Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple
Este estudio tuvo como objetivo desarrollar un modelo de red neuronal convolucional para la detección de esclerosis múltiple utilizando imágenes de MRI T2 y T2-FLAIR. Se creó una base de datos a partir de 36 estudios diferentes y la base de datos de Kaggle, incluyendo tanto MRI sin esclerosis múltip...
- Autores:
-
Villamil Martinez, Cristian Andres
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14922
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14922
- Palabra clave:
- Red neuronal convolucional
Esclerosis múltiple
Resonancia magnética T2 y T2-FLAIR
Base de datos Kaggle
Optimización de hiperparámetros
510
Convolutional Neural Network
Multiple Sclerosis
T2 and T2- FLAIR MRI
Kaggle Database
Hyperparameter Optimization
- Rights
- License
- Attribution-NoDerivatives 4.0 International
| id |
UNBOSQUE2_3a06bbdb25cde8f6987e5735d3097cd3 |
|---|---|
| oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14922 |
| network_acronym_str |
UNBOSQUE2 |
| network_name_str |
Repositorio U. El Bosque |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| dc.title.translated.none.fl_str_mv |
Use of neural networks and T2 and T2-FLAIR magnetic resonances for the detection of periventricular lesions in multiple sclerosis |
| title |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| spellingShingle |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple Red neuronal convolucional Esclerosis múltiple Resonancia magnética T2 y T2-FLAIR Base de datos Kaggle Optimización de hiperparámetros 510 Convolutional Neural Network Multiple Sclerosis T2 and T2- FLAIR MRI Kaggle Database Hyperparameter Optimization |
| title_short |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| title_full |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| title_fullStr |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| title_full_unstemmed |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| title_sort |
Utilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltiple |
| dc.creator.fl_str_mv |
Villamil Martinez, Cristian Andres |
| dc.contributor.advisor.none.fl_str_mv |
Duitama Leal, Alejandro Reyes, Marco Aurelio |
| dc.contributor.author.none.fl_str_mv |
Villamil Martinez, Cristian Andres |
| dc.subject.none.fl_str_mv |
Red neuronal convolucional Esclerosis múltiple Resonancia magnética T2 y T2-FLAIR Base de datos Kaggle Optimización de hiperparámetros |
| topic |
Red neuronal convolucional Esclerosis múltiple Resonancia magnética T2 y T2-FLAIR Base de datos Kaggle Optimización de hiperparámetros 510 Convolutional Neural Network Multiple Sclerosis T2 and T2- FLAIR MRI Kaggle Database Hyperparameter Optimization |
| dc.subject.ddc.none.fl_str_mv |
510 |
| dc.subject.keywords.none.fl_str_mv |
Convolutional Neural Network Multiple Sclerosis T2 and T2- FLAIR MRI Kaggle Database Hyperparameter Optimization |
| description |
Este estudio tuvo como objetivo desarrollar un modelo de red neuronal convolucional para la detección de esclerosis múltiple utilizando imágenes de MRI T2 y T2-FLAIR. Se creó una base de datos a partir de 36 estudios diferentes y la base de datos de Kaggle, incluyendo tanto MRI sin esclerosis múltiple como MRI con esclerosis múltiple. El modelo desarrollado alcanzó una precisión de verificación del 96%. Estos hallazgos destacan el potencial de las redes neuronales convolucionales en la detección de enfermedades a través de imágenes médicas, a pesar de algunas limitaciones, como el tamaño del conjunto de datos y las restricciones en la optimización de hiperparámetros. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023-11 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-10T21:40:26Z |
| dc.date.available.none.fl_str_mv |
2025-07-10T21:40:26Z |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
| dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
| format |
https://purl.org/coar/resource_type/c_7a1f |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14922 |
| dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
| dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
| dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
| url |
https://hdl.handle.net/20.500.12495/14922 |
| identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
| dc.language.iso.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Dadhich, M., Bengio, Y., Courville, A., & Goodfellow, I. (2018). Practical Computer Vision: Extract Insightful Information From Images Using TensorFlow, Keras, and OpenCV. Packt Publishing. Artasanchez, A., & Joshi, P. (2020). Artificial Intelligence with Python: Your Complete Guide to Building Intelligent Apps Using Python 3.X and TensorFlow 2 (2nd ed.). Packt Publishing. https://books.google.com.co/books?id=Urc9zQEACAAJ Karim, M. R. (2017). Predictive Analytics with TensorFlow. Filippi, M., Preziosa, P., Banwell, B. L., Barkhof, F., Ciccarelli, O., De Stefano, N., Geurts, J. J. G., Paul, F., Reich, D. S., Toosy, A. T., Traboulsee, A., Wattjes, M. P., Yousry, T. A., Gass, A., Lubetzki, C., Weinshenker, B. G., & Rocca, M. A. (2019). Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 142(7), 1858-1875. https://doi.org/10.1093/brain/awz144 Tillema, J. M. (2023). Imaging of Central Nervous System Demyelinating Disorders. Brain, 29(xx), 292-323. https://pubmed.ncbi.nlm.nih.gov/36795881/ Banwell, B., Bennett, J. L., Marignier, R., Kim, H. J., Brilot, F., Flanagan, E. P., Ramanathan, S., Waters, P., Tenembaum, S., Graves, J. S., Chitnis, T., Brandt, A. U., Hemingway, C., Neuteboom, R., Pandit, L., Reindl, M., Saiz, A., Sato, D. K., Rostasy, K., Paul, F., Pittock, S. J., Fujihara, K., & Palace, J. (2023). Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. The Lancet Neurology, 22(3), 268-282. https://doi.org/10.1016/S1474-4422(22)00431-8 Hor, J. Y., Asgari, N., Nakashima, I., Broadley, S. A., Leite, M. I., Kissani, N., Jacob, A., Marignier, R., Weinshenker, B. G., Paul, F., Pittock, S. J., Palace, J., Wingerchuk, D. M., Behne, J. M., Yeaman, M. R., & Fujihara, K. (2020). Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Frontiers in Neurology, 11, 501. https://doi.org/10.3389/fneur.2020.00501 Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T Bakker, B., & Heskes, T. (2003). Input uncertainty and the neural network classifier: a probabilistic perspective. Neural Networks, 16(1), 31-42. https://doi.org/10.1016/S0893-6080(02)00254-3 Tousignant, A., Lemaître, P., Precup, D., Arnold, D. L., & Arbel, T. (2019). Prediction of Disease Progression in Multiple Sclerosis Patients using Deep Learning Analysis of MRI Data. In M. J. Cardoso, A. Feragen, B. Glocker, E. Konukoglu, I. Oguz, G. Unal, & T. Vercauteren (Eds.), Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning (pp. 483-492). PMLR. http://proceedings.mlr.press/v102/tousignant19a/tousignant19a.pdf Bonacchi, R., Filippi, M., & Rocca, M. A. (2022). Role of artificial intelligence in MS clinical practice. NeuroImage: Clinical, 35, 103065. https://doi.org/10.1016/j.nicl.2022.103065 Núñez Rivera, J. (2021). Aprendizaje profunda por refuerzo para clasificación de imágenes. Neural Networks, 16(1), 31-42. Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3 Qu, L., Zhang, Y., Wang, S., Yap, P. T., & Shen, D. (2020). Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Medical Image Analysis, 62, 101663. https://doi.org/10.1016/j.media.2020.101663 Tommasin, S., Cocozza, S., Taloni, A., Giannì, C., Petsas, N., Pontillo, G., Petracca, M., Ruggieri, S., Giglio, L., Pozzilli, C., Brunetti, A., & Pantano, P. (2021). Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 268, 101663. https://doi.org/10.1007/s00415-021-10605-7 Hartmann, M., Fenton, N., & Dobson, R. (2021). Current review and next steps for artificial intelligence in multiple sclerosis risk research. Computers in Biology and Medicine, 132, 104337. https://doi.org/10.1016/j.compbiomed.2021.104337 Hardy, N. P., Epperlein, J. P., Dalli, J., Robertson, W., Liddy, R., Aird, J. J., Mulligan, N., Neary, P. M., McEntee, G. P., Conneely, J. B., & Cahill, R. A. (2023). Real-time administration of indocyanine green in combination with computer vision and artificial intelligence for the identification and delineation of