Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024)
El descubrimiento de fármacos ha sido durante mucho tiempo un proceso costoso y lento, pero el Machine Learning (ML) ha revolucionado esta área al permitir análisis masivos de datos y predicciones precisas de propiedades farmacológicas. Este estudio analiza el impacto del ML en el diseño racional de...
- Autores:
-
Tellez Ruíz, Dania Geraldine
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14417
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14417
- Palabra clave:
- Diseño racional de farmacos
Aprendizaje automático
CADD
Redes neuronales artificiales
Impacto en la química farmacéutica
615.19
Rational drug design
Machine Learning
CADD
Artificial neural networks
Impact on pharmaceutical chemistry
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNBOSQUE2_5ff47e68365994e56526861d985a6946 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14417 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
dc.title.translated.none.fl_str_mv |
Machine Learning in rational drug design: new advances in drug discovery (2000-2024) |
title |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
spellingShingle |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) Diseño racional de farmacos Aprendizaje automático CADD Redes neuronales artificiales Impacto en la química farmacéutica 615.19 Rational drug design Machine Learning CADD Artificial neural networks Impact on pharmaceutical chemistry |
title_short |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
title_full |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
title_fullStr |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
title_full_unstemmed |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
title_sort |
Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) |
dc.creator.fl_str_mv |
Tellez Ruíz, Dania Geraldine |
dc.contributor.advisor.none.fl_str_mv |
Guevara Pulido, James Oswaldo |
dc.contributor.author.none.fl_str_mv |
Tellez Ruíz, Dania Geraldine |
dc.subject.none.fl_str_mv |
Diseño racional de farmacos Aprendizaje automático CADD Redes neuronales artificiales Impacto en la química farmacéutica |
topic |
Diseño racional de farmacos Aprendizaje automático CADD Redes neuronales artificiales Impacto en la química farmacéutica 615.19 Rational drug design Machine Learning CADD Artificial neural networks Impact on pharmaceutical chemistry |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Rational drug design Machine Learning CADD Artificial neural networks Impact on pharmaceutical chemistry |
description |
El descubrimiento de fármacos ha sido durante mucho tiempo un proceso costoso y lento, pero el Machine Learning (ML) ha revolucionado esta área al permitir análisis masivos de datos y predicciones precisas de propiedades farmacológicas. Este estudio analiza el impacto del ML en el diseño racional de fármacos desde el año 2000 hasta el 2024, evaluando sus aplicaciones y desafíos. Se realizó una búsqueda sistemática en bases de datos especializadas para identificar publicaciones relevantes en Relaciones Cuantitativas Estructura-Actividad (QSAR) y diseño de fármacos asistido por computadora. Los resultados muestran que el ML ha mejorado la predicción de actividad biológica, toxicidad y farmacocinética, con avances significativos en redes neuronales profundas y modelos generativos. Sin embargo, persisten retos en la interpretabilidad de los modelos, la calidad de los datos y la validación experimental. A pesar de estos desafíos, el ML sigue consolidándose como una herramienta esencial en la química farmacéutica, acelerando el descubrimiento de nuevos fármacos y optimizando el desarrollo de medicamentos. Como estudiante de Química Farmacéutica, vi cómo el ML optimiza la selección de blancos terapéuticos y propiedades ADMET, destacando la importancia de datos de calidad. A pesar de los desafíos, el ML es clave en el desarrollo de medicamentos más seguros y eficaces. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-21T13:44:26Z |
dc.date.available.none.fl_str_mv |
2025-05-21T13:44:26Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14417 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14417 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness’. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/s0169-409x(02)00003-0 2. Lei, T., Sun, H., Kang, Y., Zhu, F., Liu, H., Zhou, W., Wang, Z., Li, D., Li, Y., & Hou, T. (2017). ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Molecular Pharmaceutics, 14(11), 3935–3953. https://doi.org/10.1021/acs.molpharmaceut.7b00631 3. Xia, F., Shukla, M., Brettin, T., Garcia-Cardona, C., Cohn, J., Allen, J. E., Maslov, S., Holbeck, S. L., Doroshow, J. H., Evrard, Y. A., Stahlberg, E. A., & Stevens, R. L. (2018). Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics, 19(S18). https://doi.org/10.1186/s12859-018-2509-3 4. Levatić, J., Pavić, K., Perković, I., Uzelac, L., Ester, K., Kralj, M., Kaiser, M., Rottmann, M., Supek, F., & Zorc, B. (2018). Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. European Journal of Medicinal Chemistry, 146, 651–667. https://doi.org/10.1016/j.ejmech.2018.01.062 5. Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., & Mizuguchi, K. (2018). Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Molecular Pharmaceutics, 15(11), 5302–5311. https://doi.org/10.1021/acs.molpharmaceut.8b00785 6. He, S., Ye, T., Wang, R., Zhang, C., Zhang, X., Sun, G., & Sun, X. (2019). An in silico model for predicting drug-induced hepatotoxicity. International Journal of Molecular Sciences, 20(8), 1897. doi:10.3390/ijms20081897 7. Han, R., Xiong, H., Ye, Z., Yang, Y., Huang, T., Jing, Q., … Ouyang, D. (2019). Predicting physical stability of solid dispersionsby machine learning techniques. Journal of Controlled Release: Official Journal of the Controlled Release Society, 311–312, 16–25. doi:10.1016/j.jconrel.2019.08.030 8. Ayed, M., Lim, H., & Xie, L. (2019). Biological representation of chemicals using latent target interaction profile. BMC Bioinformatics, 20(S24). https://doi.org/10.1186/s12859-019-3241-3 9. Lee, M., Kim, H., Joe, H., & Kim, H.-G. (2019). Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/s13321-019-0368-1 10. Li, T., Tong, W., Roberts, R., Liu, Z., & Thakkar, S. (2020). Deep learning on high-throughput transcriptomics to predict drug-induced liver injury. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.562677 11. Jiang, D., Lei, T., Wang, Z., Shen, C., Cao, D., & Hou, T. (2020). ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00421-y 12. Ancuceanu, R., Hovanet, M. V., Anghel, A. I., Furtunescu, F., Neagu, M., Constantin, C., & Dinu, M. (2020). Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the DILIrank dataset. International Journal of Molecular Sciences, 21(6), 2114. https://doi.org/10.3390/ijms21062114 13. Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., Golib-Dzib, J.-F., Jeliazkova, N., Vandriessche, Y., Böhm, S., Cima, V., Martinovic, J., Greene, N., Vander Aa, T., Ashby, T. J., Hochreiter, S., Engkvist, O., Klambauer, G., & Chen, H. (2020). Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00428-5 14. Zhao, Z., Qin, J., Gou, Z., Zhang, Y., & Yang, Y. (2020). Multi-task learning models for predicting active compounds. Journal of Biomedical Informatics, 108(103484), 103484. https://doi.org/10.1016/j.jbi.2020.103484 15. Shah, P., Siramshetty, V. B., Zakharov, A. V., Southall, N. T., Xu, X., & Nguyen, D.-T. (2020). Predicting liver cytosol stability of small molecules. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00426-7 16. Burggraaff, L., van Vlijmen, H. W. T., IJzerman, A. P., & van Westen, G. J. P. (2020). Quantitative prediction of selectivity between the A1 and A2A adenosine receptors. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00438-3 17. Du, Q.-S., Huang, R.-B., Wei, Y.-T., Pang, Z.-W., Du, L.-Q., & Chou, K.-C. (2009). Fragment‐based quantitative structure–activity relationship (FB‐QSAR) for fragment‐based drug design. Journal of Computational Chemistry, 30(2), 295–304. doi:10.1002/jcc.21056 18. Kim, E., & Nam, H. (2017). Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics, 18(S7). https://doi.org/10.1186/s12859-017-1638-4 19. Simões, R. S., Maltarollo, V. G., Oliveira, P. R., & Honorio, K. M. (2018). Transfer and multi-task learning in QSAR modeling: Advances and challenges. Frontiers in pharmacology, 9. https://doi.org/10.3389/fphar.2018.00074 20. Lampa, S., Alvarsson, J., Arvidsson Mc Shane, S., Berg, A., Ahlberg, E., & Spjuth, O. (2018). Predicting off-target binding profiles with confidence using conformal prediction. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01256 21. Butkiewicz, M., Rodriguez, A. L., Rainey, S. E., Wieting, J., Luscombe, V. B., Stauffer, S. R., Lindsley, C. W., Conn, P. J., & Meiler, J. (2019). Identification of novel allosteric modulators of metabotropic glutamate receptor subtype 5 acting at site distinct from 2-methyl-6-(phenylethynyl)-pyridine binding. ACS Chemical Neuroscience, 10(8), 3427–3436. https://doi.org/10.1021/acschemneuro.8b00227 22. Huang, L.-C., Yeung, W., Wang, Y., Cheng, H., Venkat, A., Li, S., Ma, P., Rasheed, K., & Kannan, N. (2020). Quantitative Structure–Mutation–Activity Relationship Tests (QSMART) model for protein kinase inhibitor response prediction. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-03842-6 23. Cabrera-Andrade, A., López-Cortés, A., Jaramillo-Koupermann, G., González-Díaz, H., Pazos, A., Munteanu, C. R., Pérez-Castillo, Y., & Tejera, E. (2020). A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing. Pharmaceuticals (Basel, Switzerland), 13(11), 409. https://doi.org/10.3390/ph13110409 24. He, X., Zhao, L., Zhong, W., Chen, H.-Y., Shan, X., Tang, N., & Chen, C. Y.-C. (2020). Insight into potent leads for alzheimer’s disease by using several artificial intelligence algorithms. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 129(110360), 110360. https://doi.org/10.1016/j.biopha.2020.110360 25. Maharao, N., Antontsev, V., Hou, H., Walsh, J., & Varshney, J. (2020). Scalable in silico simulation of transdermal drug permeability: Application of BIOiSIM platform. Drug Design, Development and Therapy, 14, 2307–2317. https://doi.org/10.2147/dddt.s253064 26. Zanni, R., Galvez-Llompart, M., Garcia-Domenech, R., & Galvez, J. (2020). What place does molecular topology have in today’s drug discovery? Expert Opinion on Drug Discovery, 15(10), 1133–1144. https://doi.org/10.1080/17460441.2020.1770223 27. Jaganathan, K., Tayara, H., & Chong, K. T. (2022). An explainable supervised machine learning model for predicting respiratory toxicity of chemicals using optimal molecular descriptors. Pharmaceutics, 14(4), 832. https://doi.org/10.3390/pharmaceutics14040832 28. Wang, B., Tan, X., Guo, J., Xiao, T., Jiao, Y., Zhao, J., Wu, J., & Wang, Y. (2022). Drug-induced immune thrombocytopenia toxicity prediction based on machine learning. Pharmaceutics, 14(5), 943. https://doi.org/10.3390/pharmaceutics14050943 29. Feng, H., & Wei, G.-W. (2023). Virtual screening of DrugBank database for hERG blockers using topological Laplacian-assisted AI models. Computers in Biology and Medicine, 153(106491), 106491. https://doi.org/10.1016/j.compbiomed.2022.106491 30. Vittorio, S., Lunghini, F., Pedretti, A., Vistoli, G., & Beccari, A. R. (2023). Ensemble of structure and ligand-based classification models for hERG liability profiling. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1148670 31. Kelleci Çelik, F., Doğan, S., & Karaduman, G. (2024). Drug-induced torsadogenicity prediction model: An explainable machine learning-driven quantitative structure-toxicity relationship approach. Computers in Biology and Medicine, 182(109209), 109209. https://doi.org/10.1016/j.compbiomed.2024.109209 32. Cao, A., Zhang, L., Bu, Y., & Sun, D. (2024). Machine learning prediction of on/off target-driven clinical adverse events. Pharmaceutical Research, 41(8), 1649–1658. https://doi.org/10.1007/s11095-024-03742-x 33. Cao, Y., Taghvaie Nakhjiri, A., & Ghadiri, M. (2024). Different applications of machine learning approaches in materials science and engineering: Comprehensive review. Engineering Applications of Artificial Intelligence, 135(108783), 108783. https://doi.org/10.1016/j.engappai.2024.108783 34. Bannigan, P., Aldeghi, M., Bao, Z., Häse, F., Aspuru-Guzik, A., & Allen, C. (2021). Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175(113806), 113806. https://doi.org/10.1016/j.addr.2021.05.016 35. Hayashi, Y., Nakano, Y., Marumo, Y., Kumada, S., Okada, K., & Onuki, Y. (2021). Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. International Journal of Pharmaceutics, 609(121158), 121158. https://doi.org/10.1016/j.ijpharm.2021.121158 36. Wang, N.-N., Wang, X.-G., Xiong, G.-L., Yang, Z.-Y., Lu, A.-P., Chen, X., Liu, S., Hou, T.-J., & Cao, D.-S. (2022). Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00602-x 37. Ahn, S., Lee, S. E., & Kim, M.-H. (2022). Random-forest model for drug–target interaction prediction via Kullback–Leibler divergence. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00644-1 38. Jabeen, F., Rehman, Z. U., Shah, S., Alharthy, R. D., Jalil, S., Khan, I. A., Iqbal, J., & El-Latif, A. A. A. (2023). Deep learning-based prediction of inhibitors interaction with Butyrylcholinesterase for the treatment of Alzheimer’s disease. Computers & Electrical Engineering: An International Journal, 105(108475), 108475. https://doi.org/10.1016/j.compeleceng.2022.108475 39. Chandrasekar, V., Ansari, M. Y., Singh, A. V., Uddin, S., Prabhu, K. S., Dash, S., Khodor, S. A., Terranegra, A., Avella, M., & Dakua, S. P. (2023). Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access: Practical Innovations, Open Solutions, 11, 52726–52739. https://doi.org/10.1109/access.2023.3272987 40. Noor F, Asif M, Ashfaq UA, Qasim M, Tahir Ul Qamar M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023 May 19;24(3):bbad120. doi: 10.1093/bib/bbad120. 41. Rezaee, P., Rezaee, S., Maaza, M., & Arab, S. S. (2024). Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking. Computers in Biology and Medicine, 183(109279), 109279. https://doi.org/10.1016/j.compbiomed.2024.109279 42. Najm, M., Azencott, C.-A., Playe, B., & Stoven, V. (2021). Drug target identification with machine learning: How to choose negative examples. International Journal of Molecular Sciences, 22(10), 5118. https://doi.org/10.3390/ijms22105118 43. Czub, N., Pacławski, A., Szlęk, J., & Mendyk, A. (2021). Curated database and preliminary AutoML QSAR model for 5-HT1A receptor. Pharmaceutics, 13(10), 1711. https://doi.org/10.3390/pharmaceutics13101711 44. Wang, X., Sun, Y., Ling, L., Ren, X., Liu, X., Wang, Y., Dong, Y., Ma, J., Song, R., Yu, A., Wei, J., Fan, Q., Guo, M., Zhao, T., Dao, R., & She, G. (2021). Gaultheria leucocarpa var. Yunnanensis for treating rheumatoid arthritis—an assessment combining machine learning–guided ADME properties prediction, network pharmacology, and pharmacological assessment. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.704040 45. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. H. M., & Ahsan, M. J. (2022). Machine learning in drug discovery: A review. Artificial Intelligence Review, 55(3), 1947–1999. https://doi.org/10.1007/s10462-021-10058-4 46. Bajorath, J., Chávez-Hernández, A. L., Duran-Frigola, M., Fernández-de Gortari, E., Gasteiger, J., López-López, E., Maggiora, G. M., Medina-Franco, J. L., Méndez-Lucio, O., Mestres, J., Miranda-Quintana, R. A., Oprea, T. I., Plisson, F., Prieto-Martínez, F. D., Rodríguez-Pérez, R., Rondón-Villarreal, P., Saldívar-Gonzalez, F. I., Sánchez-Cruz, N., & Valli, M. (2022). Chemoinformatics and artificial intelligence colloquium: progress and challenges in developing bioactive compounds. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00661-0 47. Vemula, D., Jayasurya, P., Sushmitha, V., Kumar, Y. N., & Bhandari, V. (2023). CADD, AI and ML in drug discovery: A comprehensive review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 181(106324), 106324. doi:10.1016/j.ejps.2022.106324 48. Feng, H., Elladki, R., Jiang, J., & Wei, G.-W. (2023). Machine-learning analysis of opioid use disorder informed by MOR, DOR, KOR, NOR and ZOR-based interactome networks. Computers in Biology and Medicine, 157(106745), 106745. https://doi.org/10.1016/j.compbiomed.2023.106745 49. Feng, H., Jiang, J., & Wei, G.-W. (2023). Machine-learning repurposing of DrugBank compounds for opioid use disorder. Computers in Biology and Medicine, 160(106921), 106921. https://doi.org/10.1016/j.compbiomed.2023.106921 50. Schaduangrat, N., Anuwongcharoen, N., Charoenkwan, P., & Shoombuatong, W. (2023). DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00721-z 51. Srisongkram, T., & Weerapreeyakul, N. (2022). Drug repurposing against KRAS mutant G12C: A machine learning, molecular docking, and molecular dynamics study. International Journal of Molecular Sciences, 24(1), 669. https://doi.org/10.3390/ijms24010669 52. Niazi, S. (2023). The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Design, Development and Therapy, 17, 2691–2725. https://doi.org/10.2147/dddt.s424991 53. Zukić, S., Osmanović, A., Harej Hrkać, A., Kraljević Pavelić, S., Špirtović-Halilović, S., Veljović, E., Roca, S., Trifunović, S., Završnik, D., & Maran, U. (2024). Data-driven modelling of substituted pyrimidine and uracil-based derivatives validated with newly synthesized and antiproliferative evaluated compounds. International Journal of Molecular Sciences, 25(17), 9390. https://doi.org/10.3390/ijms25179390 54. Xiao, F., Ding, X., Shi, Y., Wang, D., Wang, Y., Cui, C., Zhu, T., Chen, K., Xiang, P., & Luo, X. (2024). Application of ensemble learning for predicting GABAA receptor agonists. Computers in Biology and Medicine, 169(107958), 107958. https://doi.org/10.1016/j.compbiomed.2024.107958 55. Pillai, N., Dasgupta, A., Sudsakorn, S., Fretland, J., & Mavroudis, P. D. (2022). Machine Learning guided early drug discovery of small molecules. Drug Discovery Today, 27(8), 2209–2215. doi:10.1016/j.drudis.2022.03.017 56. Ota, R., & Yamashita, F. (2022). Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics. Journal of Controlled Release: Official Journal of the Controlled Release Society, 352, 961–969. https://doi.org/10.1016/j.jconrel.2022.11.014 57. Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals (Basel, Switzerland), 16(9), 1259. https://doi.org/10.3390/ph16091259 58. Gil-Pichardo, A., Sánchez-Ruiz, A., & Colmenarejo, G. (2023). Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00768-y 59. Zhong, J., Xuan, W., Lu, S., Cui, S., Zhou, Y., Tang, M., Qu, X., Lu, W., Huo, H., Zhang, C., Zhang, N., & Niu, B. (2023). Discovery of ANO1 Inhibitors based on Machine learning and molecule docking simulation approaches. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 184(106408), 106408. https://doi.org/10.1016/j.ejps.2023.106408 60. Moreno-Torres, M., López-Pascual, E., Rapisarda, A., Quintás, G., Drees, A., Steffensen, I.-L., Luechtefeld, T., Serrano-Candelas, E., de Lomana, M. G., Gadaleta, D., Dirven, H., Vinken, M., & Jover, R. (2024). Novel clinical phenotypes, drug categorization, and outcome prediction in drug-induced cholestasis: Analysis of a database of 432 patients developed by literature review and machine learning support. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 174(116530), 116530. https://doi.org/10.1016/j.biopha.2024.11653 61. Zhai, S., Tan, Y., Zhu, C., Zhang, C., Gao, Y., Mao, Q., Zhang, Y., Duan, H., & Yin, Y. (2024). PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimization. European Journal of Medicinal Chemistry, 275(116628), 116628. https://doi.org/10.1016/j.ejmech.2024.116628 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/72a36157-a48a-43c7-8da7-e9af951cd758/download https://repositorio.unbosque.edu.co/bitstreams/d07ac1f7-73ef-46c2-91a4-d4af264aeb88/download https://repositorio.unbosque.edu.co/bitstreams/7f6a7c9c-10c4-447c-9495-4bc0f7ee78a2/download https://repositorio.unbosque.edu.co/bitstreams/02e9ea4d-1817-470a-a289-b660e32a14d9/download https://repositorio.unbosque.edu.co/bitstreams/847874ea-3198-4f79-8bfb-661beb9c5fba/download https://repositorio.unbosque.edu.co/bitstreams/d59111a0-b398-4d65-b555-34a998760b74/download https://repositorio.unbosque.edu.co/bitstreams/ceae7abc-6b5e-4775-917a-fd156bae86c0/download |
bitstream.checksum.fl_str_mv |
eaabb799cd820a5794e49c8b853d6c25 17cc15b951e7cc6b3728a574117320f9 d7ca2ed8884c4245239ef7962f8fa2b0 b38daa10b54e38d1d17ee655a048b14f 3b6ce8e9e36c89875e8cf39962fe8920 0359c55181f72f26aec20ff0eb4fdcdb feef44bcae49e8711d9112a380bfbe8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834107898660126720 |
spelling |
Guevara Pulido, James OswaldoTellez Ruíz, Dania Geraldine2025-05-21T13:44:26Z2025-05-21T13:44:26Z2025-05https://hdl.handle.net/20.500.12495/14417Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl descubrimiento de fármacos ha sido durante mucho tiempo un proceso costoso y lento, pero el Machine Learning (ML) ha revolucionado esta área al permitir análisis masivos de datos y predicciones precisas de propiedades farmacológicas. Este estudio analiza el impacto del ML en el diseño racional de fármacos desde el año 2000 hasta el 2024, evaluando sus aplicaciones y desafíos. Se realizó una búsqueda sistemática en bases de datos especializadas para identificar publicaciones relevantes en Relaciones Cuantitativas Estructura-Actividad (QSAR) y diseño de fármacos asistido por computadora. Los resultados muestran que el ML ha mejorado la predicción de actividad biológica, toxicidad y farmacocinética, con avances significativos en redes neuronales profundas y modelos generativos. Sin embargo, persisten retos en la interpretabilidad de los modelos, la calidad de los datos y la validación experimental. A pesar de estos desafíos, el ML sigue consolidándose como una herramienta esencial en la química farmacéutica, acelerando el descubrimiento de nuevos fármacos y optimizando el desarrollo de medicamentos. Como estudiante de Química Farmacéutica, vi cómo el ML optimiza la selección de blancos terapéuticos y propiedades ADMET, destacando la importancia de datos de calidad. A pesar de los desafíos, el ML es clave en el desarrollo de medicamentos más seguros y eficaces.PregradoQuímico FarmacéuticoDrug discovery has long been a costly and time-consuming process, but Machine Learning (ML) has revolutionized this area by enabling massive data analysis and accurate predictions of pharmacological properties. This study analyzes the impact of ML on rational drug design from 2000 to 2024, assessing its applications and challenges. A systematic search of specialized databases was conducted to identify relevant publications in Quantitative Structure-Activity Relationships (QSAR) and computer-aided drug design. The results show that ML has improved the prediction of biological activity, toxicity and pharmacokinetics, with significant advances in deep neural networks and generative models. However, challenges remain in model interpretability, data quality, and experimental validation. Despite these challenges, ML continues to establish itself as an essential tool in pharmaceutical chemistry, accelerating new drug discovery and optimizing drug development. As a Pharmaceutical Chemistry student, I saw how ML optimizes the selection of therapeutic targets and ADMET properties, highlighting the importance of quality data. Despite the challenges, ML is key in the development of safer and more effective drugs.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Diseño racional de farmacosAprendizaje automáticoCADDRedes neuronales artificialesImpacto en la química farmacéutica615.19Rational drug designMachine LearningCADDArtificial neural networksImpact on pharmaceutical chemistryMachine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024)Machine Learning in rational drug design: new advances in drug discovery (2000-2024)Química FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness’. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/s0169-409x(02)00003-02. Lei, T., Sun, H., Kang, Y., Zhu, F., Liu, H., Zhou, W., Wang, Z., Li, D., Li, Y., & Hou, T. (2017). ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Molecular Pharmaceutics, 14(11), 3935–3953. https://doi.org/10.1021/acs.molpharmaceut.7b006313. Xia, F., Shukla, M., Brettin, T., Garcia-Cardona, C., Cohn, J., Allen, J. E., Maslov, S., Holbeck, S. L., Doroshow, J. H., Evrard, Y. A., Stahlberg, E. A., & Stevens, R. L. (2018). Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics, 19(S18). https://doi.org/10.1186/s12859-018-2509-34. Levatić, J., Pavić, K., Perković, I., Uzelac, L., Ester, K., Kralj, M., Kaiser, M., Rottmann, M., Supek, F., & Zorc, B. (2018). Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. European Journal of Medicinal Chemistry, 146, 651–667. https://doi.org/10.1016/j.ejmech.2018.01.0625. Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., & Mizuguchi, K. (2018). Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Molecular Pharmaceutics, 15(11), 5302–5311. https://doi.org/10.1021/acs.molpharmaceut.8b007856. He, S., Ye, T., Wang, R., Zhang, C., Zhang, X., Sun, G., & Sun, X. (2019). An in silico model for predicting drug-induced hepatotoxicity. International Journal of Molecular Sciences, 20(8), 1897. doi:10.3390/ijms200818977. Han, R., Xiong, H., Ye, Z., Yang, Y., Huang, T., Jing, Q., … Ouyang, D. (2019). Predicting physical stability of solid dispersionsby machine learning techniques. Journal of Controlled Release: Official Journal of the Controlled Release Society, 311–312, 16–25. doi:10.1016/j.jconrel.2019.08.0308. Ayed, M., Lim, H., & Xie, L. (2019). Biological representation of chemicals using latent target interaction profile. BMC Bioinformatics, 20(S24). https://doi.org/10.1186/s12859-019-3241-39. Lee, M., Kim, H., Joe, H., & Kim, H.-G. (2019). Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/s13321-019-0368-110. Li, T., Tong, W., Roberts, R., Liu, Z., & Thakkar, S. (2020). Deep learning on high-throughput transcriptomics to predict drug-induced liver injury. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.56267711. Jiang, D., Lei, T., Wang, Z., Shen, C., Cao, D., & Hou, T. (2020). ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00421-y12. Ancuceanu, R., Hovanet, M. V., Anghel, A. I., Furtunescu, F., Neagu, M., Constantin, C., & Dinu, M. (2020). Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the DILIrank dataset. International Journal of Molecular Sciences, 21(6), 2114. https://doi.org/10.3390/ijms2106211413. Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., Golib-Dzib, J.-F., Jeliazkova, N., Vandriessche, Y., Böhm, S., Cima, V., Martinovic, J., Greene, N., Vander Aa, T., Ashby, T. J., Hochreiter, S., Engkvist, O., Klambauer, G., & Chen, H. (2020). Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00428-514. Zhao, Z., Qin, J., Gou, Z., Zhang, Y., & Yang, Y. (2020). Multi-task learning models for predicting active compounds. Journal of Biomedical Informatics, 108(103484), 103484. https://doi.org/10.1016/j.jbi.2020.10348415. Shah, P., Siramshetty, V. B., Zakharov, A. V., Southall, N. T., Xu, X., & Nguyen, D.-T. (2020). Predicting liver cytosol stability of small molecules. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00426-716. Burggraaff, L., van Vlijmen, H. W. T., IJzerman, A. P., & van Westen, G. J. P. (2020). Quantitative prediction of selectivity between the A1 and A2A adenosine receptors. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00438-317. Du, Q.-S., Huang, R.-B., Wei, Y.-T., Pang, Z.-W., Du, L.-Q., & Chou, K.-C. (2009). Fragment‐based quantitative structure–activity relationship (FB‐QSAR) for fragment‐based drug design. Journal of Computational Chemistry, 30(2), 295–304. doi:10.1002/jcc.2105618. Kim, E., & Nam, H. (2017). Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics, 18(S7). https://doi.org/10.1186/s12859-017-1638-419. Simões, R. S., Maltarollo, V. G., Oliveira, P. R., & Honorio, K. M. (2018). Transfer and multi-task learning in QSAR modeling: Advances and challenges. Frontiers in pharmacology, 9. https://doi.org/10.3389/fphar.2018.0007420. Lampa, S., Alvarsson, J., Arvidsson Mc Shane, S., Berg, A., Ahlberg, E., & Spjuth, O. (2018). Predicting off-target binding profiles with confidence using conformal prediction. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.0125621. Butkiewicz, M., Rodriguez, A. L., Rainey, S. E., Wieting, J., Luscombe, V. B., Stauffer, S. R., Lindsley, C. W., Conn, P. J., & Meiler, J. (2019). Identification of novel allosteric modulators of metabotropic glutamate receptor subtype 5 acting at site distinct from 2-methyl-6-(phenylethynyl)-pyridine binding. ACS Chemical Neuroscience, 10(8), 3427–3436. https://doi.org/10.1021/acschemneuro.8b0022722. Huang, L.-C., Yeung, W., Wang, Y., Cheng, H., Venkat, A., Li, S., Ma, P., Rasheed, K., & Kannan, N. (2020). Quantitative Structure–Mutation–Activity Relationship Tests (QSMART) model for protein kinase inhibitor response prediction. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-03842-623. Cabrera-Andrade, A., López-Cortés, A., Jaramillo-Koupermann, G., González-Díaz, H., Pazos, A., Munteanu, C. R., Pérez-Castillo, Y., & Tejera, E. (2020). A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing. Pharmaceuticals (Basel, Switzerland), 13(11), 409. https://doi.org/10.3390/ph1311040924. He, X., Zhao, L., Zhong, W., Chen, H.-Y., Shan, X., Tang, N., & Chen, C. Y.-C. (2020). Insight into potent leads for alzheimer’s disease by using several artificial intelligence algorithms. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 129(110360), 110360. https://doi.org/10.1016/j.biopha.2020.11036025. Maharao, N., Antontsev, V., Hou, H., Walsh, J., & Varshney, J. (2020). Scalable in silico simulation of transdermal drug permeability: Application of BIOiSIM platform. Drug Design, Development and Therapy, 14, 2307–2317. https://doi.org/10.2147/dddt.s25306426. Zanni, R., Galvez-Llompart, M., Garcia-Domenech, R., & Galvez, J. (2020). What place does molecular topology have in today’s drug discovery? Expert Opinion on Drug Discovery, 15(10), 1133–1144. https://doi.org/10.1080/17460441.2020.177022327. Jaganathan, K., Tayara, H., & Chong, K. T. (2022). An explainable supervised machine learning model for predicting respiratory toxicity of chemicals using optimal molecular descriptors. Pharmaceutics, 14(4), 832. https://doi.org/10.3390/pharmaceutics1404083228. Wang, B., Tan, X., Guo, J., Xiao, T., Jiao, Y., Zhao, J., Wu, J., & Wang, Y. (2022). Drug-induced immune thrombocytopenia toxicity prediction based on machine learning. Pharmaceutics, 14(5), 943. https://doi.org/10.3390/pharmaceutics1405094329. Feng, H., & Wei, G.-W. (2023). Virtual screening of DrugBank database for hERG blockers using topological Laplacian-assisted AI models. Computers in Biology and Medicine, 153(106491), 106491. https://doi.org/10.1016/j.compbiomed.2022.10649130. Vittorio, S., Lunghini, F., Pedretti, A., Vistoli, G., & Beccari, A. R. (2023). Ensemble of structure and ligand-based classification models for hERG liability profiling. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.114867031. Kelleci Çelik, F., Doğan, S., & Karaduman, G. (2024). Drug-induced torsadogenicity prediction model: An explainable machine learning-driven quantitative structure-toxicity relationship approach. Computers in Biology and Medicine, 182(109209), 109209. https://doi.org/10.1016/j.compbiomed.2024.10920932. Cao, A., Zhang, L., Bu, Y., & Sun, D. (2024). Machine learning prediction of on/off target-driven clinical adverse events. Pharmaceutical Research, 41(8), 1649–1658. https://doi.org/10.1007/s11095-024-03742-x33. Cao, Y., Taghvaie Nakhjiri, A., & Ghadiri, M. (2024). Different applications of machine learning approaches in materials science and engineering: Comprehensive review. Engineering Applications of Artificial Intelligence, 135(108783), 108783. https://doi.org/10.1016/j.engappai.2024.10878334. Bannigan, P., Aldeghi, M., Bao, Z., Häse, F., Aspuru-Guzik, A., & Allen, C. (2021). Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175(113806), 113806. https://doi.org/10.1016/j.addr.2021.05.01635. Hayashi, Y., Nakano, Y., Marumo, Y., Kumada, S., Okada, K., & Onuki, Y. (2021). Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. International Journal of Pharmaceutics, 609(121158), 121158. https://doi.org/10.1016/j.ijpharm.2021.12115836. Wang, N.-N., Wang, X.-G., Xiong, G.-L., Yang, Z.-Y., Lu, A.-P., Chen, X., Liu, S., Hou, T.-J., & Cao, D.-S. (2022). Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00602-x37. Ahn, S., Lee, S. E., & Kim, M.-H. (2022). Random-forest model for drug–target interaction prediction via Kullback–Leibler divergence. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00644-138. Jabeen, F., Rehman, Z. U., Shah, S., Alharthy, R. D., Jalil, S., Khan, I. A., Iqbal, J., & El-Latif, A. A. A. (2023). Deep learning-based prediction of inhibitors interaction with Butyrylcholinesterase for the treatment of Alzheimer’s disease. Computers & Electrical Engineering: An International Journal, 105(108475), 108475. https://doi.org/10.1016/j.compeleceng.2022.10847539. Chandrasekar, V., Ansari, M. Y., Singh, A. V., Uddin, S., Prabhu, K. S., Dash, S., Khodor, S. A., Terranegra, A., Avella, M., & Dakua, S. P. (2023). Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access: Practical Innovations, Open Solutions, 11, 52726–52739. https://doi.org/10.1109/access.2023.327298740. Noor F, Asif M, Ashfaq UA, Qasim M, Tahir Ul Qamar M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023 May 19;24(3):bbad120. doi: 10.1093/bib/bbad120.41. Rezaee, P., Rezaee, S., Maaza, M., & Arab, S. S. (2024). Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking. Computers in Biology and Medicine, 183(109279), 109279. https://doi.org/10.1016/j.compbiomed.2024.10927942. Najm, M., Azencott, C.-A., Playe, B., & Stoven, V. (2021). Drug target identification with machine learning: How to choose negative examples. International Journal of Molecular Sciences, 22(10), 5118. https://doi.org/10.3390/ijms2210511843. Czub, N., Pacławski, A., Szlęk, J., & Mendyk, A. (2021). Curated database and preliminary AutoML QSAR model for 5-HT1A receptor. Pharmaceutics, 13(10), 1711. https://doi.org/10.3390/pharmaceutics1310171144. Wang, X., Sun, Y., Ling, L., Ren, X., Liu, X., Wang, Y., Dong, Y., Ma, J., Song, R., Yu, A., Wei, J., Fan, Q., Guo, M., Zhao, T., Dao, R., & She, G. (2021). Gaultheria leucocarpa var. Yunnanensis for treating rheumatoid arthritis—an assessment combining machine learning–guided ADME properties prediction, network pharmacology, and pharmacological assessment. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.70404045. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. H. M., & Ahsan, M. J. (2022). Machine learning in drug discovery: A review. Artificial Intelligence Review, 55(3), 1947–1999. https://doi.org/10.1007/s10462-021-10058-446. Bajorath, J., Chávez-Hernández, A. L., Duran-Frigola, M., Fernández-de Gortari, E., Gasteiger, J., López-López, E., Maggiora, G. M., Medina-Franco, J. L., Méndez-Lucio, O., Mestres, J., Miranda-Quintana, R. A., Oprea, T. I., Plisson, F., Prieto-Martínez, F. D., Rodríguez-Pérez, R., Rondón-Villarreal, P., Saldívar-Gonzalez, F. I., Sánchez-Cruz, N., & Valli, M. (2022). Chemoinformatics and artificial intelligence colloquium: progress and challenges in developing bioactive compounds. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00661-047. Vemula, D., Jayasurya, P., Sushmitha, V., Kumar, Y. N., & Bhandari, V. (2023). CADD, AI and ML in drug discovery: A comprehensive review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 181(106324), 106324. doi:10.1016/j.ejps.2022.10632448. Feng, H., Elladki, R., Jiang, J., & Wei, G.-W. (2023). Machine-learning analysis of opioid use disorder informed by MOR, DOR, KOR, NOR and ZOR-based interactome networks. Computers in Biology and Medicine, 157(106745), 106745. https://doi.org/10.1016/j.compbiomed.2023.10674549. Feng, H., Jiang, J., & Wei, G.-W. (2023). Machine-learning repurposing of DrugBank compounds for opioid use disorder. Computers in Biology and Medicine, 160(106921), 106921. https://doi.org/10.1016/j.compbiomed.2023.10692150. Schaduangrat, N., Anuwongcharoen, N., Charoenkwan, P., & Shoombuatong, W. (2023). DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00721-z51. Srisongkram, T., & Weerapreeyakul, N. (2022). Drug repurposing against KRAS mutant G12C: A machine learning, molecular docking, and molecular dynamics study. International Journal of Molecular Sciences, 24(1), 669. https://doi.org/10.3390/ijms2401066952. Niazi, S. (2023). The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Design, Development and Therapy, 17, 2691–2725. https://doi.org/10.2147/dddt.s42499153. Zukić, S., Osmanović, A., Harej Hrkać, A., Kraljević Pavelić, S., Špirtović-Halilović, S., Veljović, E., Roca, S., Trifunović, S., Završnik, D., & Maran, U. (2024). Data-driven modelling of substituted pyrimidine and uracil-based derivatives validated with newly synthesized and antiproliferative evaluated compounds. International Journal of Molecular Sciences, 25(17), 9390. https://doi.org/10.3390/ijms2517939054. Xiao, F., Ding, X., Shi, Y., Wang, D., Wang, Y., Cui, C., Zhu, T., Chen, K., Xiang, P., & Luo, X. (2024). Application of ensemble learning for predicting GABAA receptor agonists. Computers in Biology and Medicine, 169(107958), 107958. https://doi.org/10.1016/j.compbiomed.2024.10795855. Pillai, N., Dasgupta, A., Sudsakorn, S., Fretland, J., & Mavroudis, P. D. (2022). Machine Learning guided early drug discovery of small molecules. Drug Discovery Today, 27(8), 2209–2215. doi:10.1016/j.drudis.2022.03.01756. Ota, R., & Yamashita, F. (2022). Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics. Journal of Controlled Release: Official Journal of the Controlled Release Society, 352, 961–969. https://doi.org/10.1016/j.jconrel.2022.11.01457. Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals (Basel, Switzerland), 16(9), 1259. https://doi.org/10.3390/ph1609125958. Gil-Pichardo, A., Sánchez-Ruiz, A., & Colmenarejo, G. (2023). Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00768-y59. Zhong, J., Xuan, W., Lu, S., Cui, S., Zhou, Y., Tang, M., Qu, X., Lu, W., Huo, H., Zhang, C., Zhang, N., & Niu, B. (2023). Discovery of ANO1 Inhibitors based on Machine learning and molecule docking simulation approaches. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 184(106408), 106408. https://doi.org/10.1016/j.ejps.2023.10640860. Moreno-Torres, M., López-Pascual, E., Rapisarda, A., Quintás, G., Drees, A., Steffensen, I.-L., Luechtefeld, T., Serrano-Candelas, E., de Lomana, M. G., Gadaleta, D., Dirven, H., Vinken, M., & Jover, R. (2024). Novel clinical phenotypes, drug categorization, and outcome prediction in drug-induced cholestasis: Analysis of a database of 432 patients developed by literature review and machine learning support. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 174(116530), 116530. https://doi.org/10.1016/j.biopha.2024.1165361. Zhai, S., Tan, Y., Zhu, C., Zhang, C., Gao, Y., Mao, Q., Zhang, Y., Duan, H., & Yin, Y. (2024). PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimization. European Journal of Medicinal Chemistry, 275(116628), 116628. https://doi.org/10.1016/j.ejmech.2024.116628spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf664427https://repositorio.unbosque.edu.co/bitstreams/72a36157-a48a-43c7-8da7-e9af951cd758/downloadeaabb799cd820a5794e49c8b853d6c25MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/d07ac1f7-73ef-46c2-91a4-d4af264aeb88/download17cc15b951e7cc6b3728a574117320f9MD53Carta de autorizacion.pdfapplication/pdf564258https://repositorio.unbosque.edu.co/bitstreams/7f6a7c9c-10c4-447c-9495-4bc0f7ee78a2/downloadd7ca2ed8884c4245239ef7962f8fa2b0MD55Anexo 1 acta de aprobacion.pdfapplication/pdf10705411https://repositorio.unbosque.edu.co/bitstreams/02e9ea4d-1817-470a-a289-b660e32a14d9/downloadb38daa10b54e38d1d17ee655a048b14fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/847874ea-3198-4f79-8bfb-661beb9c5fba/download3b6ce8e9e36c89875e8cf39962fe8920MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain81017https://repositorio.unbosque.edu.co/bitstreams/d59111a0-b398-4d65-b555-34a998760b74/download0359c55181f72f26aec20ff0eb4fdcdbMD57THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5036https://repositorio.unbosque.edu.co/bitstreams/ceae7abc-6b5e-4775-917a-fd156bae86c0/downloadfeef44bcae49e8711d9112a380bfbe8dMD5820.500.12495/14417oai:repositorio.unbosque.edu.co:20.500.12495/144172025-05-22 05:03:28.159http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2025-11-20https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |