Localización y mapeo simultáneo con LIDAR para plataformas robóticas

Los sistemas LIDAR de detección de luz y rango a bordo de las plataformas móviles están en rápido avance para las aplicaciones de mapeo en tiempo real. Los escáneres láser 3D modernos tienen una alta velocidad de datos que, junto con la complejidad de sus métodos de procesamiento, hace que la locali...

Full description

Autores:
Rubio Aguiar, Cristian Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
spa
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/4994
Acceso en línea:
https://hdl.handle.net/20.500.12313/4994
Palabra clave:
LIDAR - Mapeo simultáneo
Localización simultáneo con LIDAR
Plataformas robóticas
SLAM
LiDAR
Nubes de puntos
Odometría
LOAM
KITTI
SLAM
LiDAR
Point Clouds
Point Clouds
Odometry
LOAM
KITTI
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_b93d127ab6a6d05e00c7db90f5fdcf5b
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/4994
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.spa.fl_str_mv Localización y mapeo simultáneo con LIDAR para plataformas robóticas
title Localización y mapeo simultáneo con LIDAR para plataformas robóticas
spellingShingle Localización y mapeo simultáneo con LIDAR para plataformas robóticas
LIDAR - Mapeo simultáneo
Localización simultáneo con LIDAR
Plataformas robóticas
SLAM
LiDAR
Nubes de puntos
Odometría
LOAM
KITTI
SLAM
LiDAR
Point Clouds
Point Clouds
Odometry
LOAM
KITTI
title_short Localización y mapeo simultáneo con LIDAR para plataformas robóticas
title_full Localización y mapeo simultáneo con LIDAR para plataformas robóticas
title_fullStr Localización y mapeo simultáneo con LIDAR para plataformas robóticas
title_full_unstemmed Localización y mapeo simultáneo con LIDAR para plataformas robóticas
title_sort Localización y mapeo simultáneo con LIDAR para plataformas robóticas
dc.creator.fl_str_mv Rubio Aguiar, Cristian Felipe
dc.contributor.advisor.none.fl_str_mv Murcia Moreno, Harold Fabian
dc.contributor.author.none.fl_str_mv Rubio Aguiar, Cristian Felipe
dc.subject.armarc.none.fl_str_mv LIDAR - Mapeo simultáneo
Localización simultáneo con LIDAR
Plataformas robóticas
topic LIDAR - Mapeo simultáneo
Localización simultáneo con LIDAR
Plataformas robóticas
SLAM
LiDAR
Nubes de puntos
Odometría
LOAM
KITTI
SLAM
LiDAR
Point Clouds
Point Clouds
Odometry
LOAM
KITTI
dc.subject.proposal.spa.fl_str_mv SLAM
LiDAR
Nubes de puntos
Odometría
LOAM
KITTI
dc.subject.proposal.eng.fl_str_mv SLAM
LiDAR
Point Clouds
Point Clouds
Odometry
LOAM
KITTI
description Los sistemas LIDAR de detección de luz y rango a bordo de las plataformas móviles están en rápido avance para las aplicaciones de mapeo en tiempo real. Los escáneres láser 3D modernos tienen una alta velocidad de datos que, junto con la complejidad de sus métodos de procesamiento, hace que la localización y mapeo en línea simultáneos (SLAM) sea un desafío computacional. En los últimos años han surgido diferentes algoritmos 3D LiDAR SLAM, entre los que destaca la Odometría y Mapeo LiDAR y sus derivados. Este trabajo realiza una búsqueda, elección e implementación de alternativas que pueden emplearse para generar reconstrucciones tridimensionales basadas únicamente en sensores LiDAR 3D haciendo uso del sensor principal de la plataforma de escaneo PilotScan conocido como LiDAR Quanergy M8. Cada alternativa se compara para conocer cual es la efectividad en la estimación de la trayectoria y la generación de un mapa tridimensional del entorno expuesto utilizando el conjunto de datos de odometría de KITTI. Finalmente, cada alternativa es validada con datos recolectados en algunos escenarios por la plataforma de escaneo PilotScan.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2025-04-08T20:32:49Z
dc.date.available.none.fl_str_mv 2025-04-08T20:32:49Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Rubio Aguiar, C. F.(2021).Localización y mapeo simultáneo con LIDAR para plataformas robóticas.[Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4994
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/4994
identifier_str_mv Rubio Aguiar, C. F.(2021).Localización y mapeo simultáneo con LIDAR para plataformas robóticas.[Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4994
url https://hdl.handle.net/20.500.12313/4994
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Velodyne, “Velodyne LiDAR.” [Online]. Available: https://velodynelidar.com/
Ouster, “Ouster Sensor.” [Online]. Available: https://ouster.com/
Quanergy, “M8 LiDAR Sensor,” pp. –. [Online]. Available: https://quanergy.com/
R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in Proceedings - IEEE International Conference on Robotics and Automation, 2011.
T. D. Barfoot, State estimation for robotics, 2017.
J. J. Leonard and H. F. Durrant-Whyte, “Mobile Robot Localization by Tracking Geo- metric Beacons,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, 1991.
R. C. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial Un- certainty,” The International Journal of Robotics Research, vol. 5, no. 4, 1986.
R. Smith, M. Self, and P. Cheeseman, “Estimating Uncertain Spatial Relationships in Robotics,” in Machine Intelligence and Pattern Recognition, 1988, vol. 5, no. C.
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, 2006.
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, 2016.
T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, 2006.
S. Thrun, “Simultaneous localization and mapping,” 2008.
M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review of visual odometry: types, approaches, challenges, and applications,” 2016.
S. Thrun, B. Wolfram, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), 2005.
M. Milford and G. Wyeth, “Spatial mapping and map exploitation: A bio-inspired engi- neering perspective,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4736 LNCS, 2007.
C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simultaneous localization and mapping,” 2020.
B. Huang, J. Zhao, and J. Liu, “A survey of simultaneous localization and mapping,” 2019.
G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR, 2007.
——, “Parallel tracking and mapping on a camera phone,” in Science and Technology Proceedings - IEEE 2009 International Symposium on Mixed and Augmented Reality, ISMAR 2009, 2009.
T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. Jacobo Berlles, “S- PTAM: Stereo Parallel Tracking and Mapping,” Robotics and Autonomous Systems, vol. 93, 2017.
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in Proceedings of the IEEE International Conference on Computer Vision, 2011.
R. Mur-Artal, J. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Transactions on Robotics, vol. 31, no. 5, 2015.
R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, 2017.
R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in real-time,” in Proceedings of the IEEE International Conference on Computer Vision, 2011.
J. Civera, A. J. Davison, and J. M. Montiel, “Inverse depth parametrization for monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, 2008.
J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct monocular SLAM,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8690 LNCS, no. PART 2, 2014.
D. Caruso, J. Engel, and D. Cremers, “Large-scale direct SLAM for omnidirectional cameras,” in IEEE International Conference on Intelligent Robots and Systems, vol. 2015- December, 2015.
J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, 2018.
C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidi- rect Visual Odometry for Monocular and Multicamera Systems,” IEEE Transactions on Robotics, vol. 33, no. 2, 2017.
C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, 2017.
J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, 2015.
T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: A survey from 2010 to 2016,” 2017.
J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” Au- tonomous Robots, vol. 41, no. 2, 2017.
P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans- actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992.
S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2001.
P. Biber, “The Normal Distributions Transform: A New Approach to Laser Scan Match- ing,” in IEEE International Conference on Intelligent Robots and Systems, vol. 3, 2003.
M. Magnusson, A. Nüchter, C. Lörken, A. J. Lilienthal, and J. Hertzberg, “Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT,” in Proceedings - IEEE International Conference on Robotics and Automation, 2009.
G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, 2007.
——, “Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2005, 2005.
M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee, C. Kanellakis, L. Carlone, C. Guaragnella, and A. A. Agha-Mohammadi, “LOCUS: A Multi-Sensor Lidar- Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time,” IEEE Robotics and Automation Letters, vol. 6, no. 2, 2021.
J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time, Robotics: Science and Systems, .” Robotics:Science and Systems, vol. 2, 2014.
A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision benchmark suite,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012.
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.
Tong Qin and Shaozu, “A-LOAM - Advanced implementation of LOAM,” 2019. [Online]. Available: https://github.com/HKUST-Aerial-Robotics/A-LOAM
Wang Han, “Fast LOAM (Lidar Odometry And Mapping),” 2020. [Online]. Available: https://github.com/wh200720041/floam
H. Wang, C. Wang, and L. Xie, “Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020.
T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odom- etry and Mapping on Variable Terrain,” in IEEE International Conference on Intelligent Robots and Systems, 2018.
R. Giubilato, A. Masili, S. Chiodini, M. Pertile, and S. Debei, “Simulation framework for mobile robots in planetary-like environments,” in 2020 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2020 - Proceedings, 2020.
J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-based state estimation problems,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, 2016.
T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly- coupled Lidar Inertial Odometry via Smoothing and Mapping,” 2020.
Erik Nelson, “Blam - berkeley localization and mapping,” 2016. [Online]. Available: https://github.com/erik-nelson/blam
F. Dellaert, “Factor Graphs and {GTSAM},” Technical Report, no. GT-RIM-CP&R- 2012-002, 2012.
M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation,” Journal of Field Robotics, vol. 36, no. 2, 2019.
K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, 2019.
W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, 2016.
R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: 3D segment mapping using data-driven descriptors,” 2018.
J. E. Deschaud, “IMLS-SLAM: Scan-to-Model Matching Based on 3D Data,” in Pro- ceedings - IEEE International Conference on Robotics and Automation, 2018.
H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D Lidar inertial odometry and mapping,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019- May, 2019.
C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020.
J. Jiang, J. Wang, P. Wang, P. Bao, and Z. Chen, “LiPMatch: LiDAR Point Cloud Plane Based Loop-Closure,” IEEE Robotics and Automation Letters, vol. 5, no. 4, 2020.
K. Li, M. Li, and U. D. Hanebeck, “Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping,” IEEE Robotics and Automation Letters, 2021.
Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square,” IEEE Access, 2021. [Online]. Available: http://arxiv.org/abs/2102.03771
M. A. Mittet, H. Nouira, X. Roynard, F. Goulette, and J. E. Deschaud, “Experimen- tal assessment of the quanergy M8 LiDAR sensor,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 41, 2016.
M. Aguilar-Moreno and M. Graña, “A Comparison of Registration Methods for SLAM with the M8 Quanergy LiDAR,” in Advances in Intelligent Systems and Computing, vol. 1268 AISC, 2021.
J. Lambert, A. Carballo, A. M. Cano, P. Narksri, D. Wong, E. Takeuchi, and K. Takeda, “Performance Analysis of 10 Models of 3D LiDARs for Automated Driving,” IEEE Access, vol. 8, 2020.
N. G. Pricope, J. N. Halls, K. L. Mapes, J. B. Baxley, and J. J. Wu, “Quantitative comparison of uas-borne lidar systems for high-resolution forested wetland mapping,” Sensors (Switzerland), vol. 20, no. 16, 2020.
B. Alsadik and F. Remondino, “Flight planning for LiDAR-based UAS mapping applica- tions,” ISPRS International Journal of Geo-Information, vol. 9, no. 6, 2020.
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” International Journal of Robotics Research, vol. 32, no. 11, 2013.
Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry,” in IEEE International Conference on Intelligent Robots and Systems, 2018.
R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Kleiner, “On measuring the accuracy of SLAM algorithms,” Autonomous Robots, vol. 27, no. 4, 2009.
J. Sturm, W. Burgard, and D. Cremers, “Evaluating Egomotion and Structure-from- Motion Approaches Using the TUM RGB-D Benchmark,” In Proc. of the Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS), vol. 13, 2012.
B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4, 1987.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
dc.format.extent.none.fl_str_mv 78 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Ibagué
dc.publisher.faculty.none.fl_str_mv Ingeniería
dc.publisher.place.none.fl_str_mv Ibagué
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
publisher.none.fl_str_mv Universidad de Ibagué
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/3cd6ea19-3ee5-4a76-8cb9-103c9de33acb/download
https://repositorio.unibague.edu.co/bitstreams/b412e557-38b1-4b2c-a7f6-0b67db0f7274/download
https://repositorio.unibague.edu.co/bitstreams/06f5d80f-314e-462e-a08c-81116599f96d/download
https://repositorio.unibague.edu.co/bitstreams/419a0004-fa95-48e7-a20c-26a3479de7d8/download
https://repositorio.unibague.edu.co/bitstreams/13eb582e-f98b-4678-b5be-79bf7ad0b8cc/download
https://repositorio.unibague.edu.co/bitstreams/9c35245e-9539-4677-987d-071eb9c06680/download
https://repositorio.unibague.edu.co/bitstreams/fd8e72cb-6be1-48f8-a9c2-030e4d857f40/download
https://repositorio.unibague.edu.co/bitstreams/4acad619-7709-47ee-848a-a7ad2e9635e6/download
bitstream.checksum.fl_str_mv 8e16a8dfb89fd621efa983fa906d5297
82c2c366b9ae89905db4617d14084c7f
6230d901ea00220ff830885cedb680e2
2fa3e590786b9c0f3ceba1b9656b7ac3
3f3c559415b68e66be3359e88ed55eb1
f575efce65d2a99733664d2c869400ef
715242e81c357ed5f7f461a8378336bf
736df9759bd344ae3a40485b09186199
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059986844614656
spelling Murcia Moreno, Harold Fabian5b133e19-d824-4bf2-b8b1-482bfcd7d5b3-1Rubio Aguiar, Cristian Felipe1ea22ec0-8333-429d-ad35-0d6e0d605313-12025-04-08T20:32:49Z2025-04-08T20:32:49Z2021Los sistemas LIDAR de detección de luz y rango a bordo de las plataformas móviles están en rápido avance para las aplicaciones de mapeo en tiempo real. Los escáneres láser 3D modernos tienen una alta velocidad de datos que, junto con la complejidad de sus métodos de procesamiento, hace que la localización y mapeo en línea simultáneos (SLAM) sea un desafío computacional. En los últimos años han surgido diferentes algoritmos 3D LiDAR SLAM, entre los que destaca la Odometría y Mapeo LiDAR y sus derivados. Este trabajo realiza una búsqueda, elección e implementación de alternativas que pueden emplearse para generar reconstrucciones tridimensionales basadas únicamente en sensores LiDAR 3D haciendo uso del sensor principal de la plataforma de escaneo PilotScan conocido como LiDAR Quanergy M8. Cada alternativa se compara para conocer cual es la efectividad en la estimación de la trayectoria y la generación de un mapa tridimensional del entorno expuesto utilizando el conjunto de datos de odometría de KITTI. Finalmente, cada alternativa es validada con datos recolectados en algunos escenarios por la plataforma de escaneo PilotScan.Light detection and ranging LIDAR systems on-board mobile platforms are in rapid advance- ment for real-time mapping applications. Modern 3D laser scanners have a high data rate which, coupled with the complexity of their processing methods, makes simultaneous online localisation and mapping (SLAM) a computational challenge. Different 3D LiDAR SLAM algorithms have emerged in recent years, most notably LiDAR Odometry and Mapping and its derivatives. This work performs a search, choice and implementation of alternatives that can be used to generate three-dimensional reconstructions based solely on 3D LiDAR sensors making use of the main sensor of the PilotScan scanning platform known as LiDAR Quanergy M8. Each alternative is compared for to know what is the effectiveness in the estimation of the trajectory and the generation of a three-dimensional map of the exposed environment using the KITTI odometry dataset. Finally, each alternative is validated with data collected in some scenarios by the PilotScan scanning platform.PregradoIngeniero ElectrónicoIntroducción.....viii 1 Localización y Mapeo con Plataformas Robóticas.....1 1.1 Marco Teórico.....1 1.1.1 Generación de modelos 3D.....1 1.1.1.1 LiDAR (Light Detection And Ranging).....1 1.1.1.2 Nubes de puntos (Point Cloud).....4 1.1.2 SLAM (Simultaneous Localization And Mapping).....6 1.1.2.1 El problema SLAM.....6 1.1.2.2 Visual-SLAM | LiDAR-SLAM.....10 1.1.2.3 LOAM (Lidar Odometry and Mapping in Real-time).....12 1.2 Trabajo Relacionado.....17 1.3 Descripción del Problema y Justificación.....20 1.4 Objetivos.....21 1.4.1 Objetivo General.....21 1.4.2 Objetivos Específicos.....21 2 Materiales y Métodos.....22 2.1 Materiales.....22 2.2 Metodología.....26 3 Resultados.....35 3.1 Alternativas de solución.....35 3.2 Resultados de simulación.....37 3.3 Resultados de validación.....55 4 Conclusiones y Recomendaciones.....57 4.1 Conclusiones.....57 4.2 Recomendaciones.....59 4.3 Aportes.....60 A1 Anexos.....6678 páginasapplication/pdfRubio Aguiar, C. F.(2021).Localización y mapeo simultáneo con LIDAR para plataformas robóticas.[Trabajo de grado, Universidad de Ibagué]. https://hdl.handle.net/20.500.12313/4994https://hdl.handle.net/20.500.12313/4994spaUniversidad de IbaguéIngenieríaIbaguéIngeniería ElectrónicaVelodyne, “Velodyne LiDAR.” [Online]. Available: https://velodynelidar.com/Ouster, “Ouster Sensor.” [Online]. Available: https://ouster.com/Quanergy, “M8 LiDAR Sensor,” pp. –. [Online]. Available: https://quanergy.com/R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in Proceedings - IEEE International Conference on Robotics and Automation, 2011.T. D. Barfoot, State estimation for robotics, 2017.J. J. Leonard and H. F. Durrant-Whyte, “Mobile Robot Localization by Tracking Geo- metric Beacons,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, 1991.R. C. Smith and P. Cheeseman, “On the Representation and Estimation of Spatial Un- certainty,” The International Journal of Robotics Research, vol. 5, no. 4, 1986.R. Smith, M. Self, and P. Cheeseman, “Estimating Uncertain Spatial Relationships in Robotics,” in Machine Intelligence and Pattern Recognition, 1988, vol. 5, no. C.H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, 2006.C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, 2016.T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): Part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, 2006.S. Thrun, “Simultaneous localization and mapping,” 2008.M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review of visual odometry: types, approaches, challenges, and applications,” 2016.S. Thrun, B. Wolfram, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), 2005.M. Milford and G. Wyeth, “Spatial mapping and map exploitation: A bio-inspired engi- neering perspective,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4736 LNCS, 2007.C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simultaneous localization and mapping,” 2020.B. Huang, J. Zhao, and J. Liu, “A survey of simultaneous localization and mapping,” 2019.G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR, 2007.——, “Parallel tracking and mapping on a camera phone,” in Science and Technology Proceedings - IEEE 2009 International Symposium on Mixed and Augmented Reality, ISMAR 2009, 2009.T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. Jacobo Berlles, “S- PTAM: Stereo Parallel Tracking and Mapping,” Robotics and Autonomous Systems, vol. 93, 2017.E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in Proceedings of the IEEE International Conference on Computer Vision, 2011.R. Mur-Artal, J. M. Montiel, and J. D. Tardos, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Transactions on Robotics, vol. 31, no. 5, 2015.R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, 2017.R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in real-time,” in Proceedings of the IEEE International Conference on Computer Vision, 2011.J. Civera, A. J. Davison, and J. M. Montiel, “Inverse depth parametrization for monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, 2008.J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct monocular SLAM,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8690 LNCS, no. PART 2, 2014.D. Caruso, J. Engel, and D. Cremers, “Large-scale direct SLAM for omnidirectional cameras,” in IEEE International Conference on Intelligent Robots and Systems, vol. 2015- December, 2015.J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 3, 2018.C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidi- rect Visual Odometry for Monocular and Multicamera Systems,” IEEE Transactions on Robotics, vol. 33, no. 2, 2017.C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, 2017.J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous localization and mapping: a survey,” Artificial Intelligence Review, vol. 43, no. 1, 2015.T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: A survey from 2010 to 2016,” 2017.J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” Au- tonomous Robots, vol. 41, no. 2, 2017.P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans- actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992.S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 2001.P. Biber, “The Normal Distributions Transform: A New Approach to Laser Scan Match- ing,” in IEEE International Conference on Intelligent Robots and Systems, vol. 3, 2003.M. Magnusson, A. Nüchter, C. Lörken, A. J. Lilienthal, and J. Hertzberg, “Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT,” in Proceedings - IEEE International Conference on Robotics and Automation, 2009.G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, 2007.——, “Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2005, 2005.M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee, C. Kanellakis, L. Carlone, C. Guaragnella, and A. A. Agha-Mohammadi, “LOCUS: A Multi-Sensor Lidar- Centric Solution for High-Precision Odometry and 3D Mapping in Real-Time,” IEEE Robotics and Automation Letters, vol. 6, no. 2, 2021.J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time, Robotics: Science and Systems, .” Robotics:Science and Systems, vol. 2, 2014.A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision benchmark suite,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012.R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.Tong Qin and Shaozu, “A-LOAM - Advanced implementation of LOAM,” 2019. [Online]. Available: https://github.com/HKUST-Aerial-Robotics/A-LOAMWang Han, “Fast LOAM (Lidar Odometry And Mapping),” 2020. [Online]. Available: https://github.com/wh200720041/floamH. Wang, C. Wang, and L. Xie, “Intensity Scan Context: Coding Intensity and Geometry Relations for Loop Closure Detection,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020.T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odom- etry and Mapping on Variable Terrain,” in IEEE International Conference on Intelligent Robots and Systems, 2018.R. Giubilato, A. Masili, S. Chiodini, M. Pertile, and S. Debei, “Simulation framework for mobile robots in planetary-like environments,” in 2020 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2020 - Proceedings, 2020.J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-based state estimation problems,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, 2016.T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly- coupled Lidar Inertial Odometry via Smoothing and Mapping,” 2020.Erik Nelson, “Blam - berkeley localization and mapping,” 2016. [Online]. Available: https://github.com/erik-nelson/blamF. Dellaert, “Factor Graphs and {GTSAM},” Technical Report, no. GT-RIM-CP&R- 2012-002, 2012.M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation,” Journal of Field Robotics, vol. 36, no. 2, 2019.K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, 2019.W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR SLAM,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, 2016.R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “SegMap: 3D segment mapping using data-driven descriptors,” 2018.J. E. Deschaud, “IMLS-SLAM: Scan-to-Model Matching Based on 3D Data,” in Pro- ceedings - IEEE International Conference on Robotics and Automation, 2018.H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D Lidar inertial odometry and mapping,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019- May, 2019.C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation,” in Proceedings - IEEE International Conference on Robotics and Automation, 2020.J. Jiang, J. Wang, P. Wang, P. Bao, and Z. Chen, “LiPMatch: LiDAR Point Cloud Plane Based Loop-Closure,” IEEE Robotics and Automation Letters, vol. 5, no. 4, 2020.K. Li, M. Li, and U. D. Hanebeck, “Towards High-Performance Solid-State-LiDAR-Inertial Odometry and Mapping,” IEEE Robotics and Automation Letters, 2021.Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square,” IEEE Access, 2021. [Online]. Available: http://arxiv.org/abs/2102.03771M. A. Mittet, H. Nouira, X. Roynard, F. Goulette, and J. E. Deschaud, “Experimen- tal assessment of the quanergy M8 LiDAR sensor,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 41, 2016.M. Aguilar-Moreno and M. Graña, “A Comparison of Registration Methods for SLAM with the M8 Quanergy LiDAR,” in Advances in Intelligent Systems and Computing, vol. 1268 AISC, 2021.J. Lambert, A. Carballo, A. M. Cano, P. Narksri, D. Wong, E. Takeuchi, and K. Takeda, “Performance Analysis of 10 Models of 3D LiDARs for Automated Driving,” IEEE Access, vol. 8, 2020.N. G. Pricope, J. N. Halls, K. L. Mapes, J. B. Baxley, and J. J. Wu, “Quantitative comparison of uas-borne lidar systems for high-resolution forested wetland mapping,” Sensors (Switzerland), vol. 20, no. 16, 2020.B. Alsadik and F. Remondino, “Flight planning for LiDAR-based UAS mapping applica- tions,” ISPRS International Journal of Geo-Information, vol. 9, no. 6, 2020.A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” International Journal of Robotics Research, vol. 32, no. 11, 2013.Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry,” in IEEE International Conference on Intelligent Robots and Systems, 2018.R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Kleiner, “On measuring the accuracy of SLAM algorithms,” Autonomous Robots, vol. 27, no. 4, 2009.J. Sturm, W. Burgard, and D. Cremers, “Evaluating Egomotion and Structure-from- Motion Approaches Using the TUM RGB-D Benchmark,” In Proc. of the Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS), vol. 13, 2012.B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4, 1987.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/LIDAR - Mapeo simultáneoLocalización simultáneo con LIDARPlataformas robóticasSLAMLiDARNubes de puntosOdometríaLOAMKITTISLAMLiDARPoint CloudsPoint CloudsOdometryLOAMKITTILocalización y mapeo simultáneo con LIDAR para plataformas robóticasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf36324783https://repositorio.unibague.edu.co/bitstreams/3cd6ea19-3ee5-4a76-8cb9-103c9de33acb/download8e16a8dfb89fd621efa983fa906d5297MD51Anexos.zipAnexos.zipapplication/octet-stream2317685https://repositorio.unibague.edu.co/bitstreams/b412e557-38b1-4b2c-a7f6-0b67db0f7274/download82c2c366b9ae89905db4617d14084c7fMD52Formato de autorización.pdfFormato de autorización.pdfapplication/pdf195829https://repositorio.unibague.edu.co/bitstreams/06f5d80f-314e-462e-a08c-81116599f96d/download6230d901ea00220ff830885cedb680e2MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/419a0004-fa95-48e7-a20c-26a3479de7d8/download2fa3e590786b9c0f3ceba1b9656b7ac3MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101673https://repositorio.unibague.edu.co/bitstreams/13eb582e-f98b-4678-b5be-79bf7ad0b8cc/download3f3c559415b68e66be3359e88ed55eb1MD59Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain3647https://repositorio.unibague.edu.co/bitstreams/9c35245e-9539-4677-987d-071eb9c06680/downloadf575efce65d2a99733664d2c869400efMD511THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgIM Thumbnailimage/jpeg10665https://repositorio.unibague.edu.co/bitstreams/fd8e72cb-6be1-48f8-a9c2-030e4d857f40/download715242e81c357ed5f7f461a8378336bfMD510Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgIM Thumbnailimage/jpeg25887https://repositorio.unibague.edu.co/bitstreams/4acad619-7709-47ee-848a-a7ad2e9635e6/download736df9759bd344ae3a40485b09186199MD51220.500.12313/4994oai:repositorio.unibague.edu.co:20.500.12313/49942025-08-13 01:14:43.586https://creativecommons.org/licenses/by-nc/4.0/https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=