colorectal liver metastases. Surgery Open Science, 12, 48-54. https://doi.org/10.1016/j.sopen.2023.03.004 Roach, D. J., Rohskopf, A., Hamel, C. M., Reinholtz, W. D., Bernstein, R., Qi, H. J., & Cook, A. W. (2021). Utilizing computer vision and artificial intelligence algorithms to predict and design the mechanical compression response of direct ink write 3D printed foam replacement structures. Additive Manufacturing, 41, 101950. https://doi.org/10.1016/j.addma.2021.101950 Cantoni, V., Levialdi, S., & Zavidovique, B. (2011). Natural and Artificial Vision. In 3C Vision (pp. 1-18). Elsevier. https://doi.org/10.1016/B978-0-12-385220-5.00001-2 Paragios, N., Chen, Y., & Faugeras, O. D. (2006). Handbook of mathematical models in computer vision. Springer Science & Business Media. Yao, Y. (2016). Image Segmentation Based on Sobel Edge Detection. In Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science (pp. 141-144). Atlantis Press. https://doi.org/10.2991/icamcs-16.2016.27 Bora, D. J. (2017). A novel approach for color image edge detection using multidirectional Sobel filter on HSV color space. International Journal of Computer Science and Engineering, 5(2), 154-159. Rocca, M. A., Anzalone, N., Storelli, L., Del Poggio, A., Cacciaguerra, L., Manfredi, A. A., Meani, A., & Filippi, M. (2021). Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investigative Radiology, 56(4), 252-260. https://doi.org/10.1097/RLI.0000000000000735 Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson Education India. Macin, G., Tasci, B., Tasci, I., Faust, O., Barua, P. D., Dogan, S., Tuncer, T., Tan, R.-S., & Acharya, U. R. (2022). An Accurate Multiple Sclerosis Detection Model Based on Exemplar Multiple Parameters Local Phase Quantization: ExMPLPQ. Applied Sciences, 12(10), 4920. https://doi.org/10.3390/app12104920 Yuan, X., Hu, K., & Chen, S. (2020). Realtime CNN-based Keypoint Detector with Sobel Filter and CNN-based Descriptor Trained with Keypoint Candidates. arXiv. https://doi.org/10.48550/arXiv.2011.02119 Young, I. T., & van Vliet, L. J. (1995). Recursive implementation of the Gaussian filter. Signal Processing, 44(2), 139-151. https://doi.org/10.1016/0165-1684(95)00020-E NVIDIA Corporation. (2007). Separable Convolution. https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf Weisstein, E. W. (2004). Normal Distribution. MathWorld. https://mathworld.wolfram.com/NormalDistribution.html Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999-7019. https://doi.org/10.1109/TNNLS.2021.3084827 Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science & Business Media. Rasamoelina, A. D., Adjailia, F., & Sinčák, P. (2020). A Review of Activation Function for Artificial Neural Network. In 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI) (pp. 281-286). IEEE. https://doi.org/10.1109/SAMI48414.2020.9108717 Huang, J. J., & Wanda, P. (2020). RunPool: A Dynamic Pooling Layer for Convolution Neural Network. International Journal of Computational Intelligence Systems, 13(1), 66-76. Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., ... & Kappos, L. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69(2), 292-302. https://doi.org/10.1002/ana.22366 Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., ... & Kappos, L. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, 17(2), 162-173. https://doi.org/10.1016/S1474-4422(17)30470-2 Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis--a review. European Journal of Neurology, 26(1), 27-40. https://doi.org/10.1111/ene.13819 Zivadinov, R., & Leist, T. (2018). Clinical-magnetic resonance imaging correlations in multiple sclerosis. Journal of Neuroimaging, 28(3), 267-275. https://doi.org/10.1111/jon.12511 |
| dc.rights.en.fl_str_mv |
Attribution-NoDerivatives 4.0 International |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
| dc.rights.local.spa.fl_str_mv |
Acceso abierto |
| dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nd/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.program.spa.fl_str_mv |
Matemáticas |
| dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
| institution |
Universidad El Bosque |
