2017-10-26T15:46:14Z2019-12-26T22:10:55Z2017-10-02http://hdl.handle.net/10654/16738Este trabajo de grado está enmarcado en el control de un mecanismo de cuatro barras, utilizado para rehabilitación de tobillo de niños que presentan parálisis cerebral; se emula el movimiento realizado del pie en el ciclo de marcha. Para ello se realizó el modelo cinemático y dinámico del mecanismo que permite imitar dicho movimiento, a partir de esto se determinó y diseñó estrategias de control , demostrando el seguimiento de la trayectoria deseada. Esta, se obtuvo mediante el análisis de la cinemática del miembro inferior utilizando un modelo de péndulo doble, donde dicha trayectoria depende de los ángulos realizados por la cadera y la rodilla, los cuales se determinaron gracias a un software de simulación de la marcha humana. Para tal efecto, se diseñó el control que siguiera dicha trayectoria por servo sistema y modos deslizantes, obteniendo como resultado que el control por modos deslizantes cumplía con el seguimiento de la trayectoria deseada.This work of degree is framed in the control of a mechanism of four bars used for the rehabilitation of ankle of children with cerebral palsy, which emulates the movement of the foot in the walking cycle.To do this, the kinematic and dynamic model of the mechanism is performed, the quality allows an analysis, a veri cation of the achievement to determine and design the most appropriate control strategy which allows it to track the desired trayThe desired trajectory was determined by means of the analysis of the lower limb, for this a double pendulum model is used in which said trajectory depends on the angles made by the hip and the knee. These angles were determined by a software of human gait simulation.The control that followed the tray was then performed, for this purpose it was designed and controlled by the servo system and the sliding modi ers, where it was obtained as a result that the control by the compression sliders with the tracking of the desired trayPregrado57 páginas : ilustraciones, gráficos y diagramas, fotos a color.application/pdfspaDiseño y simulación del control para un mecanismo planar implementado en terapias de tobillo para niños de 3 a 7 años que presenten parálisis cerebral.Design and simulation of control for a planar mechanism implemented in ankle therapies for children 3-7 years who have cerebral palsyinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoinfo:eu-repo/semantics/bachelorThesisTexthttp://purl.org/coar/resource_type/c_7a1fAtribuciónhttp://purl.org/coar/access_right/c_abf2TOBILLOS - REHABILITACIONPARALISIS CEREBRALControlRehabilitationAnkleDynamicControlRehabilitacióntobilloDinamicoFacultad de IngenieríadIngeniería en MecatrónicaIngenieria - Ingenieria en MecatrónicaUniversidad Militar Nueva Granadahttps://tobilloypie.wordpress.com/2015/12/05/metatarso-anatomia-y- siologia/ agosto 2017.J. S. Shilt, L. S. Haruno, and L. A. Karol, Neuromuscular Disorders. McGraw-Hill Education, 2017.P. R. Carney and J. D. Geyer, Pediatricpractice Neurology. The McGraw-Hill Companies, 2010.https://revistas.unal.edu.co/index.php/revfacmed/article/view/39694/47271, 12 julio 2017.P. L. D. M. G. P. M. T. R. R. P. B. R. del Rio; Psic Fredy Santiesteban Macario; Lic Ma. Elena Garcia Valdes; Psic Martha Morales Eniquez; Psic Laura Garcia Leanos, Carga percibida del cuidador primario del paciente con paralisis cerebral infantil severa del centro de rehabilitacion infantil teleton, Medicina Fisica y Rehabilitacion, 2008.F. M. S. R. F. F. M. G. M. P. E. C. P. Cappa, Estimation of multivariable dynamic ankle impedance after botulinum toxin injection in children with cerebral palsy, 2016 IEEE International Symposium on Medical Measurements and Applications, 2016.I. M. J. T. S. R. M. P. F. P. P. Cappa, Evaluation of the e ects on stride-to-stride variability and gait asymmetry in children with cerebral palsy wearing the wake-up ankle module, 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2016.M. S. S. K. B. B. F. Kirchner, "Active ankle - an almost-spherical parallel mechanism" 47st International Symposium on Robotics, 2016.S. Rahmatian, M. J. Mahjoob, and M. R. Hanachi, "Continuous estimation of ankle joint angular position based on the myoelectric signals" in 2016 Arti cial Intelligence and Robotics (IRANOPEN), Institute of Electrical and Electronics Engineers (IEEE), apr 2016.F.-Z. Low, M. D. Ali, J. Kapur, J. H. Lim, and C.-H. Yeow, "A soft robotic sock device for ankle rehabilitation and prevention of deep vein thrombosis," in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Institute of Electrical and Electronics Engineers (IEEE), jun 2016.E. M. Ficanha, G. A. Ribeiro, and M. Rastgaar, Design and evaluation of a 2 dof instrumented platform for estimation of the ankle mechanical impedance in the sagittal and frontal planes, IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 2531 2542, oct 2016.M. Moltedo, T. Bacek, K. Junius, B. Vanderborght, and D. Lefeber, Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Institute of Electrical and Electronics Engineers (IEEE), jun 2016.Y. Z. N. W. F. G. K. W. Q. W. Z. Zhoua, A proprioceptive neuromuscular facilitation integrated robotic ankle foot system for post stroke rehabilitation, Robotics and Autonomous Systems, 2015.G. C. P. Q. Z. G. H. Yu, Mechanical design and evaluation of a compact portable knee ankle foot robot for gait rehabilitation, Robotics and Autonomous Systems, 2015.F. Cao, C. Li, and Y. Li, "Robust sliding mode adaptive control for lower extremity exoskeleton, " in Proc. Chinese Automation Congress (CAC), pp. 400 405, Nov. 2015.M. M. Moghadam, H. Shahi, and A. Youse -Koma, An improvement on impedance control performance of an exoskeleton suit in the presence of uncertainty, in Proc. 3rd RSI Int. Conf. Robotics and Mechatronics (ICROM), pp. 412 417, Oct. 2015.P. K. Jamwal, S. Hussain, M. H. Ghayesh, and S. V. Rogozina, Impedance control of an intrinsically compliant parallel ankle rehabilitation robot, IEEE Transactions on Industrial Electronics, vol. 63, pp. 3638 3647, jun 2016.J. Chen, X. Zhang, and L. Zhu, Kinematics analysis and three-dimensional simulation of the rehabilitation lower extremity exoskeleton robot,F. C. Romero, Desarrollo de la etapa tobillo pie de un sistema de rehabilitacion de marcha para ninos con paralisis cerebral, Master's thesis, Instituto Politécnico Nacional, 2017.B. J. T. a. F. H. F. a. B. M. a. D. V. a. M. N. a. J. P. a. K. Draenert, Orthopedic Surgery. McGraw-Hill Education, 2014.D. R. C. C. P. R. C. J. D. Geyer, Pediatric Practice: Neurology; cap 11. Cerebral Palsy. Access Pediatrics, 2010.R. S. Rust and D. K. Urion, Chapter 554. Cerebral Palsy and Static Encephalopathies. The McGraw-Hill Companies, 2011.M. a. S. M. M. a. P. J. M. M. Mary Ann E. Keenan, Chapter 12. Rehabilitation. The McGraw-Hill Companies, 2014.F. D. N. A. M. E. M. . L. B. S. F. V. A. M. K. y A Nascimbeni, Myoelectric activity of antagonist ankle-muscles in 6-to-8-year-old children during walking, Intelligent Solutions in Embedded Systems (WISES),, 2015.J. William W. Hay, M. J. Levin, R. R. Deterding, and M. J. Abzug, Cerebral Palsy. New York, NY: McGraw-Hill Education, 2017.D. A. M. a. K. B. F. a. K. H. Albertine, Chapter 37. Leg. The McGraw-Hill Companies, 2011.P. Acosta, Biomecanica de la marcha,J. Brach, C. Rosano, and S. Studenski, Mobility. New York, NY: McGraw-Hill Education, 2017.C. A. Bohoquez, Estudio sobre la marcha humana, Ingenio.I. M. T. Piovan, CAPITULO 2 MECANISMOS. 2014.http://ocw.uv.es/ciencias/2/1-2/112733mats50.pdf, agosto 2017.http://www.udesantiagovirtual.cl/moodle2/mod/book/view.php?id=24924 agosto 2017.M. A. R. Erazo, Derivadas parciales, derivada parcial total y derivada parcial de funciones compuestas, 2014.http://opensim.stanford.edu/work/index.html; agosto 2017.C. Silva, Modelamiento de la marcha humana con protesis de miembro inferior mediante herramienta de simulacion dinýmica (üna aplicacion en opensim"), 2015.E. G. Rosario Avila Chauurand, Lilia Prado, Dimenciones antropometricas de la poblacion Latinoamericana.i. A. P. ing. Mario Alberto and B. E. perez, Introduccion a los sisitemas de control y modelos matematicos para sistemas lineales invariantes en el tiempo. 2008."http://dea.unsj.edu.ar/control2/clase08a-controlporrealimentaciondeestados.pdf agosto 2017.L. Fridman, Introduccion al control con modos deslizantes. 2017."https://www.mathworks.com/products/simmechanics.html, agosto 2017."TEXTCastañedaJimenezClaudiaLorena2017.pdf.txtExtracted texttext/plain69172http://repository.unimilitar.edu.co/bitstream/10654/16738/1/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf.txt935796e2836dd207f82825fc9bfdb2c5MD51THUMBNAILCastañedaJimenezClaudiaLorena2017.pdf.jpgIM Thumbnailimage/jpeg4061http://repository.unimilitar.edu.co/bitstream/10654/16738/2/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf.jpg436569c58f3e2d7e54fa7d4f46e0f1c6MD52ORIGINALCastañedaJimenezClaudiaLorena2017.pdfMonografiaapplication/pdf3232874http://repository.unimilitar.edu.co/bitstream/10654/16738/3/Casta%c3%b1edaJimenezClaudiaLorena2017.pdf52665f29413e94635483087921552055MD53LICENSElicense.txttext/plain1521http://repository.unimilitar.edu.co/bitstream/10654/16738/4/license.txt57c1b5429c07cf705f9d5e4ce515a2f6MD5410654/16738oai:repository.unimilitar.edu.co:10654/167382020-06-30 13:10:42.461Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sCkhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW46CgotIExleSAyMyBkZSAxOTgyCi0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzCi0gRGVjcmV0byA0NjAgZGUgMTk5NQoKeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIHBvciBjdWFscXVpZXIgbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlciwKbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIApvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4KClBBUsOBR1JBRk86IExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZQpsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLAppbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLCB5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KCkVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIKbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KClBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgCmxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgRVNUVURJQU5URSAtIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgCnkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSB1bml2ZXJzaWRhZCBhY3TDumEgY29tbyAKdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K |