Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. St...
- Autores:
-
Gustavo Martinez Villalobos
Gil-González, Julian
Fernandez-Gallego, Jose A.
Álvarez-Meza, Andrés Marino
Castellanos-Dominguez, Cesar German
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/5585
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/5585
- Palabra clave:
- Entropía cruzada generalizada
Múltiples anotadores
Chained approach
Classification
Deep learning
Generalized cross-entropy
Multiple annotators
- Rights
- openAccess
- License
- © 2023 by the authors.