| bitstream.url.fl_str_mv |
https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/cc97c3fb-8937-46fd-954a-f7a0010652a7/download https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/a19694e3-37dc-4a9c-92fb-2973580cfe43/download https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/4da5d7f1-4a43-4213-9b20-43c7635aba8c/download https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/566a331d-d892-45a5-bab4-e5df606e7d7b/download https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/f0f5e1f5-7ef3-4c3f-9e9d-97252870e0f3/download https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b29ebb0e-5d1f-4e6c-a0e2-d97a420b61b8/download |
| bitstream.checksum.fl_str_mv |
e9dbea0eec6eef843b0a655793f47bea 17cc15b951e7cc6b3728a574117320f9 e8cfbf11c95beb62320f0e1bdfe77e1c 5310bb89a00d5ead086944535cc857c4 0c08332acf6f239e8445149757dd3e6c 4f18cd2f78a82c5be630b7b9502af117 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
| repository.mail.fl_str_mv |
bibliotecas@biteca.com |
| _version_ |
1849967182524448768 |
| spelling |
Duitama Leal, AlejandroReyes, Marco AurelioVillamil Martinez, Cristian Andres2025-07-10T21:40:26Z2025-07-10T21:40:26Z2023-11https://hdl.handle.net/20.500.12495/14922instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEste estudio tuvo como objetivo desarrollar un modelo de red neuronal convolucional para la detección de esclerosis múltiple utilizando imágenes de MRI T2 y T2-FLAIR. Se creó una base de datos a partir de 36 estudios diferentes y la base de datos de Kaggle, incluyendo tanto MRI sin esclerosis múltiple como MRI con esclerosis múltiple. El modelo desarrollado alcanzó una precisión de verificación del 96%. Estos hallazgos destacan el potencial de las redes neuronales convolucionales en la detección de enfermedades a través de imágenes médicas, a pesar de algunas limitaciones, como el tamaño del conjunto de datos y las restricciones en la optimización de hiperparámetros.MatemáticoPregradoThis study aimed at developing a convolutional neural network model for the detection of multiple sclerosis using T2 and T2-FLAIR MRI images. A database was created from 36 different studies and the Kaggle database, including both MRI without MS and MRI with MS. The developed model achieved a verification accuracy of 96%. These findings highlight the potential of convolutional neural networks in disease detection through medical imaging, despite some limitations such as dataset size and hyperparameter optimization constraints.application/pdfAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Red neuronal convolucionalEsclerosis múltipleResonancia magnética T2 y T2-FLAIRBase de datos KaggleOptimización de hiperparámetros510Convolutional Neural NetworkMultiple SclerosisT2 and T2- FLAIR MRIKaggle DatabaseHyperparameter OptimizationUtilización de redes neuronales y resonancias magnéticas T2 y T2-FLAIR para la detección de lesiones periventriculares de esclerosis múltipleUse of neural networks and T2 and T2-FLAIR magnetic resonances for the detection of periventricular lesions in multiple sclerosisMatemáticasUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaDadhich, M., Bengio, Y., Courville, A., & Goodfellow, I. (2018). Practical Computer Vision: Extract Insightful Information From Images Using TensorFlow, Keras, and OpenCV. Packt Publishing.Artasanchez, A., & Joshi, P. (2020). Artificial Intelligence with Python: Your Complete Guide to Building Intelligent Apps Using Python 3.X and TensorFlow 2 (2nd ed.). Packt Publishing. https://books.google.com.co/books?id=Urc9zQEACAAJKarim, M. R. (2017). Predictive Analytics with TensorFlow.Filippi, M., Preziosa, P., Banwell, B. L., Barkhof, F., Ciccarelli, O., De Stefano, N., Geurts, J. J. G., Paul, F., Reich, D. S., Toosy, A. T., Traboulsee, A., Wattjes, M. P., Yousry, T. A., Gass, A., Lubetzki, C., Weinshenker, B. G., & Rocca, M. A. (2019). Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 142(7), 1858-1875. https://doi.org/10.1093/brain/awz144Tillema, J. M. (2023). Imaging of Central Nervous System Demyelinating Disorders. Brain, 29(xx), 292-323. https://pubmed.ncbi.nlm.nih.gov/36795881/Banwell, B., Bennett, J. L., Marignier, R., Kim, H. J., Brilot, F., Flanagan, E. P., Ramanathan, S., Waters, P., Tenembaum, S., Graves, J. S., Chitnis, T., Brandt, A. U., Hemingway, C., Neuteboom, R., Pandit, L., Reindl, M., Saiz, A., Sato, D. K., Rostasy, K., Paul, F., Pittock, S. J., Fujihara, K., & Palace, J. (2023). Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. The Lancet Neurology, 22(3), 268-282. https://doi.org/10.1016/S1474-4422(22)00431-8Hor, J. Y., Asgari, N., Nakashima, I., Broadley, S. A., Leite, M. I., Kissani, N., Jacob, A., Marignier, R., Weinshenker, B. G., Paul, F., Pittock, S. J., Palace, J., Wingerchuk, D. M., Behne, J. M., Yeaman, M. R., & Fujihara, K. (2020). Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Frontiers in Neurology, 11, 501. https://doi.org/10.3389/fneur.2020.00501Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-TBakker, B., & Heskes, T. (2003). Input uncertainty and the neural network classifier: a probabilistic perspective. Neural Networks, 16(1), 31-42. https://doi.org/10.1016/S0893-6080(02)00254-3Tousignant, A., Lemaître, P., Precup, D., Arnold, D. L., & Arbel, T. (2019). Prediction of Disease Progression in Multiple Sclerosis Patients using Deep Learning Analysis of MRI Data. In M. J. Cardoso, A. Feragen, B. Glocker, E. Konukoglu, I. Oguz, G. Unal, & T. Vercauteren (Eds.), Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning (pp. 483-492). PMLR. http://proceedings.mlr.press/v102/tousignant19a/tousignant19a.pdfBonacchi, R., Filippi, M., & Rocca, M. A. (2022). Role of artificial intelligence in MS clinical practice. NeuroImage: Clinical, 35, 103065. https://doi.org/10.1016/j.nicl.2022.103065Núñez Rivera, J. (2021). Aprendizaje profunda por refuerzo para clasificación de imágenes. Neural Networks, 16(1), 31-42.Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3Qu, L., Zhang, Y., Wang, S., Yap, P. T., & Shen, D. (2020). Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Medical Image Analysis, 62, 101663. https://doi.org/10.1016/j.media.2020.101663Tommasin, S., Cocozza, S., Taloni, A., Giannì, C., Petsas, N., Pontillo, G., Petracca, M., Ruggieri, S., Giglio, L., Pozzilli, C., Brunetti, A., & Pantano, P. (2021). Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 268, 101663. https://doi.org/10.1007/s00415-021-10605-7Hartmann, M., Fenton, N., & Dobson, R. (2021). Current review and next steps for artificial intelligence in multiple sclerosis risk research. Computers in Biology and Medicine, 132, 104337. https://doi.org/10.1016/j.compbiomed.2021.104337Hardy, N. P., Epperlein, J. P., Dalli, J., Robertson, W., Liddy, R., Aird, J. J., Mulligan, N., Neary, P. M., McEntee, G. P., Conneely, J. B., & Cahill, R. A. (2023). Real-time administration of indocyanine green in combination with computer vision and artificial intelligence for the identification and delineation of colorectal liver metastases. Surgery Open Science, 12, 48-54. https://doi.org/10.1016/j.sopen.2023.03.004Roach, D. J., Rohskopf, A., Hamel, C. M., Reinholtz, W. D., Bernstein, R., Qi, H. J., & Cook, A. W. (2021). Utilizing computer vision and artificial intelligence algorithms to predict and design the mechanical compression response of direct ink write 3D printed foam replacement structures. Additive Manufacturing, 41, 101950. https://doi.org/10.1016/j.addma.2021.101950Cantoni, V., Levialdi, S., & Zavidovique, B. (2011). Natural and Artificial Vision. In 3C Vision (pp. 1-18). Elsevier. https://doi.org/10.1016/B978-0-12-385220-5.00001-2Paragios, N., Chen, Y., & Faugeras, O. D. (2006). Handbook of mathematical models in computer vision. Springer Science & Business Media.Yao, Y. (2016). Image Segmentation Based on Sobel Edge Detection. In Proceedings of the 2016 5th International Conference on Advanced Materials and Computer Science (pp. 141-144). Atlantis Press. https://doi.org/10.2991/icamcs-16.2016.27Bora, D. J. (2017). A novel approach for color image edge detection using multidirectional Sobel filter on HSV color space. International Journal of Computer Science and Engineering, 5(2), 154-159.Rocca, M. A., Anzalone, N., Storelli, L., Del Poggio, A., Cacciaguerra, L., Manfredi, A. A., Meani, A., & Filippi, M. (2021). Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investigative Radiology, 56(4), 252-260. https://doi.org/10.1097/RLI.0000000000000735Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson Education India.Macin, G., Tasci, B., Tasci, I., Faust, O., Barua, P. D., Dogan, S., Tuncer, T., Tan, R.-S., & Acharya, U. R. (2022). An Accurate Multiple Sclerosis Detection Model Based on Exemplar Multiple Parameters Local Phase Quantization: ExMPLPQ. Applied Sciences, 12(10), 4920. https://doi.org/10.3390/app12104920Yuan, X., Hu, K., & Chen, S. (2020). Realtime CNN-based Keypoint Detector with Sobel Filter and CNN-based Descriptor Trained with Keypoint Candidates. arXiv. https://doi.org/10.48550/arXiv.2011.02119Young, I. T., & van Vliet, L. J. (1995). Recursive implementation of the Gaussian filter. Signal Processing, 44(2), 139-151. https://doi.org/10.1016/0165-1684(95)00020-ENVIDIA Corporation. (2007). Separable Convolution. https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/convolutionSeparable/doc/convolutionSeparable.pdfWeisstein, E. W. (2004). Normal Distribution. MathWorld. https://mathworld.wolfram.com/NormalDistribution.htmlLi, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999-7019. https://doi.org/10.1109/TNNLS.2021.3084827Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science & Business Media.Rasamoelina, A. D., Adjailia, F., & Sinčák, P. (2020). A Review of Activation Function for Artificial Neural Network. In 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI) (pp. 281-286). IEEE. https://doi.org/10.1109/SAMI48414.2020.9108717Huang, J. J., & Wanda, P. (2020). RunPool: A Dynamic Pooling Layer for Convolution Neural Network. International Journal of Computational Intelligence Systems, 13(1), 66-76.Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., ... & Kappos, L. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69(2), 292-302. https://doi.org/10.1002/ana.22366Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., ... & Kappos, L. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, 17(2), 162-173. https://doi.org/10.1016/S1474-4422(17)30470-2Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis--a review. European Journal of Neurology, 26(1), 27-40. https://doi.org/10.1111/ene.13819Zivadinov, R., & Leist, T. (2018). Clinical-magnetic resonance imaging correlations in multiple sclerosis. Journal of Neuroimaging, 28(3), 267-275. https://doi.org/10.1111/jon.12511spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf26896423https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/cc97c3fb-8937-46fd-954a-f7a0010652a7/downloade9dbea0eec6eef843b0a655793f47beaMD53trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/a19694e3-37dc-4a9c-92fb-2973580cfe43/download17cc15b951e7cc6b3728a574117320f9MD54falseAnonymousREADCarta de autorizacion.pdfapplication/pdf144735https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/4da5d7f1-4a43-4213-9b20-43c7635aba8c/downloade8cfbf11c95beb62320f0e1bdfe77e1cMD56falseBiblioteca - (Publicadores)READCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8893https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/566a331d-d892-45a5-bab4-e5df606e7d7b/download5310bb89a00d5ead086944535cc857c4MD55falseAnonymousREADTEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain92090https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/f0f5e1f5-7ef3-4c3f-9e9d-97252870e0f3/download0c08332acf6f239e8445149757dd3e6cMD57falseAnonymousREADTHUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3700https://pruebas-update-repositorio-unbosque.cloudbiteca.com/bitstreams/b29ebb0e-5d1f-4e6c-a0e2-d97a420b61b8/download4f18cd2f78a82c5be630b7b9502af117MD58falseAnonymousREAD20.500.12495/14922oai:pruebas-update-repositorio-unbosque.cloudbiteca.com:20.500.12495/149222025-07-11T10:02:59.537Zhttp://creativecommons.org/licenses/by-nd/4.0/Attribution-NoDerivatives 4.0 Internationalopen.accesshttps://pruebas-update-repositorio-unbosque.cloudbiteca.comRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |
