Inverse reinforcement learning via stochastic mirror descent
Inverse Reinforcement Learning (IRL) and Apprenticeship Learning (AL) are foundational problems in decision-making under uncertainty, where the goal is to infer cost functions and policies from observed behavior. In this thesis, we establish the equivalence between the inverse optimization framework...
- Autores:
-
Leiva Montoya, Esteban
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75575
- Acceso en línea:
- https://hdl.handle.net/1992/75575
- Palabra clave:
- Inverse optimization
Inverse reinforcement learning
Stochastic mirror descent
Markov decision processes
Matemáticas
- Rights
- openAccess
- License
- Attribution 4.0 International