Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease

This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat...

Full description

Autores:
Camargo-Ayala, Lorena
Prent-Peñaloza, Luis
Osorio, Edison
Camargo-Ayala, Paola Andrea
Jimenez, Claudio A
Zúñiga-Arbalti, Felipe
Brito, Iván
Delgado, Gerzon E
Gutiérrez John Alexander
Polo-Cuadrado, Efraín
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/5534
Acceso en línea:
https://hdl.handle.net/20.500.12313/5534
https://www.sciencedirect.com/science/article/pii/S0045206824008010
Palabra clave:
Alzheimer
Acetamida - Funcionalidades
Alzheimer - Terapia antioxidante
Acetamide compound
Alzheimer's disease
Antioxidant activity
Cholinesterase inhibitor
Crystallography
Rights
closedAccess
License
© 2024 Elsevier Inc.
id UNIBAGUE2_14c46780eddd522f1aecd40d359652a7
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/5534
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
title Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
spellingShingle Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
Alzheimer
Acetamida - Funcionalidades
Alzheimer - Terapia antioxidante
Acetamide compound
Alzheimer's disease
Antioxidant activity
Cholinesterase inhibitor
Crystallography
title_short Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
title_full Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
title_fullStr Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
title_full_unstemmed Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
title_sort Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease
dc.creator.fl_str_mv Camargo-Ayala, Lorena
Prent-Peñaloza, Luis
Osorio, Edison
Camargo-Ayala, Paola Andrea
Jimenez, Claudio A
Zúñiga-Arbalti, Felipe
Brito, Iván
Delgado, Gerzon E
Gutiérrez John Alexander
Polo-Cuadrado, Efraín
dc.contributor.author.none.fl_str_mv Camargo-Ayala, Lorena
Prent-Peñaloza, Luis
Osorio, Edison
Camargo-Ayala, Paola Andrea
Jimenez, Claudio A
Zúñiga-Arbalti, Felipe
Brito, Iván
Delgado, Gerzon E
Gutiérrez John Alexander
Polo-Cuadrado, Efraín
dc.subject.armarc.none.fl_str_mv Alzheimer
Acetamida - Funcionalidades
Alzheimer - Terapia antioxidante
topic Alzheimer
Acetamida - Funcionalidades
Alzheimer - Terapia antioxidante
Acetamide compound
Alzheimer's disease
Antioxidant activity
Cholinesterase inhibitor
Crystallography
dc.subject.proposal.eng.fl_str_mv Acetamide compound
Alzheimer's disease
Antioxidant activity
Cholinesterase inhibitor
Crystallography
description This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a–1k and 2l–2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30–5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-12
dc.date.accessioned.none.fl_str_mv 2025-08-25T15:21:08Z
dc.date.available.none.fl_str_mv 2025-08-25T15:21:08Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Camargo-Ayala, L., Prent-Peñaloza, L., Osorio, E., Camargo-Ayala, P., Jimenez, C., Zúñiga-Arbalti, F., Brito, I., Delgado, G., Gutiérrez, M. y Polo-Cuadrado, E. 2024. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorganic Chemistry, 153. DOI: 10.1016/j.bioorg.2024.107896
dc.identifier.doi.none.fl_str_mv 10.1016/j.bioorg.2024.107896
dc.identifier.eissn.none.fl_str_mv 10902120
dc.identifier.issn.none.fl_str_mv 00452068
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/5534
dc.identifier.url.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0045206824008010
identifier_str_mv Camargo-Ayala, L., Prent-Peñaloza, L., Osorio, E., Camargo-Ayala, P., Jimenez, C., Zúñiga-Arbalti, F., Brito, I., Delgado, G., Gutiérrez, M. y Polo-Cuadrado, E. 2024. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorganic Chemistry, 153. DOI: 10.1016/j.bioorg.2024.107896
10.1016/j.bioorg.2024.107896
10902120
00452068
url https://hdl.handle.net/20.500.12313/5534
https://www.sciencedirect.com/science/article/pii/S0045206824008010
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationstartpage.none.fl_str_mv 107896
dc.relation.citationvolume.none.fl_str_mv 153
dc.relation.references.none.fl_str_mv F.H. Al-Ostoot, S. Zabiulla, S.A.K. Salah, Recent investigations into the synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole, and quinoline) as possible therapeutic candidates, J. Iran. Chem. Soc. 188 (18) (2021) 1839–1875, https://doi.org/10.1007/S13738-021-02172-5.
B. Ward, J.M. Alexander-Williams, Paracetamol revisited: A review of the pharmacokinetics and pharmacodynamics, Acute Pain. 2 (1999) 139–149, https:// doi.org/10.1016/S1366-0071(99)80006-0
] X. Yang, X. Wei, Y. Mu, Q. Li, J. Liu, A review of the mechanism of the central analgesic effect of lidocaine, Medicine (Baltimo
D.C. Harrison, K.A. Collinsworth, Antiarrhythmic actions of lidocaine, Annu. Rev. Med. 25 (1974) 143–148, https://doi.org/10.1146/annurev. me.25.020174.001043
A.N. Fallica, V. Sorrenti, A.G. D’Amico, L. Salerno, G. Romeo, S. Intagliata, V. Consoli, G. Floresta, A. Rescifina, V. D’Agata, L. Vanella, V. Pittal` a, Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with PotentIn VitroAntiproliferative Activity, J. Med. Chem. 64 (2021) 13373–13393, https:// doi.org/10.1021/acs.jmedchem.1c006
S. Ansari, H. Azizian, K. Pedrood, A. Yavari, S. Mojtabavi, M.A. Faramarzi, S. Golshani, S. Hosseini, M. Biglar, B. Larijani, H. Rastegar, H. Hamedifar, M. Mohammadi-Khanaposhtani, M. Mahdavi, Design, synthesis, and α-glucosidaseinhibitory activity of phenoxy-biscoumarin–N-phenylacetamide hybrids, Arch. Pharm. (Weinheim). 354 (2021), https://doi.org/10.1002/ardp.202100179.
A. Sakr, S. Rezq, S.M. Ibrahim, E. Soliman, M.M. Baraka, D.G. Romero, H. Kothayer, Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: antiinflammatory, analgesic and anticancer activities, J. Enzyme Inhib. Med. Chem. 36 (2021) 1810–1828, https://doi.org/10.1080/14756366.2021.1956912.
Y. Ozkay, ¨ I. Is¸ikdaǧ, Z. Incesu, G. Akalin, Synthesis of 2-substituted-N-[4-(1- methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320–3328, https://doi.org/10.1016/J.EJMECH.2010.04.015.
G. Autore, A. Caruso, S. Marzocco, B. Nicolaus, C. Palladino, A. Pinto, A. Popolo, M. S. Sinicropi, G. Tommonaro, C. Saturnino, Acetamide Derivatives with Antioxidant Activity and Potential Anti-Inflammatory Activity, Mol. 2010, Vol. 15, Pages 2028- 2038. 15 (2010) 2028–2038. doi:10.3390/MOLECULES15032028.
] S. Zahra Siddiqui, M.A. Abbasi, A. Ur-Rehman, M. Ashraf, B. Mirza, H. Ismail, Synthesis of 2-[(5-benzyl-1,3,4-oxadiazole-2yl)sulfanyl]-N-(arylated/arenylated) acetamides as antibacterial and acetyl cholinesterase inhibitors, Pak. J. Pharm. Sci. 30 (2017) 1743–1751.
L. Cordeiro, H. Diniz-Neto, P. Figueiredo, H. Souza, A. Sousa, F. Andrade-Júnior, T. Melo, E. Ferreira, R. Oliveira, P. Athayde-Filho, J. Barbosa-Filho, A. OliveiraFilho, E. Lima, Potential of 2-Chloro-N-(4-fluoro-3-nitrophenyl)acetamide Against Klebsiella pneumoniae and In Vitro Toxicity Analysis, Molecules. 25 (2020), https://doi.org/10.3390/MOLECULES25173959.
G. Zhang, M. Wang, J. Zhao, Y. Wang, M. Zhu, J. Wang, S. Cen, Y. Wang, Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4, Eur. J. Med. Chem. 206 (2020) 112706, https://doi.org/10.1016/J.EJMECH.2020.112706.
S.J.J. Mary, M.U.M. Siddique, S. Pradhan, V. Jayaprakash, C. James, Quantum chemical insight into molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT–IR, FT–Raman), drug likeness and molecular docking of the novel anti COVID-19 molecule 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluo, Spectrochim, Acta Part A Mol. Biomol. Spectrosc. 244 (2021) 118825, https://doi.org/10.1016/J.SAA.2020.118825
M. Missioui, M.A. Said, G. Demirta, J.T. Mague, Y. Ramli, Docking of Disordered Independent Molecules of Novel Crystal Structure of (N-(4-methoxyphenyl)-2-(3- methyl-2-oxo-3,4-dihydroquinoxalin-1(2H)-yl)acetamide as anti-Covid-19 and anti-Alzheimer’s disease. Crystal structure, HSA/DFT/XRD, J. Mol. Struct. (2021) 131420, https://doi.org/10.1016/J.MOLSTRUC.2021.131420.
D. Bhavsar, J. Trivedi, S. Parekh, M. Savant, S. Thakrar, A. Bavishi, A. Radadiya, H. Vala, J. Lunagariya, M. Parmar, L. Paresh, R. Loddo, A. Shah, Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl) acetamide derivatives using MTT method, Bioorg. Med. Chem. Lett. 21 (2011) 3443–3446, https://doi.org/10.1016/J.BMCL.2011.03.105.
S. Prasad, B. Kumar, S. Kumar, K. Chand, S.S. Kamble, H.K. Gautam, S.K. Sharma, Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors, Arch. Pharm. (Weinheim). 350 (2017) 1700076, https://doi.org/10.1002/ ARDP.201700076
Z.Q. Sun, L.X. Tu, F.J. Zhuo, S.X. Liu, Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s, Bioorg. Med. Chem. Lett. 26 (2016) 747–750, https:// doi.org/10.1016/J.BMCL.2016.0
WHO, Dementia, (2021).
R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan, Microwave-Assisted Synthesis of (Piperidin-1-yl)quinolin-3- yl)methylene)hydrazinecarbothioamides as Potent Inhibitors of Cholinesterases: A Biochemical and In Silico Approach, Molecules. 26 (2021) 656, https://doi.org/ 10.3390/molecules26030656.
Z. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer’s Disease: Causes and Treatment, Molecules. 25 (2020), https://doi.org/10.3390/ MOLECULE
D. Munoz-Torrero, Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimers Disease, Curr. Med. Chem. 15 (2008) 2433–2455, https://doi.org/ 10.2174/092986708
R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction, Science (80-). 217 (1982) 408–417. doi:10.1126/ science.7046051.
T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang, Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum, J. Chem. 2013 (2013), https://doi.org/10.1155/2013/717232.
C. Geula, M.-M. Mesulam, Cholinesterases and the Pathology of Alzheimer Disease, Alzheimer Dis. Assoc. Disord. 9 (1995) 23–28, https://doi.org/10.1097/00002093- 199501002-0000
E.K. Perry, R.H. Perry, G. Blessed, B.E. Tomlinson, Changes in brain cholinesterases in senile dementia of alzheimer type, Neuropathol. Appl. Neurobiol. 4 (1978) 273–277, https://doi.org/10.1111/j.1365-2990.1978.tb00545.x.
J.R. Atack, E.K. Perry, J.R. Bonham, J.M. Candy, R.H. Perry, Molecular Forms of Acetylcholinesterase and Butyrylcholinesterase in the Aged Human Central Nervous System, J. Neurochem. 47 (1986) 263–277, https://doi.org/10.1111/ j.1471-4159.1986.tb02858.x
N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri, A New Therapeutic Target in Alzheimer’s Disease Treatment: Attention to Butyrylcholinesterase, Curr. Med. Res. Opin. 17 (2001) 159–165, https://doi. org/10.1185/030079903911705
S. Darvesh, D.A. Hopkins, C. Geula, Neurobiology of butyrylcholinesterase, Nat. Rev. Neurosci. 4 (2003) 131–138, https://doi.org/10.1038/nrn1035.
M.T. Kenna, G.R. Proctor, L.C. Young, A.L. Harvey, Novel Tacrine Analogues for Potential Use against Alzheimer’s Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors, J. Med. Chem. 40 (1997) 3516–3523, https://doi.org/10.1021/jm970150t.
E. Giacobini, R. Spiegel, A. Enz, A.E. Veroff, N.R. Cutler, Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit, J. Neural Transm. 109 (2002) 1053–1065, https://doi.org/10.1007/s007020200089.
T. Sun, T. Zhen, C.H. Harakandi, L. Wang, H. Guo, Y. Chen, H. Sun, New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands, Eur. J. Med. Chem. 275 (2024) 116569, https://doi. org/10.1016/j.ejmech.2024.11656
Q. Li, H. Yang, Y. Chen, H. Sun, Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease, Eur. J. Med. Chem. 132 (2017) 294–309, https://doi.org/10.1016/j.ejmech.2017.03.062.
D. Yu, C. Yang, Y. Liu, T. Lu, L. Li, G. Chen, Z. Liu, Y. Li, Synthesis and biological evaluation of substituted acetamide derivatives as potential butyrylcholinestrase inhibitors, Sci. Rep. 13 (2023) 4877, https://doi.org/10.1038/s41598-023-31849- 5.
M. Ozil, ¨ H.T. Balaydın, M. S¸ entürk, Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4- triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties, Bioorg. Chem. 86 (2019) 705–713, https://doi.org/10.1016/j.bioorg.2019.02.045.
L. Camargo-Ayala, L. Prent-Penaloza, ˜ E. Polo-Cuadrado, I. Brito, J. Cisterna, E. Osorio, W. Gonzalez, ´ M. Guti´errez, Synthesis, characterization, crystal and molecular structure and theoretical study of N-(naphthalen-1-yl)-2-(piperidin-1-yl) acetamide, a selective butyrylcholinesterase inhibitor, J. Mol. Struct. (2021) 131544, https://doi.org/10.1016/J.MOLSTRUC.2021.131544.
H. Hosseinpoor, S. Moghadam Farid, A. Iraji, S. Askari, N. Edraki, S. Hosseini, A. Jamshidzadeh, B. Larijani, M. Attarroshan, S. Pirhadi, M. Mahdavi, M. Khoshneviszadeh, Anti-melanogenesis and anti-tyrosinase properties of arylsubstituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis and biological evaluations, Bioorg. Chem. 114 (2021) 104979, https://doi.org/10.1016/J.BIOORG.2021.104979
S. Koppireddi, J.R. Komsani, S. Avula, S. Pombala, S. Vasamsetti, S. Kotamraju, R. Yadla, Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds, Eur. J. Med. Chem. 66 (2013) 305–313, https:// doi.org/10.1016/J.EJM
K.M. Kanwal, S. Khan, F. Chigurupati, M. Ali, M. Younus, A. Aldubayan, H. Wadood, M. Khan, S. Taha, Perveen, Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents Synthesis, in Vitro α-Amylase Inhibitory Activity, Structure-Activity Relationship, and in Silico Studies, ACS Omega. 6 (2021) 2264–2275, https://doi.org/10.1021/acsomega.0c05581.
C. Grin˜´ an-Ferr´e, A. Bellver-Sanchis, V. Izquierdo, R. Corpas, J. Roig-Soriano, M. Chillon, ´ C. Andres-Lacueva, M. Somogyvari, ´ C. Soti, ˝ C. Sanfeliu, M. Pallas, ` The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy, Ageing Res. Rev. 67 (2021) 101271, https://doi.org/10.1016/J.ARR.2021.101271.
M.Y. Jiang, C. Han, C. Zhang, Q. Zhou, B. Zhang, M.L. Le, M.X. Huang, Y. Wu, H. Bin Luo, Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer’s disease, Bioorg. Med. Chem. Lett. 41 (2021) 128016, https://doi.org/10.1016/J.BMCL.2021.128016.
A. Marino, M. Battaglini, N. Moles, G. Ciofani, Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases, ACS Omega. 7 (2022) 25974–25990, https://doi.org/10.1021/acsomega.2c03291.
L.A. Carpino, A. El-Faham, The diisopropylcarbodiimide/ 1-hydroxy-7-azabenzotriazole system: Segment coupling and stepwise peptide assembly, Tetrahedron. 55 (1999) 6813–6830, https://doi.org/10.1016/S0040-4020(99)00344-0.
J.R. Dunetz, J. Magano, G.A. Weisenburger, Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals, Org. Process Res. Dev. 20 (2016) 140–177, https://doi.org/10.1021/op500305s.
F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, Tables of Bond Lengths Determined by X-Ray and Neutron-Diffraction. 1. Bond Lengths in Organic-Compounds, J. Chem. Soc., Perkin Trans. 2 (1987) S1–S19, https://doi. org/10.1039/P298700000s1.
C.R. Groom, F.H. Allen, The Cambridge Structural Database in Retrospect and Prospect, Angew. Chemie Int. Ed. 53 (2014) 662–671, https://doi.org/10.1002/ anie.2013064
M.C. Etter, J.C. MacDonald, J. Bernstein, Graph-set analysis of hydrogen-bond patterns in organic crystals, Acta Crystallogr. Sect. B Struct. Sci. 46 (1990) 256–262, https://doi.org/10.1107/S0108768189012929
I. Majerz, T. Dziembowska, Does the five-member hydrogen bond ring in quinoline carboxamides exist? J. Phys. Org. Chem. 21 (2008) 876–880, https://doi.org/ 10.1002/poc.1390.
N. Parra, L. Guarda, J.B. Belmar, P.I. Hidalgo, C.A. Jim´enez, J. Pas´ an, C. RuizP´erez, Conformational influence of quinoline moieties in the crystal packing of bis (quinolinecarboxamide)alkane derivatives, CrystEngComm. 15 (2013) 7212, https://doi.org/10.1039/c3ce40807h.
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, https://doi.org/10.1016/0006-2952(61)90145-9.
M. Ahmed, J.B.T. Rocha, M. Corrˆea, C.M. Mazzanti, R.F. Zanin, A.L.B. Morsch, V. M. Morsch, M.R.C. Schetinger, Inhibition of two different cholinesterases by tacrine, Chem. Biol. Interact. 162 (2006) 165–171, https://doi.org/10.1016/j. cbi.2006.06.00
I.R. Macdonald, E. Martin, T.L. Rosenberry, S. Darvesh, Probing the Peripheral Site of Human Butyrylcholinesterase, Biochemistry. 51 (2012) 7046–7053, https://doi. org/10.1021/bi300955k.
K.-B. Augustinsson, The nature of an “anionic” site in butyrylcholinesterase compared with that of a similar site in acetylcholinesterase, Biochim. Biophys. Acta - Enzymol. Biol. Oxid. 128 (1966) 351–362, https://doi.org/10.1016/0926-6593 (66)90182-2
N. Atatreh, S. Al Rawashdah, S.S. Al Neyadi, S.M. Abuhamdah, M.A. Ghattas, Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening, J. Enzyme Inhib. Med. Chem. 34 (2019) 1373–1379, https://doi.org/ 10.1080/14756366.2019.1644329
S.-Y. Chiou, T.-T. Weng, G.-Z. Lin, R.-J. Lu, S.-Y. Jian, G. Lin, Molecular docking of different inhibitors and activators to butyrylcholinesterase, J. Biomol. Struct. Dyn. 33 (2015) 563–572, https://doi.org/10.1080/07391102.2014.896749.
C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423- 1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997), Adv. Drug Deliv. Rev. 46 (2001) 3–26. doi:10.1016/S0169-409X(00) 00129-0.
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, https://doi.org/10.1038/srep42717.
P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018) W257–W263, https://doi.org/10.1093/nar/gky318
A. Daina, V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem. 11 (2016) 1117–1121, https:// doi.org/10.1002/cmdc.201600182
G.M. Sheldrick, SADABS, Software for Empirical Absorption Correction, Univ. Gottingen, ¨ Ger. (2000) SADABS, Software for Empirical Absorption Correcti.
G.M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Adv. 71 (2015) 3–8, https://doi. org/10.1107/S2053273314026
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339–341, https://doi.org/10.1107/S0021889808042726
G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218.
A.L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36 (2003) 7–13, https://doi.org/10.1107/S0021889802022112.
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, https://doi.org/10.1016/0006-2952(61)90145-9.
W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci. Technol. 28 (1995) 25–30, https:// doi.org/10.1016/S0023-6438(95)8000
S. Khwaja, K. Fatima, C. Behera, A. Kour, D.M. Mondhe, A.S. Negi, Antiproliferative efficacy of curcumin mimics through microtubule destabilization, Eur. J. Med. Chem. (2018), https://doi.org/10.1016/j.ejmech.2018.03.063.
Z. Chen, H. Duan, X. Tong, P. Hsu, L. Han, S.L. Morris-Natschke, S. Yang, W. Liu, K.-H. Lee, Cytotoxicity, Hemolytic Toxicity, and Mechanism of Action of Pulsatilla Saponin D and Its Synthetic Derivatives, J. Nat. Prod. 81 (2018) 465–474, https:// doi.org/10.1021/acs.jnatprod.7b00578
V. Vichai, K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nat. Protoc. 1 (2006) 1112–1116, https://doi.org/10.1038/ nprot.2006
F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard, Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase, Biochem. J. 453 (2013) 393–399, https://doi.org/10.1042/ BJ2013001
G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A. J. Olson, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791, https://doi.org/10.1002/jcc.21256.
N. Kandiah, M.-C. Pai, V. Senanarong, I. Looi, E. Ampil, K.W. Park, A.K. Karanam, S. Christopher, Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia, Clin. Interv. Aging. 12 (2017) 697–707, https://doi.org/10.2147/CIA.S129145.
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639–1662, https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AIDJCC10>3.0.CO;2-B.
M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, Plip,, expanding the scope of the protein–ligand interaction profiler to DNA and RNA, Nucleic Acids Res. 49 (2021) (2021) W530–W534, https://doi. org/10.1093/nar/gkab29
E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems, J. Chem. Phys. 105 (1996) 1902–1921, https://doi.org/10.1063/ 1.472061
J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004) 1157–1174, https://doi.org/10.1002/jcc.20035.
G.A. Ozpınar, ¨ W. Peukert, T. Clark, An improved generalized AMBER force field (GAFF) for urea, J. Mol. Model. 16 (2010) 1427–1440, https://doi.org/10.1007/ s00894-010-0650-7.
D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005) 1668–1688, https://doi.org/10.1002/ jcc.20290
J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kal´e, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (2005) 1781–1802, https://doi.org/10.1002/jcc.20289.
J.C. Phillips, D.J. Hardy, J.D.C. Maia, J.E. Stone, J.V. Ribeiro, R.C. Bernardi, R. Buch, G. Fiorin, J. H´enin, W. Jiang, R. McGreevy, M.C.R. Melo, B.K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kal´e, K. Schulten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys. 153 (2020), https://doi. org/10.1063/5.0014475.
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33–38, https://doi.org/10.1016/0263-7855(96)00018-5.
J. M., G. Archontis, MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies, in: Mol. Dyn. - Stud. Synth. Biol. Macromol., InTech, 2012. doi:10.5772/ 37107
A.W. Gotz, ¨ M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born, J. Chem. Theory Comput. 8 (2012) 1542–1555, https://doi.org/ 10.1021/ct200909j.
H. Abroshan, H. Akbarzadeh, G.A. Parsafar, Molecular dynamics simulation and MM–PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact, J. Phys. Org. Chem. 23 (2010) 866–877, https://doi.org/ 10.1002/poc.1
dc.rights.eng.fl_str_mv © 2024 Elsevier Inc.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © 2024 Elsevier Inc.
http://purl.org/coar/access_right/c_14cb
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv closedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc.
dc.publisher.place.none.fl_str_mv Estados Unidos
publisher.none.fl_str_mv Academic Press Inc.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0045206824008010
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/c9acfb21-b584-4284-a9a4-81d7e8d3febb/download
https://repositorio.unibague.edu.co/bitstreams/62b4b530-b3c5-4a21-b762-8f4489698d7f/download
https://repositorio.unibague.edu.co/bitstreams/8fffc176-d624-4aa1-99a6-50bf443894ab/download
https://repositorio.unibague.edu.co/bitstreams/ad7438cf-f4e3-45d2-9d3a-34f444884991/download
bitstream.checksum.fl_str_mv 2fa3e590786b9c0f3ceba1b9656b7ac3
feb111c0f79240f08f0e30afabdbde11
429dcd7769164737dc9d82310b3c50d1
5c5b19a978f46a84ec22d0bbe93194b5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851059973899943936
spelling Camargo-Ayala, Lorena41c900ab-b356-4c05-8594-1f10c2d6c414-1Prent-Peñaloza, Luis75975bd9-cd4e-48b6-99cd-2cbb8f0b1dd9-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Camargo-Ayala, Paola Andrea51909bee-c3db-4c2a-a2ed-101ca337237d-1Jimenez, Claudio A09e847f0-2d9b-49c4-86a3-9818ebcf7036-1Zúñiga-Arbalti, Felipe47f6f586-9b1b-40d8-915e-e87152af414a-1Brito, Iván26ac473f-3c45-4d5a-9701-4e0cf4753fa9-1Delgado, Gerzon Ec9c0c137-e521-463a-aa0b-0f98d8785b6e-1Gutiérrez John Alexander59b23fb9-8bb6-40b6-b03c-65bfbe88f0fc600Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-12025-08-25T15:21:08Z2025-08-25T15:21:08Z2024-12This study presents the synthesis and characterization of a series of 13 novel acetamides. These were subjected to Ellman's assay to determine the efficacy of the AChE and BChE inhibitors. Finally, we report their antioxidant activity as an alternative approach for the search for drugs to treat AD. These studies revealed that compounds 1a–1k and 2l–2m were obtained in moderate yield. Four amides (1h, 1j, 1k, and 2l) were selective for one of the enzymes (BChE); thus, those that inhibited BChE were more active than the positive control (galantamine) and showed better IC50 values (3.30–5.03 µM). The theoretical free binding energies calculated by MM-GBSA indicated that all inhibitors were more stable than rivastigmine, and the inhibition mechanisms involved the entire active site: peripheral anionic site, oxyanion hole, acyl-binding pockets, and catalytic site. We examined the cytotoxicity of compounds 1h, 1j, 1k, and 2l in human dermal cells and found that they did not exhibit any toxic effects under the tested conditions. Additionally, these compounds, which also inhibited BChE, displayed mixed inhibition and did not exhibit hemolytic effects on human erythrocytes. Furthermore, the ABTS and DPPH assays indicated that, although none of the compounds showed activity in the DPPH assay, the EC50 values for radical trapping by the ABTS method showed that compounds 1a, 1d, 1e, and 1g had EC50 values lower than 10 µg/mL, indicating their strong radical scavenging capacity. We also report the crystal structures of compounds 1c, 1d, 1f, and 1g, which are found in monoclinic crystal systems.application/pdfCamargo-Ayala, L., Prent-Peñaloza, L., Osorio, E., Camargo-Ayala, P., Jimenez, C., Zúñiga-Arbalti, F., Brito, I., Delgado, G., Gutiérrez, M. y Polo-Cuadrado, E. 2024. Naphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's disease. Bioorganic Chemistry, 153. DOI: 10.1016/j.bioorg.2024.10789610.1016/j.bioorg.2024.1078961090212000452068https://hdl.handle.net/20.500.12313/5534https://www.sciencedirect.com/science/article/pii/S0045206824008010engAcademic Press Inc.Estados Unidos107896153F.H. Al-Ostoot, S. Zabiulla, S.A.K. Salah, Recent investigations into the synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole, and quinoline) as possible therapeutic candidates, J. Iran. Chem. Soc. 188 (18) (2021) 1839–1875, https://doi.org/10.1007/S13738-021-02172-5.B. Ward, J.M. Alexander-Williams, Paracetamol revisited: A review of the pharmacokinetics and pharmacodynamics, Acute Pain. 2 (1999) 139–149, https:// doi.org/10.1016/S1366-0071(99)80006-0] X. Yang, X. Wei, Y. Mu, Q. Li, J. Liu, A review of the mechanism of the central analgesic effect of lidocaine, Medicine (BaltimoD.C. Harrison, K.A. Collinsworth, Antiarrhythmic actions of lidocaine, Annu. Rev. Med. 25 (1974) 143–148, https://doi.org/10.1146/annurev. me.25.020174.001043A.N. Fallica, V. Sorrenti, A.G. D’Amico, L. Salerno, G. Romeo, S. Intagliata, V. Consoli, G. Floresta, A. Rescifina, V. D’Agata, L. Vanella, V. Pittal` a, Discovery of Novel Acetamide-Based Heme Oxygenase-1 Inhibitors with PotentIn VitroAntiproliferative Activity, J. Med. Chem. 64 (2021) 13373–13393, https:// doi.org/10.1021/acs.jmedchem.1c006S. Ansari, H. Azizian, K. Pedrood, A. Yavari, S. Mojtabavi, M.A. Faramarzi, S. Golshani, S. Hosseini, M. Biglar, B. Larijani, H. Rastegar, H. Hamedifar, M. Mohammadi-Khanaposhtani, M. Mahdavi, Design, synthesis, and α-glucosidaseinhibitory activity of phenoxy-biscoumarin–N-phenylacetamide hybrids, Arch. Pharm. (Weinheim). 354 (2021), https://doi.org/10.1002/ardp.202100179.A. Sakr, S. Rezq, S.M. Ibrahim, E. Soliman, M.M. Baraka, D.G. Romero, H. Kothayer, Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: antiinflammatory, analgesic and anticancer activities, J. Enzyme Inhib. Med. Chem. 36 (2021) 1810–1828, https://doi.org/10.1080/14756366.2021.1956912.Y. Ozkay, ¨ I. Is¸ikdaǧ, Z. Incesu, G. Akalin, Synthesis of 2-substituted-N-[4-(1- methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320–3328, https://doi.org/10.1016/J.EJMECH.2010.04.015.G. Autore, A. Caruso, S. Marzocco, B. Nicolaus, C. Palladino, A. Pinto, A. Popolo, M. S. Sinicropi, G. Tommonaro, C. Saturnino, Acetamide Derivatives with Antioxidant Activity and Potential Anti-Inflammatory Activity, Mol. 2010, Vol. 15, Pages 2028- 2038. 15 (2010) 2028–2038. doi:10.3390/MOLECULES15032028.] S. Zahra Siddiqui, M.A. Abbasi, A. Ur-Rehman, M. Ashraf, B. Mirza, H. Ismail, Synthesis of 2-[(5-benzyl-1,3,4-oxadiazole-2yl)sulfanyl]-N-(arylated/arenylated) acetamides as antibacterial and acetyl cholinesterase inhibitors, Pak. J. Pharm. Sci. 30 (2017) 1743–1751.L. Cordeiro, H. Diniz-Neto, P. Figueiredo, H. Souza, A. Sousa, F. Andrade-Júnior, T. Melo, E. Ferreira, R. Oliveira, P. Athayde-Filho, J. Barbosa-Filho, A. OliveiraFilho, E. Lima, Potential of 2-Chloro-N-(4-fluoro-3-nitrophenyl)acetamide Against Klebsiella pneumoniae and In Vitro Toxicity Analysis, Molecules. 25 (2020), https://doi.org/10.3390/MOLECULES25173959.G. Zhang, M. Wang, J. Zhao, Y. Wang, M. Zhu, J. Wang, S. Cen, Y. Wang, Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4, Eur. J. Med. Chem. 206 (2020) 112706, https://doi.org/10.1016/J.EJMECH.2020.112706.S.J.J. Mary, M.U.M. Siddique, S. Pradhan, V. Jayaprakash, C. James, Quantum chemical insight into molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT–IR, FT–Raman), drug likeness and molecular docking of the novel anti COVID-19 molecule 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluo, Spectrochim, Acta Part A Mol. Biomol. Spectrosc. 244 (2021) 118825, https://doi.org/10.1016/J.SAA.2020.118825M. Missioui, M.A. Said, G. Demirta, J.T. Mague, Y. Ramli, Docking of Disordered Independent Molecules of Novel Crystal Structure of (N-(4-methoxyphenyl)-2-(3- methyl-2-oxo-3,4-dihydroquinoxalin-1(2H)-yl)acetamide as anti-Covid-19 and anti-Alzheimer’s disease. Crystal structure, HSA/DFT/XRD, J. Mol. Struct. (2021) 131420, https://doi.org/10.1016/J.MOLSTRUC.2021.131420.D. Bhavsar, J. Trivedi, S. Parekh, M. Savant, S. Thakrar, A. Bavishi, A. Radadiya, H. Vala, J. Lunagariya, M. Parmar, L. Paresh, R. Loddo, A. Shah, Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl) acetamide derivatives using MTT method, Bioorg. Med. Chem. Lett. 21 (2011) 3443–3446, https://doi.org/10.1016/J.BMCL.2011.03.105.S. Prasad, B. Kumar, S. Kumar, K. Chand, S.S. Kamble, H.K. Gautam, S.K. Sharma, Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors, Arch. Pharm. (Weinheim). 350 (2017) 1700076, https://doi.org/10.1002/ ARDP.201700076Z.Q. Sun, L.X. Tu, F.J. Zhuo, S.X. Liu, Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s, Bioorg. Med. Chem. Lett. 26 (2016) 747–750, https:// doi.org/10.1016/J.BMCL.2016.0WHO, Dementia, (2021).R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan, Microwave-Assisted Synthesis of (Piperidin-1-yl)quinolin-3- yl)methylene)hydrazinecarbothioamides as Potent Inhibitors of Cholinesterases: A Biochemical and In Silico Approach, Molecules. 26 (2021) 656, https://doi.org/ 10.3390/molecules26030656.Z. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer’s Disease: Causes and Treatment, Molecules. 25 (2020), https://doi.org/10.3390/ MOLECULED. Munoz-Torrero, Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimers Disease, Curr. Med. Chem. 15 (2008) 2433–2455, https://doi.org/ 10.2174/092986708R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction, Science (80-). 217 (1982) 408–417. doi:10.1126/ science.7046051.T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang, Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum, J. Chem. 2013 (2013), https://doi.org/10.1155/2013/717232.C. Geula, M.-M. Mesulam, Cholinesterases and the Pathology of Alzheimer Disease, Alzheimer Dis. Assoc. Disord. 9 (1995) 23–28, https://doi.org/10.1097/00002093- 199501002-0000E.K. Perry, R.H. Perry, G. Blessed, B.E. Tomlinson, Changes in brain cholinesterases in senile dementia of alzheimer type, Neuropathol. Appl. Neurobiol. 4 (1978) 273–277, https://doi.org/10.1111/j.1365-2990.1978.tb00545.x.J.R. Atack, E.K. Perry, J.R. Bonham, J.M. Candy, R.H. Perry, Molecular Forms of Acetylcholinesterase and Butyrylcholinesterase in the Aged Human Central Nervous System, J. Neurochem. 47 (1986) 263–277, https://doi.org/10.1111/ j.1471-4159.1986.tb02858.xN.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri, A New Therapeutic Target in Alzheimer’s Disease Treatment: Attention to Butyrylcholinesterase, Curr. Med. Res. Opin. 17 (2001) 159–165, https://doi. org/10.1185/030079903911705S. Darvesh, D.A. Hopkins, C. Geula, Neurobiology of butyrylcholinesterase, Nat. Rev. Neurosci. 4 (2003) 131–138, https://doi.org/10.1038/nrn1035.M.T. Kenna, G.R. Proctor, L.C. Young, A.L. Harvey, Novel Tacrine Analogues for Potential Use against Alzheimer’s Disease: Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors, J. Med. Chem. 40 (1997) 3516–3523, https://doi.org/10.1021/jm970150t.E. Giacobini, R. Spiegel, A. Enz, A.E. Veroff, N.R. Cutler, Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit, J. Neural Transm. 109 (2002) 1053–1065, https://doi.org/10.1007/s007020200089.T. Sun, T. Zhen, C.H. Harakandi, L. Wang, H. Guo, Y. Chen, H. Sun, New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands, Eur. J. Med. Chem. 275 (2024) 116569, https://doi. org/10.1016/j.ejmech.2024.11656Q. Li, H. Yang, Y. Chen, H. Sun, Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease, Eur. J. Med. Chem. 132 (2017) 294–309, https://doi.org/10.1016/j.ejmech.2017.03.062.D. Yu, C. Yang, Y. Liu, T. Lu, L. Li, G. Chen, Z. Liu, Y. Li, Synthesis and biological evaluation of substituted acetamide derivatives as potential butyrylcholinestrase inhibitors, Sci. Rep. 13 (2023) 4877, https://doi.org/10.1038/s41598-023-31849- 5.M. Ozil, ¨ H.T. Balaydın, M. S¸ entürk, Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4- triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties, Bioorg. Chem. 86 (2019) 705–713, https://doi.org/10.1016/j.bioorg.2019.02.045.L. Camargo-Ayala, L. Prent-Penaloza, ˜ E. Polo-Cuadrado, I. Brito, J. Cisterna, E. Osorio, W. Gonzalez, ´ M. Guti´errez, Synthesis, characterization, crystal and molecular structure and theoretical study of N-(naphthalen-1-yl)-2-(piperidin-1-yl) acetamide, a selective butyrylcholinesterase inhibitor, J. Mol. Struct. (2021) 131544, https://doi.org/10.1016/J.MOLSTRUC.2021.131544.H. Hosseinpoor, S. Moghadam Farid, A. Iraji, S. Askari, N. Edraki, S. Hosseini, A. Jamshidzadeh, B. Larijani, M. Attarroshan, S. Pirhadi, M. Mahdavi, M. Khoshneviszadeh, Anti-melanogenesis and anti-tyrosinase properties of arylsubstituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis and biological evaluations, Bioorg. Chem. 114 (2021) 104979, https://doi.org/10.1016/J.BIOORG.2021.104979S. Koppireddi, J.R. Komsani, S. Avula, S. Pombala, S. Vasamsetti, S. Kotamraju, R. Yadla, Novel 2-(2,4-dioxo-1,3-thiazolidin-5-yl)acetamides as antioxidant and/or anti-inflammatory compounds, Eur. J. Med. Chem. 66 (2013) 305–313, https:// doi.org/10.1016/J.EJMK.M. Kanwal, S. Khan, F. Chigurupati, M. Ali, M. Younus, A. Aldubayan, H. Wadood, M. Khan, S. Taha, Perveen, Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents Synthesis, in Vitro α-Amylase Inhibitory Activity, Structure-Activity Relationship, and in Silico Studies, ACS Omega. 6 (2021) 2264–2275, https://doi.org/10.1021/acsomega.0c05581.C. Grin˜´ an-Ferr´e, A. Bellver-Sanchis, V. Izquierdo, R. Corpas, J. Roig-Soriano, M. Chillon, ´ C. Andres-Lacueva, M. Somogyvari, ´ C. Soti, ˝ C. Sanfeliu, M. Pallas, ` The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy, Ageing Res. Rev. 67 (2021) 101271, https://doi.org/10.1016/J.ARR.2021.101271.M.Y. Jiang, C. Han, C. Zhang, Q. Zhou, B. Zhang, M.L. Le, M.X. Huang, Y. Wu, H. Bin Luo, Discovery of effective phosphodiesterase 2 inhibitors with antioxidant activities for the treatment of Alzheimer’s disease, Bioorg. Med. Chem. Lett. 41 (2021) 128016, https://doi.org/10.1016/J.BMCL.2021.128016.A. Marino, M. Battaglini, N. Moles, G. Ciofani, Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases, ACS Omega. 7 (2022) 25974–25990, https://doi.org/10.1021/acsomega.2c03291.L.A. Carpino, A. El-Faham, The diisopropylcarbodiimide/ 1-hydroxy-7-azabenzotriazole system: Segment coupling and stepwise peptide assembly, Tetrahedron. 55 (1999) 6813–6830, https://doi.org/10.1016/S0040-4020(99)00344-0.J.R. Dunetz, J. Magano, G.A. Weisenburger, Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals, Org. Process Res. Dev. 20 (2016) 140–177, https://doi.org/10.1021/op500305s.F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, Tables of Bond Lengths Determined by X-Ray and Neutron-Diffraction. 1. Bond Lengths in Organic-Compounds, J. Chem. Soc., Perkin Trans. 2 (1987) S1–S19, https://doi. org/10.1039/P298700000s1.C.R. Groom, F.H. Allen, The Cambridge Structural Database in Retrospect and Prospect, Angew. Chemie Int. Ed. 53 (2014) 662–671, https://doi.org/10.1002/ anie.2013064M.C. Etter, J.C. MacDonald, J. Bernstein, Graph-set analysis of hydrogen-bond patterns in organic crystals, Acta Crystallogr. Sect. B Struct. Sci. 46 (1990) 256–262, https://doi.org/10.1107/S0108768189012929I. Majerz, T. Dziembowska, Does the five-member hydrogen bond ring in quinoline carboxamides exist? J. Phys. Org. Chem. 21 (2008) 876–880, https://doi.org/ 10.1002/poc.1390.N. Parra, L. Guarda, J.B. Belmar, P.I. Hidalgo, C.A. Jim´enez, J. Pas´ an, C. RuizP´erez, Conformational influence of quinoline moieties in the crystal packing of bis (quinolinecarboxamide)alkane derivatives, CrystEngComm. 15 (2013) 7212, https://doi.org/10.1039/c3ce40807h.G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, https://doi.org/10.1016/0006-2952(61)90145-9.M. Ahmed, J.B.T. Rocha, M. Corrˆea, C.M. Mazzanti, R.F. Zanin, A.L.B. Morsch, V. M. Morsch, M.R.C. Schetinger, Inhibition of two different cholinesterases by tacrine, Chem. Biol. Interact. 162 (2006) 165–171, https://doi.org/10.1016/j. cbi.2006.06.00I.R. Macdonald, E. Martin, T.L. Rosenberry, S. Darvesh, Probing the Peripheral Site of Human Butyrylcholinesterase, Biochemistry. 51 (2012) 7046–7053, https://doi. org/10.1021/bi300955k.K.-B. Augustinsson, The nature of an “anionic” site in butyrylcholinesterase compared with that of a similar site in acetylcholinesterase, Biochim. Biophys. Acta - Enzymol. Biol. Oxid. 128 (1966) 351–362, https://doi.org/10.1016/0926-6593 (66)90182-2N. Atatreh, S. Al Rawashdah, S.S. Al Neyadi, S.M. Abuhamdah, M.A. Ghattas, Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening, J. Enzyme Inhib. Med. Chem. 34 (2019) 1373–1379, https://doi.org/ 10.1080/14756366.2019.1644329S.-Y. Chiou, T.-T. Weng, G.-Z. Lin, R.-J. Lu, S.-Y. Jian, G. Lin, Molecular docking of different inhibitors and activators to butyrylcholinesterase, J. Biomol. Struct. Dyn. 33 (2015) 563–572, https://doi.org/10.1080/07391102.2014.896749.C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423- 1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997), Adv. Drug Deliv. Rev. 46 (2001) 3–26. doi:10.1016/S0169-409X(00) 00129-0.A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, https://doi.org/10.1038/srep42717.P. Banerjee, A.O. Eckert, A.K. Schrey, R. Preissner, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018) W257–W263, https://doi.org/10.1093/nar/gky318A. Daina, V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem. 11 (2016) 1117–1121, https:// doi.org/10.1002/cmdc.201600182G.M. Sheldrick, SADABS, Software for Empirical Absorption Correction, Univ. Gottingen, ¨ Ger. (2000) SADABS, Software for Empirical Absorption Correcti.G.M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Adv. 71 (2015) 3–8, https://doi. org/10.1107/S2053273314026O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr. 42 (2009) 339–341, https://doi.org/10.1107/S0021889808042726G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218.A.L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36 (2003) 7–13, https://doi.org/10.1107/S0021889802022112.G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol. 7 (1961) 88–95, https://doi.org/10.1016/0006-2952(61)90145-9.W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Sci. Technol. 28 (1995) 25–30, https:// doi.org/10.1016/S0023-6438(95)8000S. Khwaja, K. Fatima, C. Behera, A. Kour, D.M. Mondhe, A.S. Negi, Antiproliferative efficacy of curcumin mimics through microtubule destabilization, Eur. J. Med. Chem. (2018), https://doi.org/10.1016/j.ejmech.2018.03.063.Z. Chen, H. Duan, X. Tong, P. Hsu, L. Han, S.L. Morris-Natschke, S. Yang, W. Liu, K.-H. Lee, Cytotoxicity, Hemolytic Toxicity, and Mechanism of Action of Pulsatilla Saponin D and Its Synthetic Derivatives, J. Nat. Prod. 81 (2018) 465–474, https:// doi.org/10.1021/acs.jnatprod.7b00578V. Vichai, K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nat. Protoc. 1 (2006) 1112–1116, https://doi.org/10.1038/ nprot.2006F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard, Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase, Biochem. J. 453 (2013) 393–399, https://doi.org/10.1042/ BJ2013001G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A. J. Olson, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791, https://doi.org/10.1002/jcc.21256.N. Kandiah, M.-C. Pai, V. Senanarong, I. Looi, E. Ampil, K.W. Park, A.K. Karanam, S. Christopher, Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia, Clin. Interv. Aging. 12 (2017) 697–707, https://doi.org/10.2147/CIA.S129145.G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A. J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639–1662, https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AIDJCC10>3.0.CO;2-B.M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, M. Schroeder, Plip,, expanding the scope of the protein–ligand interaction profiler to DNA and RNA, Nucleic Acids Res. 49 (2021) (2021) W530–W534, https://doi. org/10.1093/nar/gkab29E. Neria, S. Fischer, M. Karplus, Simulation of activation free energies in molecular systems, J. Chem. Phys. 105 (1996) 1902–1921, https://doi.org/10.1063/ 1.472061J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25 (2004) 1157–1174, https://doi.org/10.1002/jcc.20035.G.A. Ozpınar, ¨ W. Peukert, T. Clark, An improved generalized AMBER force field (GAFF) for urea, J. Mol. Model. 16 (2010) 1427–1440, https://doi.org/10.1007/ s00894-010-0650-7.D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005) 1668–1688, https://doi.org/10.1002/ jcc.20290J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kal´e, K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (2005) 1781–1802, https://doi.org/10.1002/jcc.20289.J.C. Phillips, D.J. Hardy, J.D.C. Maia, J.E. Stone, J.V. Ribeiro, R.C. Bernardi, R. Buch, G. Fiorin, J. H´enin, W. Jiang, R. McGreevy, M.C.R. Melo, B.K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kal´e, K. Schulten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys. 153 (2020), https://doi. org/10.1063/5.0014475.W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33–38, https://doi.org/10.1016/0263-7855(96)00018-5.J. M., G. Archontis, MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies, in: Mol. Dyn. - Stud. Synth. Biol. Macromol., InTech, 2012. doi:10.5772/ 37107A.W. Gotz, ¨ M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born, J. Chem. Theory Comput. 8 (2012) 1542–1555, https://doi.org/ 10.1021/ct200909j.H. Abroshan, H. Akbarzadeh, G.A. Parsafar, Molecular dynamics simulation and MM–PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact, J. Phys. Org. Chem. 23 (2010) 866–877, https://doi.org/ 10.1002/poc.1© 2024 Elsevier Inc.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/https://www.sciencedirect.com/science/article/pii/S0045206824008010AlzheimerAcetamida - FuncionalidadesAlzheimer - Terapia antioxidanteAcetamide compoundAlzheimer's diseaseAntioxidant activityCholinesterase inhibitorCrystallographyNaphthyl-functionalized acetamide derivatives: Promising agents for cholinesterase inhibition and antioxidant therapy in Alzheimer's diseaseArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/c9acfb21-b584-4284-a9a4-81d7e8d3febb/download2fa3e590786b9c0f3ceba1b9656b7ac3MD51TEXTArtículo.pdf.txtArtículo.pdf.txtExtracted texttext/plain2979https://repositorio.unibague.edu.co/bitstreams/62b4b530-b3c5-4a21-b762-8f4489698d7f/downloadfeb111c0f79240f08f0e30afabdbde11MD53THUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg20818https://repositorio.unibague.edu.co/bitstreams/8fffc176-d624-4aa1-99a6-50bf443894ab/download429dcd7769164737dc9d82310b3c50d1MD54ORIGINALArtículo.pdfArtículo.pdfapplication/pdf162366https://repositorio.unibague.edu.co/bitstreams/ad7438cf-f4e3-45d2-9d3a-34f444884991/download5c5b19a978f46a84ec22d0bbe93194b5MD5220.500.12313/5534oai:repositorio.unibague.edu.co:20.500.12313/55342025-09-12 11:40:29.376https://creativecommons.org/licenses/by-nc/4.0/© 2024 Elsevier Inc.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=