Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria
El almidón es ampliamente utilizado en la industria alimentaria por su capacidad de modificar la textura y estabilidad de los productos. Frente a la necesidad de fuentes sostenibles, la semilla de aguacate Hass (Persea americana) se presenta como una alternativa por su contenido de almidón y por con...
- Autores:
-
Rey Salcedo, Nicole Alejandra
Molina Fonseca, Maria Jimena
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14653
- Palabra clave:
- Experimento
Metodología
Investigación
Diseño
Ingeniería
610.28
Experiment
Methodology
Research
Design
Engineering
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_61231c5b253dccbfb24d793544aaf2bb |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14653 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
dc.title.translated.none.fl_str_mv |
Development of a methodology for starch extraction using emerging technology from Hass avocado (Persea americana) seed residues generated in the agroindustry |
title |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
spellingShingle |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria Experimento Metodología Investigación Diseño Ingeniería 610.28 Experiment Methodology Research Design Engineering |
title_short |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
title_full |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
title_fullStr |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
title_full_unstemmed |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
title_sort |
Desarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustria |
dc.creator.fl_str_mv |
Rey Salcedo, Nicole Alejandra Molina Fonseca, Maria Jimena |
dc.contributor.advisor.none.fl_str_mv |
Moncayo Martínez, Diana Cristina |
dc.contributor.author.none.fl_str_mv |
Rey Salcedo, Nicole Alejandra Molina Fonseca, Maria Jimena |
dc.subject.none.fl_str_mv |
Experimento Metodología Investigación Diseño Ingeniería |
topic |
Experimento Metodología Investigación Diseño Ingeniería 610.28 Experiment Methodology Research Design Engineering |
dc.subject.ddc.none.fl_str_mv |
610.28 |
dc.subject.keywords.none.fl_str_mv |
Experiment Methodology Research Design Engineering |
description |
El almidón es ampliamente utilizado en la industria alimentaria por su capacidad de modificar la textura y estabilidad de los productos. Frente a la necesidad de fuentes sostenibles, la semilla de aguacate Hass (Persea americana) se presenta como una alternativa por su contenido de almidón y por considerarse un residuo agroindustrial no aprovechado. Se desarrolló una metodología para su extracción, mediante seis fases: (1) identificación de variables críticas, (2) extracción por vía húmeda, (3) aplicación de ultrasonido como pretratamiento a la semilla, (4) aplicación de ultrasonido como postratamiento al almidón, (5) comparación de parámetros de propiedades físicas, químicas y funcionales para definir la metodología, (6) evaluación de su aplicabilidad en la industria alimentaria. La Fase 2 contó con un mayor contenido de almidón (16,24 %), seguida por la Fase 4 (8,60 %) y Fase 3 (7,47 %). Sin embargo, el ultrasonido redujo el contenido de proteínas (de 0,83 % a 0,43 %) y lípidos (de 0,39 % a 0,20 %), aumentando la pureza. Además, en la Fase 4 se obtuvo un mayor contenido de amilopectina (62,41 %), así como un índice de blancura de 79,9 %, con una pureza del 95,5 %. El almidón de la metodología establecida mostró bajo índice de solubilidad (2 %) y buen poder de hinchamiento (5,21 %), adecuados para productos congelados. Su alta proporción de amilopectina mejora la estabilidad, claridad y resistencia a la retrogradación, lo que favorece su uso como estabilizante en salsas y postres. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-13T19:31:40Z |
dc.date.available.none.fl_str_mv |
2025-06-13T19:31:40Z |
dc.date.issued.none.fl_str_mv |
2025-06 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14653 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14653 https://repositorio.unbosque.edu.co |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Acuña, H. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados. Agronet. (2024). Entre enero y septiembre las exportaciones de aguacate Hass se incrementaron 15%. Agronet. MinAgricultura. Aguirre, A., & Ortiz, J. (2021). Desempeño de un almidón natural obtenido de las cascaras de plátano en el control de propiedades de reología, lubricidad y filtrado de un fluido de perforación polomérico a nivel de laboratorio. Fundación Universidad de América . Al, G., Gilbert, R., & Gidley, M. (2019). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50(2), 198–204. https://doi.org/https://doi.org/10.1016/j.jcs.2009.05.001 Alemu, N., Balakrishnan, S., & Debtera, B. (2022). Extraction and Characterisation of Avocado Seed Starch, and Its Blend with Enset Cellulosic. Advances in Materials Science and Engineering, 2022(1), 9908295. https://doi.org/10.1155/2022/9908295 Alissa, K., Hung, Y., Hou, C., Lim, G., & Ciou, J. (2020). Developing new health material: The utilization of spray drying technology on avocado (Persea Americana mill.) seed powder. Foods, 9(2). https://doi.org/10.3390/foods9020139 Amarnath, M., Muhammed, A., Antony, A., Malini, B., & Sunil, C. (2023). White finger millet starch: Physical modification (annealing and ultrasound), and its impact on physicochemical, functional, thermal and structural properties. Food and Humanity, 1, 599–606. https://doi.org/10.1016/J.FOOHUM.2023.07.010 Araújo, R., Rodriguez, R., Ruiz, H., Pintado, M., & Aguilar, C. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51–60. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.027 Araújo, R., Rodriguez, R., Ruiz, H., Govea, M., Pintado, M., & Aguilar, C. (2020). Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops and Products, 154, 112623. https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112623 Arboleda, L., Tacuri, E., Hernández, C., & Guerrero, S. (2023). Estudio del efecto del pardeamiento enzimático en la calidad nutricional del banano (musa paradisiaca l.) (Vol. 3). https://reciena.espoch.edu.ec/index.php/reciena/index Aristizábal, J., Sánchez, T., & Mejía, D. (2007). Guía técnica para producción y análisis de almidón de yuca. 134. https://search.worldcat.org/title/227164521 Armijos, A. (2021). Obtención de bioplástico a partir del almidón de semillas de Yaca (Artocarpus Heterophyllus) y Aguacate Hass (Persea Americana) para su uso en el recubrimiento de alimentos. Arnold, M., & Gramza, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5038–5076. https://doi.org/10.1111/1541-4337.13059 Arora, S., Goraya, R., Siddiqui, S., & Gehlot, R. (2021). Influence of anti-browning treatments on enzymatic browning, distinctive properties, and microbiological characteristics of banana pulp during short-term frozen storage. Journal of Food Processing and Preservation, 45(3), e15259. https://doi.org/10.1111/JFPP.15259;SUBPAGE:STRING:ABSTRACT;WEBSITE:WEBSITE:PERICLES;JOURNAL:JOURNAL:17454549;WGROUP:STRING:PUBLICATION Asikkutlu, A., & Yildirim, M. (2025). Optimization of mechanical and water barrier properties of avocado seed starch based film and its application as smart pH indicator by adding blue butterfly pea flower extract. Food Chemistry: X, 25, 102155. https://doi.org/https://doi.org/10.1016/j.fochx.2025.102155 Balboa, G. (2020). Extracción con ultrasonido y su efecto sobre las propiedades funcionales y estructurales del almidón de frutos de Guanábana (Annona muricata L.). Barandiaran, A. (2022). Desarrollo del proceso de extracción del almidón de residuos de patata y caracterización del mismo con el fin de validar su utilización para la elaboración de peliculas de bioplástico. Baranowska, M., & Rezler, R. (2020). Temperature Characterisation of Starch and Starch-Protein dispersions. Bernal, J., Díaz, C., Tamayo, A., Córdoba, O., Londoño, M., Tamayo, P., & Londoño, M. (2008). Tecnología para el Cultivo del Aguacate. CORPOICA. Bernardo, C., Ascheri, J., Chávez, D., & Carvalho, C. (2018). Ultrasound Assisted Extraction of Yam (Dioscorea bulbífera) Starch: Effect on Morphology and Functional Properties. Starch - Stärke, 70(5–6), 1700185. https://doi.org/https://doi.org/10.1002/star.201700185 Bonto, A., Tiozon, R., Sreenivasulu, N., & Camacho, D. (2021). Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonics Sonochemistry, 71, 105383. https://doi.org/10.1016/J.ULTSONCH.2020.105383 Boufi, S., Bel, S., Magnin, A., Pignon, F., Impéror, M., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 41, 327–336. https://doi.org/10.1016/J.ULTSONCH.2017.09.033 Builders, P., Nnurum, A., Mbah, C., Attama, A., & Manek, R. (2010). The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch - Stärke, 62(6), 309–320. https://doi.org/10.1002/STAR.200900222 Caballero, L. (2021). Producción de bioetanol a partir de residuos de aguacate. Castro, L., Caço, A., Pereira, C., Sousa, S., Brassesco, M., Machado, M., Ramos, Ó., Alexandre, E., Saraiva, J., & Pintado, M. (2023). Modification of Acorn Starch Structure and Properties by High Hydrostatic Pressure. Gels, 9(9). https://doi.org/10.3390/gels9090757 Chaethong, K., & Pongsawatmanit, R. (2015). Influence of Sodium Metabisulfite and Citric Acid in Soaking Process after Blanching on Quality and Storage Stability of Dried Chili: Effect of Sulfite and Acid on Dried Chili Quality. Journal of Food Processing and Preservation, 39. https://doi.org/10.1111/jfpp.12460 Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano, A., & Abert, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.06.035 Chan, H., Wu, R., & Shao, Y. (2021). The effects of ultrasonic treatment on physicochemical properties and in vitro digestibility of semigelatinized high amylose maize starch. Food Hydrocolloids, 119, 106831. https://doi.org/10.1016/J.FOODHYD.2021.106831 Chen, N., Gao, H., He, Q., Yu, Z., & Zeng, W. (2020). Interaction and action mechanism of starch with different phenolic compounds. International Journal of Food Sciences and Nutrition, 71(6), 726–737. https://doi.org/10.1080/09637486.2020.1722074 Chel, L., Barbosa, E., Martínez, A., González, E., & Betancur, D. (2016). Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules, 86, 302–308. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.01.052 Chen, X., Liu, Y., Xu, Z., Zhang, C., Liu, X., Sui, Z., & Corke, H. (2021). Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocolloids, 120, 106821. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.106821 Chen, X., Yao, W., Gao, F., Zheng, D., Wang, Q., Cao, J., Tan, H., & Zhang, Y. (2021). Physicochemical Properties Comparative Analysis of Corn Starch and Cassava Starch, and Comparative Analysis as Adhesive. Journal of Renewable Materials, 9(5), 789–992. https://doi.org/10.32604/JRM.2021.014751 Chen, Z., Hu, A., Ihsan, A., & Zheng, J. (2024). The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties: A review. Trends in Food Science & Technology, 148, 104515. https://doi.org/10.1016/J.TIFS.2024.104515 Cheng, Z., Zheng, Q., Duan, Y., Hu, K., Cai, M., & Zhang, H. (2024). Optimization of ultrasonic conditions for improving the characteristics of corn starch-glycyrrhiza polysaccharide composite to prepare enhanced quality lycopene inclusion complex. International Journal of Biological Macromolecules, 267, 131504. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.131504 Cinelli, P., Chiellini, E., Lawton, J. W., & Imam, S. (2006). Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability, 91(5), 1147–1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001 Cobana, M., & Antezana, R. (2007). Proceso de extracción de almidón de yuca por vía seca. Croguennec, T. (2016). Enzymatic Browning. In Handbook of Food Science and Technology 1 (pp. 159–181). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119268659.ch6 Dabas, D., Elias, R., Lambert, J., & Ziegler, G. (2011). A Colored Avocado Seed Extract as a Potential Natural Colorant. Journal of Food Science, 76(9). https://doi.org/10.1111/j.1750-3841.2011.02415.x Dávila, J., Rosenberg, M., Castro, E., & Cardona, C. (2017). A model biorefinery for avocado (Persea americana mill.) processing. Bioresource Technology, 243, 17–29. https://doi.org/https://doi.org/10.1016/j.biortech.2017.06.063 De Dios, N., Tirado, J., Rios, C., Luna, G., Isiordia, N., Zamudio, P., Estrada, M., & Cambero, O. (2022). Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars. Molecules, 27(3). https://doi.org/10.3390/molecules27030910 Dechkunchorn, M., & Thongngam, M. (2016). Characterization of flours, starch and protein from white and black adlay cultivars. Demiate, I., Bet, C., Ito, V., & Lacerda, L. (2023). Chapter 7 - Laboratory methods for starch extraction. In M. Pascoli Cereda & O. François Vilpoux (Eds.), Starchy Crops Morphology, Extraction, Properties and Applications (pp. 165–187). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90058-4.00012-8 Dhital, S., Shrestha, A., & Gidley, M. (2019). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82(2), 480–488. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.05.018 Dios, N., Tirado, J., Rios, C., Esquivel, G., Estrada, M., & Cambero, O. (2023). Propiedades composicionales, estructurales y fisicoquímicas de las semillas de aguacate y sus potenciales usos agroindustriales. Ciencia Tecnologia Agropecuaria, 24(1). https://doi.org/10.21930/rcta.vol24_num1_art:2607 Dorantes, M., López, M., Martínez, G., Meléndez, R., & Jiménez, H. (2024). Starch Extraction Methods in Tubers and Roots: A Systematic Review. Agronomy, 14(4). https://doi.org/10.3390/agronomy14040865 Espinoza, E., & Oscco, C. (2021). EFECTO DE GLICERINA Y MELAMINA SOBRE LAS PROPIEDADES FISICOMECANICAS DEL BIOPLÁSTICO DE ALMIDÓN EN SEMILLA DE Persea americana mill. “PALTA.” Esquivel, E., Martinez, E., Oseguera, M., Londoño, S., & Rodriguez, M. (2022). Influence of physicochemical changes of the avocado starch throughout its pasting profile: Combined extraction. Carbohydrate Polymers, 281, 119048. https://doi.org/https://doi.org/10.1016/j.carbpol.2021.119048 Ferreira, P., Zanuso, E., Genisheva, Z., Rocha, C., & Teixeira, J. (2020). Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules, 25(12). https://doi.org/10.3390/molecules25122931 Fideles, M., Bento, J., Ferreira, K., De Oliveira, A., Caliari, M., & Soares, M. (2019). Physicochemical and technological characteristics of arrowroot flour modified by ultrasound and low-temperature heat treatment. Ciência Rural, 49(10), e20181037. https://doi.org/10.1590/0103-8478CR20181037 Fitriani, F., Syam, H., & Fadilah, R. (2022). Penagaruh Lama Waktu Perendaman Umbi Gadung (Dioscorea Hispida Dennst) Terhadap Fisiko-Kimia Tepung Umbi Gadung. Jurnal Pendidikan Teknologi Pertanian, 8(1), 9. https://doi.org/10.26858/JPTP.V8I1.22383 Flores, E., García, F., Flores, E., Nuñez, M., Gonzáles, R., & Bello, L. (2004). Rendimiento del proceso de extracción de almidón de frutos de plátano (Musa paradisiaca L.). Estudio en planta piloto. https://www.researchgate.net/publication/28095151 Ginting, M., Hasibuan, R., Lubis, M., Alanjani, F., Winoto, F., & Siregar, R. (2018). Supply of avocado starch (Persea americana mill) as bioplastic material. IOP Conference Series: Materials Science and Engineering, 309(1). https://doi.org/10.1088/1757-899X/309/1/012098 Golkar, A., Milani, J., Motamedzadegan, A., & Kenari, R. (2022). Modification of corn starch by thermal-ultrasound treatment in presence of Arabic gum. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-022-23836-z Gómez, L., Quintana, S., & García, L. (2023). Ultrasound-Assisted Extraction of Mango (Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels, 9(2). https://doi.org/10.3390/gels9020136 Gonçalves, P., Noreña, C., da Silveira, N., & Brandelli, A. (2014). Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Science and Technology, 58(1), 21–27. https://doi.org/10.1016/J.LWT.2014.03.015 Gong, T., Liu, S., Wang, H., & Zhang, M. (2021). Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Bioscience, 42, 101153. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101153 González, L. (2022). Polímeros inteligentes para aplicaciones en seguridad y control alimentario. https://doi.org/10.36443/10259/7815 Granados, C., Guzman, E., Acevedo, D., Díaz, M., & Herrera, A. (2018). Propiedades funcionales del almidón de sagú (Maranta arundinacea). In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 12, Issue 2). Guiné, R., & Barroca, M. (2014). Quantification of browning kinetics and colour change for quince (Cydonia oblonga Mill.) exposed to atmospheric conditions. Agricultural Engineering International : The CIGR e-Journal, 16, 285–298. Han, Z., Li, Y., Luo, D., Zhao, Q., Cheng, J., & Wang, J. (2021). Structural variations of rice starch affected by constant power microwave treatment. Food Chemistry, 359, 129887. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129887 Hatzakis, E., Mazzola, E., Shegog, R., Ziegler, G., & Lambert, J. (2019). Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chemistry, 293, 15–22. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.04.064 Hermiati, E., Sondari, D., & Sunarti, T. (2023). Chapter 2 - Extraction and classification of starch from different sources: Structure, properties, and characterization. In M. S. Sreekala, L. Ravindran, K. Goda, & S. Thomas (Eds.), Handbook of Natural Polymers, Volume 1 (pp. 19–60). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-99853-6.00012-7 Hossen, S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M., & Okadome, H. (2011). Effect of particle size of different crop starches and their flours on pasting properties. Japan Journal of Food Engineering, 12, 29–35. https://www.jstage.jst.go.jp/article/jsfe/12/1/12_29/_pdf Instituto Colombiano Agropecuario. (2021). Manejo fitosanitario del cultivo del aguacate Hass Medidas para la temporada invernal. Jamalabadi, M., Saremnezhad, S., Bahrami, A., & Jafari, S. (2019). The influence of bath and probe sonication on the physicochemical and microstructural properties of wheat starch. Food Science and Nutrition, 7(7), 2427–2435. https://doi.org/10.1002/FSN3.1111 Jiménez, R., Sandoval, G., Alvarado, S., Alemán, S., Santiago, R., & Velásquez, G. (2022). Extraction of starch from Hass avocado seeds for the preparation of biofilms. Food Science and Technology, 42. Kale, R., & Shere, D. (2017). Effect of isolation methods on physicochemical and functional properties of sweet potato (Ipomoea batatas L.) starch. ~ 223 ~ Journal of Pharmacognosy and Phytochemistry, 6(4), 223–227. Klang, J., Tene, S., Nguemguo, L., Boungo, G., Ndomou, S., Kohole, H., & Womeni, H. (2019). Effect of bleaching and variety on the physico-chemical, functional and rheological properties of three new Irish potatoes (Cipira, Pamela and Dosa) flours grown in the locality of Dschang (West region of Cameroon). Heliyon, 5(12). https://doi.org/10.1016/j.heliyon.2019.e02982 Kumari, S., Kaur, B., & Thiruvalluvan, M. (2024). Ultrasound modified millet starch: Changes in functional, pasting, thermal, structural, in vitro digestibility properties, and potential food applications. Food Hydrocolloids, 153, 110008. https://doi.org/https://doi.org/10.1016/j.foodhyd.2024.110008 Li, B., Zhang, Y., Zhao, Y., Luo, W., Huang, C., & Khan, M. (2023). Relationship between in vitro digestibility and multi-structures of four unconventional starches from Chinese tropical fruits (sweetsop, avocado, chempedak, and Pouteria campechiana) extracted using an ultrasound method. Industrial Crops and Products, 192, 116011. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.116011 Li, G., Ge, X., Guo, C., & Liu, B. (2023). Effect of Ultrasonic Treatment on Structure and Physicochemical Properties of Pea Starch. Foods 2023, Vol. 12, Page 2620, 12(13), 2620. https://doi.org/10.3390/FOODS12132620 Li, Y., Wu, Z., Wan, N., Wang, X., & Yang, M. (2019). Extraction of high-amylose starch from Radix Puerariae using high-intensity low-frequency ultrasound. Ultrasonics Sonochemistry, 59, 104710. https://doi.org/https://doi.org/10.1016/j.ultsonch.2019.104710 Liu, J., Yu, X., & Liu, Y. (2021). Effect of ultrasound on mill starch and protein in ultrasound-assisted laboratory-scale corn wet-milling. Journal of Cereal Science, 100, 103264. https://doi.org/10.1016/J.JCS.2021.103264 Loor, M., & Reyes, S. (2024). Estudio de los Taninos presentes en la semilla de aguacate (Persea Americana) y su potencial uso como mordiente en los colorantes textiles. Universidad de Guayaquil. https://repositorio.ug.edu.ec/server/api/core/bitstreams/75c7628e-71a6-4229-8a90-ec96a8176ecf/content Lovatto, M., Bisognin, D., Treptow, R., Storck, L., Gnocato, F., & Morin, G. (2012). Processamento mínimo de tubérculos de batata de baixo valor comercial. Horticultura Brasileira, 30(2), 258–265. https://doi.org/10.1590/S0102-05362012000200013 Lou, X., Luo, D., Yue, C., Zhang, T., Li, P., Xu, Y., Xu, B., & Xiang, J. (2022). Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulin. LWT, 154, 112578. https://doi.org/10.1016/J.LWT.2021.112578 Macedo, L., da Silva, C., Vimercati, W., Saraiva, S., & Teixeira, L. (2019). Evaluation of different bleaching methods applied to yacon. Journal of Food Process Engineering, 42(7). https://doi.org/10.1111/jfpe.13276 Macena, J., Souza, J., Camilloto, G., & Cruz, R. (2020). Physico-chemical, morphological and technological properties of the avocado (Persea americana Mill. cv. Hass) seed starch. Ciência e Agrotecnologia, 44. Martínez, P., Peña, F., Gómez, Y., Vargas, G., & Velezmoro, C. (2019). Propiedades fisicoquímicas, funcionales y estructurales de almidones nativos y acetilados obtenidos a partir de la papa (Solanum tuberosum) var. “Única.” In Rev Soc Quím Perú (Vol. 85, Issue 3). Martins, S., Pontes, K., Fialho, R., & Fakhouri, F. (2022). Extraction and characterization of the starch present in the avocado seed (Persea americana mill) for future applications. Journal of Agriculture and Food Research, 8, 100303. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100303 Maryam, A., & Santosa, N. (2016). Utilization Starch of Avocado Seed (Persea Americana Mill.) as a Raw Material for Dextrin. Journal of Food Science and Engineering, 6(1). https://doi.org/10.17265/2159-5828/2016.01.005 Mendoza, M. (2021). Elaboración de una biopelícula biodegradable a partir del desecho industrial de la semilla de aguacate (Persea americana), para sustituir alternativamente materiales obtenidos de polímeros sintéticos. Meng, F., Tian, S., Wang, Y., Lu, J., Liu, Z., & Niu, Y. (2024). Ultrasound-assisted Extraction and Physicochemical Properties of Starch from Cyperus esculentus Tubers. BioResources, 19(3), 4264–4277. https://ojs.bioresources.com/index.php/BRJ/article/view/23413 Mesquita, V., & Queiroz, C. (2013). Chapter 10 - Enzymatic Browning. In N. A. M. Eskin & F. Shahidi (Eds.), Biochemistry of Foods (Third Edition) (pp. 387–418). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-091809-9.00010-8 Mieles, L., Quintana, S., & García, L. (2023). Ultrasound-Assisted Extraction of Mango (Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels, 9(2). https://doi.org/10.3390/gels9020136 Minakawa, A., Faria, P. & Mali, S. (2019). Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chemistry, 283, 11–18. https://doi.org/10.1016/J.FOODCHEM.2019.01.015 Ministerio de agricultura. (2021). Cadena productiva Aguacate. Mohamed, M., Ngadi, N., Suhaidi, A., Mohammed, I., & Anako, L. (2022). Response Surface Optimization of Ultrasound-Assisted Extraction of Sago Starch from Sago Pith Waste. Starch - Stärke, 74(1–2), 2100012. https://doi.org/https://doi.org/10.1002/star.202100012 Monroy, Y., Rivero, S., & García, M. (2018). Microestructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/J.ULTSONCH.2017.12.048 Moore, C., Tuschhoff, J., Hastings, C., & Schanefelt, R. (2015). CHAPTER XIX - APPLICATIONS OF STARCHES IN FOODS. In R. O. Y. L. WHISTLER, J. N. BEMILLER, & E. F. PASCHALL (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 575–591). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-746270-7.50025-2 Morales, F., Trujillo, D., Aguirre, E., Lobato, C., Vernon, J., & Alvarez, J. (2022). Ultrasound-Assisted Extraction of Lychee (Litchi chinensis Sonn.) Seed Starch: Physicochemical and Functional Properties. Starch - Stärke, 74(1–2), 2100092. https://doi.org/https://doi.org/10.1002/star.202100092 Mora, A., Ramírez, A., Castillo, L., Lopretti, M., & Vega, J. (2021). Persea americana agro-industrial waste biorefinery for sustainable high-value-added products. In Polymers (Vol. 13, Issue 11). MDPI AG. https://doi.org/10.3390/polym13111727 Muñoz, P., Oliver, V., Peponi, L., & López, D. (2023). A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers 2023, Vol. 15, Page 2972, 15(13), 2972. https://doi.org/10.3390/POLYM15132972 Nizama, W. (2022). Técnicas de extracción de almidón de frutas y residuos vegetales. Universidad Nacional de Frontera. https://repositorioslatinoamericanos.uchile.cl/handle/2250/6541312 Nyakang’i, C., Ebere, R., Marete, E., & Arimi, J. (2023). Avocado production in Kenya in relation to the world, Avocado by-products (seeds and peels) functionality and utilization in food products. Applied Food Research, 3(1), 100275. https://doi.org/https://doi.org/10.1016/j.afres.2023.100275 Ortiz, E., Guanga, A., Rojas, R., & Violeta, D. (2021). Obtención Del Almidón De Lenteja (Lens Culinaris). March, 166–173. Palacio, J., & Peñata, Y. (2018). Aumento del rendimiento en la extracción del almidón a partir del grano de maiz y la influencia del carbonato de ácido sódico en las propiedades fisico-químicas del slurry. Palmiro, D., Wanderlei, C., Ramirez, J., Martins, D., de Lacerda, A., & Cintra, C. (2016). Physicochemical properties of starch from avocado seed (Persea Americana mill). https://doi.org/10.5380/cep.v34i2.51302 Pasumarthi, P., Sindhu, S., & Manickavasagan, A. (2025). Ultrasound-assisted extraction and modification of pulse starches: A review. Cereal Chemistry. https://doi.org/10.1002/CCHE.10862 Rabadi, G., Gilbert, R., & Gidley, M. (2019). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50(2), 198–204. https://doi.org/https://doi.org/10.1016/j.jcs.2009.05.001 Rahaman, A., Kumari, A., Zeng, X., Adil, M., Siddique, R., Khalifa, I., Siddeeg, A., Ali, M., & Faisal, M. (2021). Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, 80, 105795. https://doi.org/10.1016/J.ULTSONCH.2021.105795 Rahman, S., Wheatley, C., & Rakshit, S. (2003). Selection of Sweet Potato Variety for High Starch Extraction. International Journal of Food Properties - INT J FOOD PROP, 6, 419–430. https://doi.org/10.1081/JFP-120021333 Ramírez, G. (2020). Extracción con ultrasonido y su efecto sobre las propiedades funcionales y estructurales del almidon de frutos de Guanábana (Annona muricata L.). http://dspace.uan.mx:8080/xmlui/handle/123456789/2317 Ramirez, C., Contreras, B., & Londoño, S. (2024). Characterization of starches isolated from Mexican pulse crops: Structural, physicochemical, and rheological properties. International Journal of Biological Macromolecules, 268, 131576. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.131576 Reyes, M., & Montalvo, Y. (2021). Evaluación de la potencia y el tiempo de ultrasonido para la extracción de almidón de OCA (Oxalis tuberosa). Rivas, I. (2016). Evaluación del proceso de extracción de compuestos fenólicos de la placenta de cacao para su aplicación como potencial agente inhibidor del pardeamiento enzimático. Roa, D. (2015). Métodos de molienda seca y húmeda en el molino planetario para la obtención y caracterización de fracciones de amaranto y su aplicación como agente encapsulante. Ríos, E., Ochoa, L., & Morales, J. (2016). Efecto del tratamiento con ultrasonido sobre las propiedades funcionales y estructurales de almidón procedente de diversas fuentes una revisión/ Effect of Ultrasonic treatment on structural and functional properties of starch from different sources: a review. Biotecnia, 18(2), 16–23. https://doi.org/10.18633/bt.v18i2.275 Saavedra, O., Acevedo, L., & Buenaventura, S. (2020). Evaluación de la modificación de almidón de cáscara de Plátano (Musa balbisiana) por el método de oxidación para la obtención de una película bioplástica. Said, M., Chaniago, R., Prima, M., & Dawaso, F. (2023). Effect of soaking time sodium metabisulfite (Na2S2O5) and carboxymethyl cellullose (CMC) on the characteristics of lowe banana starch. Jurnal Agrotek Ummat, 10(2), 150. https://doi.org/10.31764/JAU.V10I2.13319 Salazar, M., Ramirez, E., Velasquez, F., & Bello, L. (2023). Avocado seed starch: Effect of the variety on molecular, physicochemical, and digestibility characteristics. International Journal of Biological Macromolecules, 247, 125746. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.125746 Sánchez, H., Ponce, W., Brito, B., Viera, W., Baquerizo, R., & Riera, M. (2021). Biofilms production from avocado waste. Ingenieria y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.bpaw Sandhiya, R., Buvaneswaran, Malini, & Sunil, C. (2025). Effect of annealing and ultrasound treatments on physicochemical, functional, thermal, and structural properties of proso millet starch. Discover Food 2025 5:1, 5(1), 1–13. https://doi.org/10.1007/S44187-025-00323-8 Sandoval, T., González, F., Poonia, A., Iñiguez, M., & Aguirre, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. Recycling, 8(5). https://doi.org/10.3390/recycling8050081 Santos, D., Ramirez, D., Bukzem, A., Morais, C., Piler, C., & Ascheri, J. (2016). Physicochemical properties of starch from avocado seed (Persea Americana mill). 34. https://doi.org/10.5380/cep.v34i2.51302 Šárka, E., Sinica, A., Smrčková, P., & Sluková, M. (2023). Non-Traditional Starches, Their Properties, and Applications. Foods 2023, Vol. 12, Page 3794, 12(20), 3794. https://doi.org/10.3390/FOODS12203794 Schmiele, M., Sampaio, U., & Pedrosa, M. (2019). Basic Principles: Composition and Properties of Starch. In M. T. P. Silva Clerici & M. Schmiele (Eds.), Starches for Food Application (pp. 1–22). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809440-2.00001-0 Setyaningsih, W., Karmila, Fathimah, R., & Cahyanto, M. (2021). Process Optimization for Ultrasound-Assisted Starch Production from Cassava (Manihot esculenta Crantz) Using Response Surface Methodology. Agronomy, 11(1). https://doi.org/10.3390/agronomy11010117 Sharma, M., Bhuvaneswari, S., Lautre, H., Sundramurthy, V., Mohanasundaram, S., Khaled, J., & Thiruvengadam, M. (2023). Cellulose fortified bio-composite film preparation using starch isolated from waste avocado seed: starch properties and film performance. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-05058-z Shiou, X., Andriyana, A., Lim, S., Ong, H., Pang, Y., & Ngoh, G. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers, 13(24). https://doi.org/10.3390/polym13244398 Sommano, S., Chanasut, U., & Kumpoun, W. (2020). 3 - Enzymatic browning and its amelioration in fresh-cut tropical fruits. In M. W. Siddiqui (Ed.), Fresh-Cut Fruits and Vegetables (pp. 51–76). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816184-5.00003-3 Soong, Y., & Barlow, P. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411–417. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.02.003 Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M., & Stirkė, A. (2022). Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods, 11(11). https://doi.org/10.3390/foods11111556 Tan, S., Andriyana, A., Lim, S., Ong, H., Pang, Y., & Ngoh, G. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers 2021, Vol. 13, Page 4398, 13(24), 4398. https://doi.org/10.3390/POLYM13244398 Tesfaye, T., Gibril, M., Sithole, B., Ramjugernath, D., Chavan, R., Chunilall, V., & Gounden, N. (2018). Valorisation of avocado seeds: extraction and characterisation of starch for textile applications. Clean Technologies and Environmental Policy, 20(9), 2135–2154. https://doi.org/10.1007/s10098-018-1597-0 Tessema, A., & Admassu, H. (2021). Extraction and characterization of starch from anchote (Coccinia abyssinica): physico-chemical, functional, morphological and crystalline properties. Journal of Food Measurement and Characterization, 15(4), 3096–3110. https://doi.org/10.1007/s11694-021-00885-y Thakur, M., & Modi, V. (2020). Emerging technologies in food science: Focus on the developing world. In Emerging Technologies in Food Science: Focus on the Developing World. Springer Singapore. https://doi.org/10.1007/978-981-15-2556-8 Thakur, R., Pristijono, P., Scarlett, C., Bowyer, M., Singh, S., & Vuong, Q. (2019). Starch-based films: Major factors affecting their properties. In International Journal of Biological Macromolecules (Vol. 132, pp. 1079–1089). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2019.03.190 Tilley, A., McHenry, M., McHenry, J., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. https://doi.org/https://doi.org/10.1016/j.crfs.2023.100623 Torres, J., Alonso, M., Hervé, H., Sandoval, C., & Aguilar, A. (2008). Efectos negativos y positivos del consumo de forrajes ricos en taninos en la producción de caprinos. Tropical and Subtropical Agroecosystems, 9, 83–90. http://www.redalyc.org/articulo.oa?id=93911227008 Torres, R., Andrade, R., Salcedo, J., Chávez, A., & Castellanos, F. (2025). Optimization of ultrasound-assisted extraction of mango cotyledon starch: Physicochemical, structural, thermal and functional properties. International Journal of Biological Macromolecules, 285, 138239. https://doi.org/10.1016/J.IJBIOMAC.2024.138239 Tosif, M., Bains, A., Sadh, P., Sarangi, P., Kaushik, R., Burla, S., Chawla, P., & Sridhar, K. (2023). Loquat seed starch Emerging source of non-conventional starch: Structure, properties, and novel applications. International Journal of Biological Macromolecules, 244, 125230. https://doi.org/10.1016/J.IJBIOMAC.2023.125230 Ulfa, G., Putri, W., Fibrianto, K. & Widjanarko, S. (2023). Optimization of temperature and reaction influence on ultrasound-modified sweet potato starch. Food Research, 7, 133–138. https://doi.org/10.26656/fr.2017.7(S1).12 Ünlü, E. & Aykaç, Ç. (2023). Effect of ultrasound on isolation and properties of oat starch. Czech Journal of Food Sciences, 41(2), 111–117. https://doi.org/10.17221/94/2022-CJFS Vatansever, S., Whitney, K., Ohm, J., Simsek, S., & Hall, C. (2021). Physicochemical and multi-scale structural alterations of pea starch induced by supercritical carbon dioxide + ethanol extraction. Food Chemistry, 344, 128699. https://doi.org/10.1016/J.FOODCHEM.2020.128699 Vela, A., Villanueva, M. & Ronda, F. (2024). Ultrasonication: An Efficient Alternative for the Physical Modification of Starches, Flours and Grains. Foods, 13(15), 2325. https://doi.org/10.3390/FOODS13152325/S1 Wang, B., Gao, W., Kang, X., Dong, Y., Liu, P., Yan, S., Yu, B., Guo, L., Cui, B., & Abad, A. (2021). Structural changes in corn starch granules treated at different temperatures. Food Hydrocolloids, 118, 106760. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.106760 Wang, H., Xu, K., Ma, Y., Liang, Y., Zhang, H., & Chen, L. (2020). Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 63, 104868. https://doi.org/https://doi.org/10.1016/j.ultsonch.2019.104868 Wang, J., Liu, T., Bian, X., Hua, Z., Chen, G., & Wu, X. (2021). Structural characterization and physicochemical properties of starch from four aquatic vegetable varieties in China. International Journal of Biological Macromolecules, 172, 542–549. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.078 Wang, J., Liv, X., Lan, T., Lei, Y., Suo, J., Zhao, Q., Lei, J., Sun, X., & Ma, T. (2022). Modification in structural, physicochemical, functional, and in vitro digestive properties of kiwi starch by high-power ultrasound treatment. Ultrasonics Sonochemistry, 86, 106004. https://doi.org/10.1016/J.ULTSONCH.2022.106004 Wang, N., Shi, N., Fei, H., Liu, Y., Zhang, Y., Li, Z., Ruan, C., & Zhang, D. (2022). Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. Ultrasonics Sonochemistry, 89, 106136. https://doi.org/10.1016/J.ULTSONCH.2022.106136 Weber, F., Costa, I., Andrade, L., & Cereda, M. (2025). Chapter 3 - Food application of starch in complex media. In M. P. Cereda & O. F. Vilpoux (Eds.), Traditional Starch Food Products (Vol. 4, pp. 45–73). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90844-3.00008-1 Xiao, L., Yu, Y., Yang, X., Wei, Z., & Han, L. (2023). Physicochemical properties of ultrasound-pretreated pea starch and its inclusion complexes with lauric acid. Food Chemistry: X, 20, 100879. https://doi.org/10.1016/J.FOCHX.2023.100879 Xiao, Y., Wu, X., Zhang, B., Luo, F., Lin, Q., & Ding, Y. (2021). Understanding the agregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. International Journal of Biological Macromolecules, 189, 1008–1019. https://doi.org/10.1016/J.IJBIOMAC.2021.08.163 Xue, L., Ma, Y., Yang, N., & Wei, H. (2021). Modification of corn starch via innovative contactless thermal effect from induced electric field. Carbohydrate Polymers, 255, 117378. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.117378 Yadav, L., Krishnan, H., Medha, T., Kumarakuru, K., Kumari, V., Surekha, C., Alavilli, H., Kaushik, D., Hashem, A., Alotaibi, N., Avila, G., Abd, E., Kumar, M., & Reddy, C. (2025). Enhancing starch properties through dual modification: Ultrasonication and acetic acid treatment of non-conventional starches. Ultrasonics Sonochemistry, 115, 107301. https://doi.org/https://doi.org/10.1016/j.ultsonch.2025.107301 Yudhistira, B., Husnayain, N., Punthi, F., Gavahian, M., Chang, C., & Hsieh, C. (2024). Progress in the Application of Emerging Technology for the Improvement of Starch-Based Active Packaging Properties: A Review. ACS Food Science & Technology, 4(9), 1997–2012. https://doi.org/10.1021/acsfoodscitech.4c00260 Zhang, H., Li, M., Li, K., & Zhu, C. (2018). Effect of ultrasound pretreatment on physicochemical properties of corn starch. Proceedings of the 2018 8th International Conference on Manufacturing Science and Engineering (ICMSE 2018), 572–576. https://doi.org/10.2991/icmse-18.2018.106 Zhang, M., Jia, H., Wang, B., Ma, C., He, F., Fan, Q., & Liu, W. (2023). A Prospective Review on the Research Progress of Citric Acid Modified Starch. Foods 2023, Vol. 12, Page 458, 12(3), 458. https://doi.org/10.3390/FOODS12030458 Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology, 43(1), 1–17. https://doi.org/https://doi.org/10.1016/j.tifs.2014.12.008 Zukryandry, B., & Muslihudin, H. (2022). Timing of Extraction With Ultrasonic Bath System to Improve the Yield and Chemical Characteristics of Cassava Starch. IOP Conference Series: Earth and Environmental Science, 1012(1), 012016. https://doi.org/10.1088/1755-1315/1012/1/012016 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bioingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/cd4c7614-6c29-4384-bfc6-a2e3e6f63aaf/download https://repositorio.unbosque.edu.co/bitstreams/c13720e0-da1b-4c57-a0fc-cd6de8db0212/download https://repositorio.unbosque.edu.co/bitstreams/7c4f704e-abba-4046-80fc-60fc057d8d6d/download https://repositorio.unbosque.edu.co/bitstreams/53dbb4f0-9475-438d-8862-a83011a117fb/download https://repositorio.unbosque.edu.co/bitstreams/ba539a53-3e94-4a4b-a608-8ade3332baaf/download https://repositorio.unbosque.edu.co/bitstreams/7a7ee265-667c-4bcc-9e2c-43bfdabca0fd/download |
bitstream.checksum.fl_str_mv |
1e2ed8240bfc1b7585a09263793b0c0a 17cc15b951e7cc6b3728a574117320f9 e6d491472643feeef5f5d7086f6c3d15 5643bfd9bcf29d560eeec56d584edaa9 b574ffdc4071676c9c89f713ba3a27f5 9ef12e1fcb2bd5b24076ee27bd4447ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1836752240669360128 |
spelling |
Moncayo Martínez, Diana CristinaRey Salcedo, Nicole AlejandraMolina Fonseca, Maria Jimena2025-06-13T19:31:40Z2025-06-13T19:31:40Z2025-06https://hdl.handle.net/20.500.12495/14653instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coEl almidón es ampliamente utilizado en la industria alimentaria por su capacidad de modificar la textura y estabilidad de los productos. Frente a la necesidad de fuentes sostenibles, la semilla de aguacate Hass (Persea americana) se presenta como una alternativa por su contenido de almidón y por considerarse un residuo agroindustrial no aprovechado. Se desarrolló una metodología para su extracción, mediante seis fases: (1) identificación de variables críticas, (2) extracción por vía húmeda, (3) aplicación de ultrasonido como pretratamiento a la semilla, (4) aplicación de ultrasonido como postratamiento al almidón, (5) comparación de parámetros de propiedades físicas, químicas y funcionales para definir la metodología, (6) evaluación de su aplicabilidad en la industria alimentaria. La Fase 2 contó con un mayor contenido de almidón (16,24 %), seguida por la Fase 4 (8,60 %) y Fase 3 (7,47 %). Sin embargo, el ultrasonido redujo el contenido de proteínas (de 0,83 % a 0,43 %) y lípidos (de 0,39 % a 0,20 %), aumentando la pureza. Además, en la Fase 4 se obtuvo un mayor contenido de amilopectina (62,41 %), así como un índice de blancura de 79,9 %, con una pureza del 95,5 %. El almidón de la metodología establecida mostró bajo índice de solubilidad (2 %) y buen poder de hinchamiento (5,21 %), adecuados para productos congelados. Su alta proporción de amilopectina mejora la estabilidad, claridad y resistencia a la retrogradación, lo que favorece su uso como estabilizante en salsas y postres.BioingenieroPregradoStarch is widely used in the food industry for its ability to modify texture and product stability. Given the need for sustainable sources, the Hass avocado seed (Persea americana) emerges as a promising alternative due to its starch content and its status as an underutilized agro-industrial by-product. This work developed a methodology for starch extraction, structured in six phases: (1) identification of critical variables, (2) wet milling extraction, (3) application of ultrasound as a pretreatment on the seed, (4) application of ultrasound as a post-treatment on the extracted starch, (5) comparison of parameters such as yield, purity, and functional properties, and (6) evaluation of its applicability in the food industry. Phase 2 achieved the highest starch content (16.24 %), followed by Phase 4 (8.60 %) and Phase 3 (7.47 %). However, ultrasound treatments reduced protein content (from 0.83 % to 0.43 %) and lipid content (from 0.39 % to 0.20 %), increasing starch purity. Additionally, Phase 4 showed higher amylose (37.59 %) and amylopectin (62.41 %) content, as well as a whiteness index of 79.9 %. The starch exhibited a low solubility index (2 %) and good swelling power (5.21 %), suitable for frozen products. Its high amylopectin ratio enhances stability, clarity, and resistance to retrogradation, which favors its use as a stabilizer in sauces, desserts, and frozen foods.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2ExperimentoMetodologíaInvestigaciónDiseñoIngeniería610.28ExperimentMethodologyResearchDesignEngineeringDesarrollo de una metodología para la extracción de almidón empleando tecnología emergente a partir de residuos de semilla de Aguacate Hass (Persea americana) generados en la agroindustriaDevelopment of a methodology for starch extraction using emerging technology from Hass avocado (Persea americana) seed residues generated in the agroindustryBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Acuña, H. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados.Agronet. (2024). Entre enero y septiembre las exportaciones de aguacate Hass se incrementaron 15%. Agronet. MinAgricultura.Aguirre, A., & Ortiz, J. (2021). Desempeño de un almidón natural obtenido de las cascaras de plátano en el control de propiedades de reología, lubricidad y filtrado de un fluido de perforación polomérico a nivel de laboratorio. Fundación Universidad de América .Al, G., Gilbert, R., & Gidley, M. (2019). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50(2), 198–204. https://doi.org/https://doi.org/10.1016/j.jcs.2009.05.001Alemu, N., Balakrishnan, S., & Debtera, B. (2022). Extraction and Characterisation of Avocado Seed Starch, and Its Blend with Enset Cellulosic. Advances in Materials Science and Engineering, 2022(1), 9908295. https://doi.org/10.1155/2022/9908295Alissa, K., Hung, Y., Hou, C., Lim, G., & Ciou, J. (2020). Developing new health material: The utilization of spray drying technology on avocado (Persea Americana mill.) seed powder. Foods, 9(2). https://doi.org/10.3390/foods9020139Amarnath, M., Muhammed, A., Antony, A., Malini, B., & Sunil, C. (2023). White finger millet starch: Physical modification (annealing and ultrasound), and its impact on physicochemical, functional, thermal and structural properties. Food and Humanity, 1, 599–606. https://doi.org/10.1016/J.FOOHUM.2023.07.010Araújo, R., Rodriguez, R., Ruiz, H., Pintado, M., & Aguilar, C. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51–60. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.027Araújo, R., Rodriguez, R., Ruiz, H., Govea, M., Pintado, M., & Aguilar, C. (2020). Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops and Products, 154, 112623. https://doi.org/https://doi.org/10.1016/j.indcrop.2020.112623Arboleda, L., Tacuri, E., Hernández, C., & Guerrero, S. (2023). Estudio del efecto del pardeamiento enzimático en la calidad nutricional del banano (musa paradisiaca l.) (Vol. 3). https://reciena.espoch.edu.ec/index.php/reciena/indexAristizábal, J., Sánchez, T., & Mejía, D. (2007). Guía técnica para producción y análisis de almidón de yuca. 134. https://search.worldcat.org/title/227164521Armijos, A. (2021). Obtención de bioplástico a partir del almidón de semillas de Yaca (Artocarpus Heterophyllus) y Aguacate Hass (Persea Americana) para su uso en el recubrimiento de alimentos.Arnold, M., & Gramza, A. (2022). Enzymatic browning in apple products and its inhibition treatments: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 21(6), 5038–5076. https://doi.org/10.1111/1541-4337.13059Arora, S., Goraya, R., Siddiqui, S., & Gehlot, R. (2021). Influence of anti-browning treatments on enzymatic browning, distinctive properties, and microbiological characteristics of banana pulp during short-term frozen storage. Journal of Food Processing and Preservation, 45(3), e15259. https://doi.org/10.1111/JFPP.15259;SUBPAGE:STRING:ABSTRACT;WEBSITE:WEBSITE:PERICLES;JOURNAL:JOURNAL:17454549;WGROUP:STRING:PUBLICATIONAsikkutlu, A., & Yildirim, M. (2025). Optimization of mechanical and water barrier properties of avocado seed starch based film and its application as smart pH indicator by adding blue butterfly pea flower extract. Food Chemistry: X, 25, 102155. https://doi.org/https://doi.org/10.1016/j.fochx.2025.102155Balboa, G. (2020). Extracción con ultrasonido y su efecto sobre las propiedades funcionales y estructurales del almidón de frutos de Guanábana (Annona muricata L.).Barandiaran, A. (2022). Desarrollo del proceso de extracción del almidón de residuos de patata y caracterización del mismo con el fin de validar su utilización para la elaboración de peliculas de bioplástico.Baranowska, M., & Rezler, R. (2020). Temperature Characterisation of Starch and Starch-Protein dispersions.Bernal, J., Díaz, C., Tamayo, A., Córdoba, O., Londoño, M., Tamayo, P., & Londoño, M. (2008). Tecnología para el Cultivo del Aguacate. CORPOICA.Bernardo, C., Ascheri, J., Chávez, D., & Carvalho, C. (2018). Ultrasound Assisted Extraction of Yam (Dioscorea bulbífera) Starch: Effect on Morphology and Functional Properties. Starch - Stärke, 70(5–6), 1700185. https://doi.org/https://doi.org/10.1002/star.201700185Bonto, A., Tiozon, R., Sreenivasulu, N., & Camacho, D. (2021). Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonics Sonochemistry, 71, 105383. https://doi.org/10.1016/J.ULTSONCH.2020.105383Boufi, S., Bel, S., Magnin, A., Pignon, F., Impéror, M., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 41, 327–336. https://doi.org/10.1016/J.ULTSONCH.2017.09.033Builders, P., Nnurum, A., Mbah, C., Attama, A., & Manek, R. (2010). The physicochemical and binder properties of starch from Persea americana Miller (Lauraceae). Starch - Stärke, 62(6), 309–320. https://doi.org/10.1002/STAR.200900222Caballero, L. (2021). Producción de bioetanol a partir de residuos de aguacate.Castro, L., Caço, A., Pereira, C., Sousa, S., Brassesco, M., Machado, M., Ramos, Ó., Alexandre, E., Saraiva, J., & Pintado, M. (2023). Modification of Acorn Starch Structure and Properties by High Hydrostatic Pressure. Gels, 9(9). https://doi.org/10.3390/gels9090757Chaethong, K., & Pongsawatmanit, R. (2015). Influence of Sodium Metabisulfite and Citric Acid in Soaking Process after Blanching on Quality and Storage Stability of Dried Chili: Effect of Sulfite and Acid on Dried Chili Quality. Journal of Food Processing and Preservation, 39. https://doi.org/10.1111/jfpp.12460Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano, A., & Abert, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.06.035Chan, H., Wu, R., & Shao, Y. (2021). The effects of ultrasonic treatment on physicochemical properties and in vitro digestibility of semigelatinized high amylose maize starch. Food Hydrocolloids, 119, 106831. https://doi.org/10.1016/J.FOODHYD.2021.106831Chen, N., Gao, H., He, Q., Yu, Z., & Zeng, W. (2020). Interaction and action mechanism of starch with different phenolic compounds. International Journal of Food Sciences and Nutrition, 71(6), 726–737. https://doi.org/10.1080/09637486.2020.1722074Chel, L., Barbosa, E., Martínez, A., González, E., & Betancur, D. (2016). Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules, 86, 302–308. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.01.052Chen, X., Liu, Y., Xu, Z., Zhang, C., Liu, X., Sui, Z., & Corke, H. (2021). Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocolloids, 120, 106821. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.106821Chen, X., Yao, W., Gao, F., Zheng, D., Wang, Q., Cao, J., Tan, H., & Zhang, Y. (2021). Physicochemical Properties Comparative Analysis of Corn Starch and Cassava Starch, and Comparative Analysis as Adhesive. Journal of Renewable Materials, 9(5), 789–992. https://doi.org/10.32604/JRM.2021.014751Chen, Z., Hu, A., Ihsan, A., & Zheng, J. (2024). The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties: A review. Trends in Food Science & Technology, 148, 104515. https://doi.org/10.1016/J.TIFS.2024.104515Cheng, Z., Zheng, Q., Duan, Y., Hu, K., Cai, M., & Zhang, H. (2024). Optimization of ultrasonic conditions for improving the characteristics of corn starch-glycyrrhiza polysaccharide composite to prepare enhanced quality lycopene inclusion complex. International Journal of Biological Macromolecules, 267, 131504. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.131504Cinelli, P., Chiellini, E., Lawton, J. W., & Imam, S. (2006). Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability, 91(5), 1147–1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001Cobana, M., & Antezana, R. (2007). Proceso de extracción de almidón de yuca por vía seca.Croguennec, T. (2016). Enzymatic Browning. In Handbook of Food Science and Technology 1 (pp. 159–181). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119268659.ch6Dabas, D., Elias, R., Lambert, J., & Ziegler, G. (2011). A Colored Avocado Seed Extract as a Potential Natural Colorant. Journal of Food Science, 76(9). https://doi.org/10.1111/j.1750-3841.2011.02415.xDávila, J., Rosenberg, M., Castro, E., & Cardona, C. (2017). A model biorefinery for avocado (Persea americana mill.) processing. Bioresource Technology, 243, 17–29. https://doi.org/https://doi.org/10.1016/j.biortech.2017.06.063De Dios, N., Tirado, J., Rios, C., Luna, G., Isiordia, N., Zamudio, P., Estrada, M., & Cambero, O. (2022). Physicochemical, Structural, Thermal and Rheological Properties of Flour and Starch Isolated from Avocado Seeds of Landrace and Hass Cultivars. Molecules, 27(3). https://doi.org/10.3390/molecules27030910Dechkunchorn, M., & Thongngam, M. (2016). Characterization of flours, starch and protein from white and black adlay cultivars.Demiate, I., Bet, C., Ito, V., & Lacerda, L. (2023). Chapter 7 - Laboratory methods for starch extraction. In M. Pascoli Cereda & O. François Vilpoux (Eds.), Starchy Crops Morphology, Extraction, Properties and Applications (pp. 165–187). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90058-4.00012-8Dhital, S., Shrestha, A., & Gidley, M. (2019). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrate Polymers, 82(2), 480–488. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.05.018Dios, N., Tirado, J., Rios, C., Esquivel, G., Estrada, M., & Cambero, O. (2023). Propiedades composicionales, estructurales y fisicoquímicas de las semillas de aguacate y sus potenciales usos agroindustriales. Ciencia Tecnologia Agropecuaria, 24(1). https://doi.org/10.21930/rcta.vol24_num1_art:2607Dorantes, M., López, M., Martínez, G., Meléndez, R., & Jiménez, H. (2024). Starch Extraction Methods in Tubers and Roots: A Systematic Review. Agronomy, 14(4). https://doi.org/10.3390/agronomy14040865Espinoza, E., & Oscco, C. (2021). EFECTO DE GLICERINA Y MELAMINA SOBRE LAS PROPIEDADES FISICOMECANICAS DEL BIOPLÁSTICO DE ALMIDÓN EN SEMILLA DE Persea americana mill. “PALTA.”Esquivel, E., Martinez, E., Oseguera, M., Londoño, S., & Rodriguez, M. (2022). Influence of physicochemical changes of the avocado starch throughout its pasting profile: Combined extraction. Carbohydrate Polymers, 281, 119048. https://doi.org/https://doi.org/10.1016/j.carbpol.2021.119048Ferreira, P., Zanuso, E., Genisheva, Z., Rocha, C., & Teixeira, J. (2020). Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules, 25(12). https://doi.org/10.3390/molecules25122931Fideles, M., Bento, J., Ferreira, K., De Oliveira, A., Caliari, M., & Soares, M. (2019). Physicochemical and technological characteristics of arrowroot flour modified by ultrasound and low-temperature heat treatment. Ciência Rural, 49(10), e20181037. https://doi.org/10.1590/0103-8478CR20181037Fitriani, F., Syam, H., & Fadilah, R. (2022). Penagaruh Lama Waktu Perendaman Umbi Gadung (Dioscorea Hispida Dennst) Terhadap Fisiko-Kimia Tepung Umbi Gadung. Jurnal Pendidikan Teknologi Pertanian, 8(1), 9. https://doi.org/10.26858/JPTP.V8I1.22383Flores, E., García, F., Flores, E., Nuñez, M., Gonzáles, R., & Bello, L. (2004). Rendimiento del proceso de extracción de almidón de frutos de plátano (Musa paradisiaca L.). Estudio en planta piloto. https://www.researchgate.net/publication/28095151Ginting, M., Hasibuan, R., Lubis, M., Alanjani, F., Winoto, F., & Siregar, R. (2018). Supply of avocado starch (Persea americana mill) as bioplastic material. IOP Conference Series: Materials Science and Engineering, 309(1). https://doi.org/10.1088/1757-899X/309/1/012098Golkar, A., Milani, J., Motamedzadegan, A., & Kenari, R. (2022). Modification of corn starch by thermal-ultrasound treatment in presence of Arabic gum. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-022-23836-zGómez, L., Quintana, S., & García, L. (2023). Ultrasound-Assisted Extraction of Mango (Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels, 9(2). https://doi.org/10.3390/gels9020136Gonçalves, P., Noreña, C., da Silveira, N., & Brandelli, A. (2014). Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Science and Technology, 58(1), 21–27. https://doi.org/10.1016/J.LWT.2014.03.015Gong, T., Liu, S., Wang, H., & Zhang, M. (2021). Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Bioscience, 42, 101153. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101153González, L. (2022). Polímeros inteligentes para aplicaciones en seguridad y control alimentario. https://doi.org/10.36443/10259/7815Granados, C., Guzman, E., Acevedo, D., Díaz, M., & Herrera, A. (2018). Propiedades funcionales del almidón de sagú (Maranta arundinacea). In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 12, Issue 2).Guiné, R., & Barroca, M. (2014). Quantification of browning kinetics and colour change for quince (Cydonia oblonga Mill.) exposed to atmospheric conditions. Agricultural Engineering International : The CIGR e-Journal, 16, 285–298.Han, Z., Li, Y., Luo, D., Zhao, Q., Cheng, J., & Wang, J. (2021). Structural variations of rice starch affected by constant power microwave treatment. Food Chemistry, 359, 129887. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129887Hatzakis, E., Mazzola, E., Shegog, R., Ziegler, G., & Lambert, J. (2019). Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chemistry, 293, 15–22. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.04.064Hermiati, E., Sondari, D., & Sunarti, T. (2023). Chapter 2 - Extraction and classification of starch from different sources: Structure, properties, and characterization. In M. S. Sreekala, L. Ravindran, K. Goda, & S. Thomas (Eds.), Handbook of Natural Polymers, Volume 1 (pp. 19–60). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-99853-6.00012-7Hossen, S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M., & Okadome, H. (2011). Effect of particle size of different crop starches and their flours on pasting properties. Japan Journal of Food Engineering, 12, 29–35. https://www.jstage.jst.go.jp/article/jsfe/12/1/12_29/_pdfInstituto Colombiano Agropecuario. (2021). Manejo fitosanitario del cultivo del aguacate Hass Medidas para la temporada invernal.Jamalabadi, M., Saremnezhad, S., Bahrami, A., & Jafari, S. (2019). The influence of bath and probe sonication on the physicochemical and microstructural properties of wheat starch. Food Science and Nutrition, 7(7), 2427–2435. https://doi.org/10.1002/FSN3.1111Jiménez, R., Sandoval, G., Alvarado, S., Alemán, S., Santiago, R., & Velásquez, G. (2022). Extraction of starch from Hass avocado seeds for the preparation of biofilms. Food Science and Technology, 42.Kale, R., & Shere, D. (2017). Effect of isolation methods on physicochemical and functional properties of sweet potato (Ipomoea batatas L.) starch. ~ 223 ~ Journal of Pharmacognosy and Phytochemistry, 6(4), 223–227.Klang, J., Tene, S., Nguemguo, L., Boungo, G., Ndomou, S., Kohole, H., & Womeni, H. (2019). Effect of bleaching and variety on the physico-chemical, functional and rheological properties of three new Irish potatoes (Cipira, Pamela and Dosa) flours grown in the locality of Dschang (West region of Cameroon). Heliyon, 5(12). https://doi.org/10.1016/j.heliyon.2019.e02982Kumari, S., Kaur, B., & Thiruvalluvan, M. (2024). Ultrasound modified millet starch: Changes in functional, pasting, thermal, structural, in vitro digestibility properties, and potential food applications. Food Hydrocolloids, 153, 110008. https://doi.org/https://doi.org/10.1016/j.foodhyd.2024.110008Li, B., Zhang, Y., Zhao, Y., Luo, W., Huang, C., & Khan, M. (2023). Relationship between in vitro digestibility and multi-structures of four unconventional starches from Chinese tropical fruits (sweetsop, avocado, chempedak, and Pouteria campechiana) extracted using an ultrasound method. Industrial Crops and Products, 192, 116011. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.116011Li, G., Ge, X., Guo, C., & Liu, B. (2023). Effect of Ultrasonic Treatment on Structure and Physicochemical Properties of Pea Starch. Foods 2023, Vol. 12, Page 2620, 12(13), 2620. https://doi.org/10.3390/FOODS12132620Li, Y., Wu, Z., Wan, N., Wang, X., & Yang, M. (2019). Extraction of high-amylose starch from Radix Puerariae using high-intensity low-frequency ultrasound. Ultrasonics Sonochemistry, 59, 104710. https://doi.org/https://doi.org/10.1016/j.ultsonch.2019.104710Liu, J., Yu, X., & Liu, Y. (2021). Effect of ultrasound on mill starch and protein in ultrasound-assisted laboratory-scale corn wet-milling. Journal of Cereal Science, 100, 103264. https://doi.org/10.1016/J.JCS.2021.103264Loor, M., & Reyes, S. (2024). Estudio de los Taninos presentes en la semilla de aguacate (Persea Americana) y su potencial uso como mordiente en los colorantes textiles. Universidad de Guayaquil. https://repositorio.ug.edu.ec/server/api/core/bitstreams/75c7628e-71a6-4229-8a90-ec96a8176ecf/contentLovatto, M., Bisognin, D., Treptow, R., Storck, L., Gnocato, F., & Morin, G. (2012). Processamento mínimo de tubérculos de batata de baixo valor comercial. Horticultura Brasileira, 30(2), 258–265. https://doi.org/10.1590/S0102-05362012000200013Lou, X., Luo, D., Yue, C., Zhang, T., Li, P., Xu, Y., Xu, B., & Xiang, J. (2022). Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulin. LWT, 154, 112578. https://doi.org/10.1016/J.LWT.2021.112578Macedo, L., da Silva, C., Vimercati, W., Saraiva, S., & Teixeira, L. (2019). Evaluation of different bleaching methods applied to yacon. Journal of Food Process Engineering, 42(7). https://doi.org/10.1111/jfpe.13276Macena, J., Souza, J., Camilloto, G., & Cruz, R. (2020). Physico-chemical, morphological and technological properties of the avocado (Persea americana Mill. cv. Hass) seed starch. Ciência e Agrotecnologia, 44.Martínez, P., Peña, F., Gómez, Y., Vargas, G., & Velezmoro, C. (2019). Propiedades fisicoquímicas, funcionales y estructurales de almidones nativos y acetilados obtenidos a partir de la papa (Solanum tuberosum) var. “Única.” In Rev Soc Quím Perú (Vol. 85, Issue 3).Martins, S., Pontes, K., Fialho, R., & Fakhouri, F. (2022). Extraction and characterization of the starch present in the avocado seed (Persea americana mill) for future applications. Journal of Agriculture and Food Research, 8, 100303. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100303Maryam, A., & Santosa, N. (2016). Utilization Starch of Avocado Seed (Persea Americana Mill.) as a Raw Material for Dextrin. Journal of Food Science and Engineering, 6(1). https://doi.org/10.17265/2159-5828/2016.01.005Mendoza, M. (2021). Elaboración de una biopelícula biodegradable a partir del desecho industrial de la semilla de aguacate (Persea americana), para sustituir alternativamente materiales obtenidos de polímeros sintéticos.Meng, F., Tian, S., Wang, Y., Lu, J., Liu, Z., & Niu, Y. (2024). Ultrasound-assisted Extraction and Physicochemical Properties of Starch from Cyperus esculentus Tubers. BioResources, 19(3), 4264–4277. https://ojs.bioresources.com/index.php/BRJ/article/view/23413Mesquita, V., & Queiroz, C. (2013). Chapter 10 - Enzymatic Browning. In N. A. M. Eskin & F. Shahidi (Eds.), Biochemistry of Foods (Third Edition) (pp. 387–418). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-091809-9.00010-8Mieles, L., Quintana, S., & García, L. (2023). Ultrasound-Assisted Extraction of Mango (Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels, 9(2). https://doi.org/10.3390/gels9020136Minakawa, A., Faria, P. & Mali, S. (2019). Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chemistry, 283, 11–18. https://doi.org/10.1016/J.FOODCHEM.2019.01.015Ministerio de agricultura. (2021). Cadena productiva Aguacate.Mohamed, M., Ngadi, N., Suhaidi, A., Mohammed, I., & Anako, L. (2022). Response Surface Optimization of Ultrasound-Assisted Extraction of Sago Starch from Sago Pith Waste. Starch - Stärke, 74(1–2), 2100012. https://doi.org/https://doi.org/10.1002/star.202100012Monroy, Y., Rivero, S., & García, M. (2018). Microestructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/J.ULTSONCH.2017.12.048Moore, C., Tuschhoff, J., Hastings, C., & Schanefelt, R. (2015). CHAPTER XIX - APPLICATIONS OF STARCHES IN FOODS. In R. O. Y. L. WHISTLER, J. N. BEMILLER, & E. F. PASCHALL (Eds.), Starch: Chemistry and Technology (Second Edition) (pp. 575–591). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-746270-7.50025-2Morales, F., Trujillo, D., Aguirre, E., Lobato, C., Vernon, J., & Alvarez, J. (2022). Ultrasound-Assisted Extraction of Lychee (Litchi chinensis Sonn.) Seed Starch: Physicochemical and Functional Properties. Starch - Stärke, 74(1–2), 2100092. https://doi.org/https://doi.org/10.1002/star.202100092Mora, A., Ramírez, A., Castillo, L., Lopretti, M., & Vega, J. (2021). Persea americana agro-industrial waste biorefinery for sustainable high-value-added products. In Polymers (Vol. 13, Issue 11). MDPI AG. https://doi.org/10.3390/polym13111727Muñoz, P., Oliver, V., Peponi, L., & López, D. (2023). A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers 2023, Vol. 15, Page 2972, 15(13), 2972. https://doi.org/10.3390/POLYM15132972Nizama, W. (2022). Técnicas de extracción de almidón de frutas y residuos vegetales. Universidad Nacional de Frontera. https://repositorioslatinoamericanos.uchile.cl/handle/2250/6541312Nyakang’i, C., Ebere, R., Marete, E., & Arimi, J. (2023). Avocado production in Kenya in relation to the world, Avocado by-products (seeds and peels) functionality and utilization in food products. Applied Food Research, 3(1), 100275. https://doi.org/https://doi.org/10.1016/j.afres.2023.100275Ortiz, E., Guanga, A., Rojas, R., & Violeta, D. (2021). Obtención Del Almidón De Lenteja (Lens Culinaris). March, 166–173.Palacio, J., & Peñata, Y. (2018). Aumento del rendimiento en la extracción del almidón a partir del grano de maiz y la influencia del carbonato de ácido sódico en las propiedades fisico-químicas del slurry.Palmiro, D., Wanderlei, C., Ramirez, J., Martins, D., de Lacerda, A., & Cintra, C. (2016). Physicochemical properties of starch from avocado seed (Persea Americana mill). https://doi.org/10.5380/cep.v34i2.51302Pasumarthi, P., Sindhu, S., & Manickavasagan, A. (2025). Ultrasound-assisted extraction and modification of pulse starches: A review. Cereal Chemistry. https://doi.org/10.1002/CCHE.10862Rabadi, G., Gilbert, R., & Gidley, M. (2019). Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science, 50(2), 198–204. https://doi.org/https://doi.org/10.1016/j.jcs.2009.05.001Rahaman, A., Kumari, A., Zeng, X., Adil, M., Siddique, R., Khalifa, I., Siddeeg, A., Ali, M., & Faisal, M. (2021). Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, 80, 105795. https://doi.org/10.1016/J.ULTSONCH.2021.105795Rahman, S., Wheatley, C., & Rakshit, S. (2003). Selection of Sweet Potato Variety for High Starch Extraction. International Journal of Food Properties - INT J FOOD PROP, 6, 419–430. https://doi.org/10.1081/JFP-120021333Ramírez, G. (2020). Extracción con ultrasonido y su efecto sobre las propiedades funcionales y estructurales del almidon de frutos de Guanábana (Annona muricata L.). http://dspace.uan.mx:8080/xmlui/handle/123456789/2317Ramirez, C., Contreras, B., & Londoño, S. (2024). Characterization of starches isolated from Mexican pulse crops: Structural, physicochemical, and rheological properties. International Journal of Biological Macromolecules, 268, 131576. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.131576Reyes, M., & Montalvo, Y. (2021). Evaluación de la potencia y el tiempo de ultrasonido para la extracción de almidón de OCA (Oxalis tuberosa).Rivas, I. (2016). Evaluación del proceso de extracción de compuestos fenólicos de la placenta de cacao para su aplicación como potencial agente inhibidor del pardeamiento enzimático.Roa, D. (2015). Métodos de molienda seca y húmeda en el molino planetario para la obtención y caracterización de fracciones de amaranto y su aplicación como agente encapsulante.Ríos, E., Ochoa, L., & Morales, J. (2016). Efecto del tratamiento con ultrasonido sobre las propiedades funcionales y estructurales de almidón procedente de diversas fuentes una revisión/ Effect of Ultrasonic treatment on structural and functional properties of starch from different sources: a review. Biotecnia, 18(2), 16–23. https://doi.org/10.18633/bt.v18i2.275Saavedra, O., Acevedo, L., & Buenaventura, S. (2020). Evaluación de la modificación de almidón de cáscara de Plátano (Musa balbisiana) por el método de oxidación para la obtención de una película bioplástica.Said, M., Chaniago, R., Prima, M., & Dawaso, F. (2023). Effect of soaking time sodium metabisulfite (Na2S2O5) and carboxymethyl cellullose (CMC) on the characteristics of lowe banana starch. Jurnal Agrotek Ummat, 10(2), 150. https://doi.org/10.31764/JAU.V10I2.13319Salazar, M., Ramirez, E., Velasquez, F., & Bello, L. (2023). Avocado seed starch: Effect of the variety on molecular, physicochemical, and digestibility characteristics. International Journal of Biological Macromolecules, 247, 125746. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.125746Sánchez, H., Ponce, W., Brito, B., Viera, W., Baquerizo, R., & Riera, M. (2021). Biofilms production from avocado waste. Ingenieria y Universidad, 25. https://doi.org/10.11144/Javeriana.iued25.bpawSandhiya, R., Buvaneswaran, Malini, & Sunil, C. (2025). Effect of annealing and ultrasound treatments on physicochemical, functional, thermal, and structural properties of proso millet starch. Discover Food 2025 5:1, 5(1), 1–13. https://doi.org/10.1007/S44187-025-00323-8Sandoval, T., González, F., Poonia, A., Iñiguez, M., & Aguirre, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. Recycling, 8(5). https://doi.org/10.3390/recycling8050081Santos, D., Ramirez, D., Bukzem, A., Morais, C., Piler, C., & Ascheri, J. (2016). Physicochemical properties of starch from avocado seed (Persea Americana mill). 34. https://doi.org/10.5380/cep.v34i2.51302Šárka, E., Sinica, A., Smrčková, P., & Sluková, M. (2023). Non-Traditional Starches, Their Properties, and Applications. Foods 2023, Vol. 12, Page 3794, 12(20), 3794. https://doi.org/10.3390/FOODS12203794Schmiele, M., Sampaio, U., & Pedrosa, M. (2019). Basic Principles: Composition and Properties of Starch. In M. T. P. Silva Clerici & M. Schmiele (Eds.), Starches for Food Application (pp. 1–22). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809440-2.00001-0Setyaningsih, W., Karmila, Fathimah, R., & Cahyanto, M. (2021). Process Optimization for Ultrasound-Assisted Starch Production from Cassava (Manihot esculenta Crantz) Using Response Surface Methodology. Agronomy, 11(1). https://doi.org/10.3390/agronomy11010117Sharma, M., Bhuvaneswari, S., Lautre, H., Sundramurthy, V., Mohanasundaram, S., Khaled, J., & Thiruvengadam, M. (2023). Cellulose fortified bio-composite film preparation using starch isolated from waste avocado seed: starch properties and film performance. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-05058-zShiou, X., Andriyana, A., Lim, S., Ong, H., Pang, Y., & Ngoh, G. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers, 13(24). https://doi.org/10.3390/polym13244398Sommano, S., Chanasut, U., & Kumpoun, W. (2020). 3 - Enzymatic browning and its amelioration in fresh-cut tropical fruits. In M. W. Siddiqui (Ed.), Fresh-Cut Fruits and Vegetables (pp. 51–76). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816184-5.00003-3Soong, Y., & Barlow, P. (2004). Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 88(3), 411–417. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.02.003Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M., & Stirkė, A. (2022). Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods, 11(11). https://doi.org/10.3390/foods11111556Tan, S., Andriyana, A., Lim, S., Ong, H., Pang, Y., & Ngoh, G. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers 2021, Vol. 13, Page 4398, 13(24), 4398. https://doi.org/10.3390/POLYM13244398Tesfaye, T., Gibril, M., Sithole, B., Ramjugernath, D., Chavan, R., Chunilall, V., & Gounden, N. (2018). Valorisation of avocado seeds: extraction and characterisation of starch for textile applications. Clean Technologies and Environmental Policy, 20(9), 2135–2154. https://doi.org/10.1007/s10098-018-1597-0Tessema, A., & Admassu, H. (2021). Extraction and characterization of starch from anchote (Coccinia abyssinica): physico-chemical, functional, morphological and crystalline properties. Journal of Food Measurement and Characterization, 15(4), 3096–3110. https://doi.org/10.1007/s11694-021-00885-yThakur, M., & Modi, V. (2020). Emerging technologies in food science: Focus on the developing world. In Emerging Technologies in Food Science: Focus on the Developing World. Springer Singapore. https://doi.org/10.1007/978-981-15-2556-8Thakur, R., Pristijono, P., Scarlett, C., Bowyer, M., Singh, S., & Vuong, Q. (2019). Starch-based films: Major factors affecting their properties. In International Journal of Biological Macromolecules (Vol. 132, pp. 1079–1089). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2019.03.190Tilley, A., McHenry, M., McHenry, J., Solah, V., & Bayliss, K. (2023). Enzymatic browning: The role of substrates in polyphenol oxidase mediated browning. Current Research in Food Science, 7, 100623. https://doi.org/https://doi.org/10.1016/j.crfs.2023.100623Torres, J., Alonso, M., Hervé, H., Sandoval, C., & Aguilar, A. (2008). Efectos negativos y positivos del consumo de forrajes ricos en taninos en la producción de caprinos. Tropical and Subtropical Agroecosystems, 9, 83–90. http://www.redalyc.org/articulo.oa?id=93911227008Torres, R., Andrade, R., Salcedo, J., Chávez, A., & Castellanos, F. (2025). Optimization of ultrasound-assisted extraction of mango cotyledon starch: Physicochemical, structural, thermal and functional properties. International Journal of Biological Macromolecules, 285, 138239. https://doi.org/10.1016/J.IJBIOMAC.2024.138239Tosif, M., Bains, A., Sadh, P., Sarangi, P., Kaushik, R., Burla, S., Chawla, P., & Sridhar, K. (2023). Loquat seed starch Emerging source of non-conventional starch: Structure, properties, and novel applications. International Journal of Biological Macromolecules, 244, 125230. https://doi.org/10.1016/J.IJBIOMAC.2023.125230Ulfa, G., Putri, W., Fibrianto, K. & Widjanarko, S. (2023). Optimization of temperature and reaction influence on ultrasound-modified sweet potato starch. Food Research, 7, 133–138. https://doi.org/10.26656/fr.2017.7(S1).12Ünlü, E. & Aykaç, Ç. (2023). Effect of ultrasound on isolation and properties of oat starch. Czech Journal of Food Sciences, 41(2), 111–117. https://doi.org/10.17221/94/2022-CJFSVatansever, S., Whitney, K., Ohm, J., Simsek, S., & Hall, C. (2021). Physicochemical and multi-scale structural alterations of pea starch induced by supercritical carbon dioxide + ethanol extraction. Food Chemistry, 344, 128699. https://doi.org/10.1016/J.FOODCHEM.2020.128699Vela, A., Villanueva, M. & Ronda, F. (2024). Ultrasonication: An Efficient Alternative for the Physical Modification of Starches, Flours and Grains. Foods, 13(15), 2325. https://doi.org/10.3390/FOODS13152325/S1Wang, B., Gao, W., Kang, X., Dong, Y., Liu, P., Yan, S., Yu, B., Guo, L., Cui, B., & Abad, A. (2021). Structural changes in corn starch granules treated at different temperatures. Food Hydrocolloids, 118, 106760. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.106760Wang, H., Xu, K., Ma, Y., Liang, Y., Zhang, H., & Chen, L. (2020). Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 63, 104868. https://doi.org/https://doi.org/10.1016/j.ultsonch.2019.104868Wang, J., Liu, T., Bian, X., Hua, Z., Chen, G., & Wu, X. (2021). Structural characterization and physicochemical properties of starch from four aquatic vegetable varieties in China. International Journal of Biological Macromolecules, 172, 542–549. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.078Wang, J., Liv, X., Lan, T., Lei, Y., Suo, J., Zhao, Q., Lei, J., Sun, X., & Ma, T. (2022). Modification in structural, physicochemical, functional, and in vitro digestive properties of kiwi starch by high-power ultrasound treatment. Ultrasonics Sonochemistry, 86, 106004. https://doi.org/10.1016/J.ULTSONCH.2022.106004Wang, N., Shi, N., Fei, H., Liu, Y., Zhang, Y., Li, Z., Ruan, C., & Zhang, D. (2022). Physicochemical, structural, and digestive properties of pea starch obtained via ultrasonic-assisted alkali extraction. Ultrasonics Sonochemistry, 89, 106136. https://doi.org/10.1016/J.ULTSONCH.2022.106136Weber, F., Costa, I., Andrade, L., & Cereda, M. (2025). Chapter 3 - Food application of starch in complex media. In M. P. Cereda & O. F. Vilpoux (Eds.), Traditional Starch Food Products (Vol. 4, pp. 45–73). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90844-3.00008-1Xiao, L., Yu, Y., Yang, X., Wei, Z., & Han, L. (2023). Physicochemical properties of ultrasound-pretreated pea starch and its inclusion complexes with lauric acid. Food Chemistry: X, 20, 100879. https://doi.org/10.1016/J.FOCHX.2023.100879Xiao, Y., Wu, X., Zhang, B., Luo, F., Lin, Q., & Ding, Y. (2021). Understanding the agregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. International Journal of Biological Macromolecules, 189, 1008–1019. https://doi.org/10.1016/J.IJBIOMAC.2021.08.163Xue, L., Ma, Y., Yang, N., & Wei, H. (2021). Modification of corn starch via innovative contactless thermal effect from induced electric field. Carbohydrate Polymers, 255, 117378. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.117378Yadav, L., Krishnan, H., Medha, T., Kumarakuru, K., Kumari, V., Surekha, C., Alavilli, H., Kaushik, D., Hashem, A., Alotaibi, N., Avila, G., Abd, E., Kumar, M., & Reddy, C. (2025). Enhancing starch properties through dual modification: Ultrasonication and acetic acid treatment of non-conventional starches. Ultrasonics Sonochemistry, 115, 107301. https://doi.org/https://doi.org/10.1016/j.ultsonch.2025.107301Yudhistira, B., Husnayain, N., Punthi, F., Gavahian, M., Chang, C., & Hsieh, C. (2024). Progress in the Application of Emerging Technology for the Improvement of Starch-Based Active Packaging Properties: A Review. ACS Food Science & Technology, 4(9), 1997–2012. https://doi.org/10.1021/acsfoodscitech.4c00260Zhang, H., Li, M., Li, K., & Zhu, C. (2018). Effect of ultrasound pretreatment on physicochemical properties of corn starch. Proceedings of the 2018 8th International Conference on Manufacturing Science and Engineering (ICMSE 2018), 572–576. https://doi.org/10.2991/icmse-18.2018.106Zhang, M., Jia, H., Wang, B., Ma, C., He, F., Fan, Q., & Liu, W. (2023). A Prospective Review on the Research Progress of Citric Acid Modified Starch. Foods 2023, Vol. 12, Page 458, 12(3), 458. https://doi.org/10.3390/FOODS12030458Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology, 43(1), 1–17. https://doi.org/https://doi.org/10.1016/j.tifs.2014.12.008Zukryandry, B., & Muslihudin, H. (2022). Timing of Extraction With Ultrasonic Bath System to Improve the Yield and Chemical Characteristics of Cassava Starch. IOP Conference Series: Earth and Environmental Science, 1012(1), 012016. https://doi.org/10.1088/1755-1315/1012/1/012016spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2507434https://repositorio.unbosque.edu.co/bitstreams/cd4c7614-6c29-4384-bfc6-a2e3e6f63aaf/download1e2ed8240bfc1b7585a09263793b0c0aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/c13720e0-da1b-4c57-a0fc-cd6de8db0212/download17cc15b951e7cc6b3728a574117320f9MD511Carta de autorizacion.pdfapplication/pdf213319https://repositorio.unbosque.edu.co/bitstreams/7c4f704e-abba-4046-80fc-60fc057d8d6d/downloade6d491472643feeef5f5d7086f6c3d15MD513CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/53dbb4f0-9475-438d-8862-a83011a117fb/download5643bfd9bcf29d560eeec56d584edaa9MD512TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102213https://repositorio.unbosque.edu.co/bitstreams/ba539a53-3e94-4a4b-a608-8ade3332baaf/downloadb574ffdc4071676c9c89f713ba3a27f5MD514THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2547https://repositorio.unbosque.edu.co/bitstreams/7a7ee265-667c-4bcc-9e2c-43bfdabca0fd/download9ef12e1fcb2bd5b24076ee27bd4447ffMD51520.500.12495/14653oai:repositorio.unbosque.edu.co:20.500.12495/146532025-06-14 05:08:31.048http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2030-06-12https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |