Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica
El documento proporciona un análisis detallado de una estación meteorológica innovadora que combina la recopilación de datos ambientales con tecnología avanzada de IoT y aprendizaje automático para predecir condiciones climáticas en el área de influencia de la Universidad Distrital Francisco José de...
- Autores:
-
Lázaro Mejia, Yarokxy
Carrillo Romero, Cristhian David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/41197
- Acceso en línea:
- http://hdl.handle.net/11349/41197
- Palabra clave:
- Estacion Meteorologica
loT
Aprendizaje automático
Punto de rocio
Sensores
Ingeniería en Control -- Tesis y disertaciones académicas
Sistemas de información climática
Aprendizaje automático en meteorología
Internet de las cosas (IoT)
Estaciones meteorológicas de bajo costo
Predicción de variables climáticas
Weather station
IoT (Internet of Things)
Machine learning
Dew point
Sensors
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_882100d81965ed57eab28914c8cafcb0 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/41197 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
dc.title.titleenglish.spa.fl_str_mv |
Climate information system for approximate characterization of 5 variables behavior using machine learning technique in the influence Area of Francisco José De Caldas District University, Technological Faculty |
title |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
spellingShingle |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica Estacion Meteorologica loT Aprendizaje automático Punto de rocio Sensores Ingeniería en Control -- Tesis y disertaciones académicas Sistemas de información climática Aprendizaje automático en meteorología Internet de las cosas (IoT) Estaciones meteorológicas de bajo costo Predicción de variables climáticas Weather station IoT (Internet of Things) Machine learning Dew point Sensors |
title_short |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
title_full |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
title_fullStr |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
title_full_unstemmed |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
title_sort |
Sistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad Tecnológica |
dc.creator.fl_str_mv |
Lázaro Mejia, Yarokxy Carrillo Romero, Cristhian David |
dc.contributor.advisor.none.fl_str_mv |
Hernández Martínez, Henry Alberto |
dc.contributor.author.none.fl_str_mv |
Lázaro Mejia, Yarokxy Carrillo Romero, Cristhian David |
dc.subject.none.fl_str_mv |
Estacion Meteorologica loT Aprendizaje automático Punto de rocio Sensores |
topic |
Estacion Meteorologica loT Aprendizaje automático Punto de rocio Sensores Ingeniería en Control -- Tesis y disertaciones académicas Sistemas de información climática Aprendizaje automático en meteorología Internet de las cosas (IoT) Estaciones meteorológicas de bajo costo Predicción de variables climáticas Weather station IoT (Internet of Things) Machine learning Dew point Sensors |
dc.subject.lemb.none.fl_str_mv |
Ingeniería en Control -- Tesis y disertaciones académicas Sistemas de información climática Aprendizaje automático en meteorología Internet de las cosas (IoT) Estaciones meteorológicas de bajo costo Predicción de variables climáticas |
dc.subject.keyword.none.fl_str_mv |
Weather station IoT (Internet of Things) Machine learning Dew point Sensors |
description |
El documento proporciona un análisis detallado de una estación meteorológica innovadora que combina la recopilación de datos ambientales con tecnología avanzada de IoT y aprendizaje automático para predecir condiciones climáticas en el área de influencia de la Universidad Distrital Francisco José de Caldas, Facultad Tecnológica, se presentan un sistema que no sólo captura datos en tiempo real, sino que también utiliza algoritmos de aprendizaje automático para interpretar y pronosticar eventos climáticos. Este proyecto interdisciplinario muestra una integración de la ingeniería en telecomunicaciones y la ingeniería en control y automatización, lo que demuestra la viabilidad de estaciones meteorológicas de bajo costo y altamente eficientes para la toma de decisiones informadas en varios sectores como la agricultura, la gestión de desastres y la planificación urbana.[1] El proyecto destaca por su diseño enfocado en la sostenibilidad, empleando dispositivos como el microcontrolador ESP32, que se distingue por su procesamiento y bajo consumo energético, sensores de efecto Hall para medir variables como velocidad y dirección del viento, así como la precipitación. La plataforma Firebase de Google juega un papel importante en el almacenamiento y análisis de los datos recogidos, permitiendo un acceso y procesamiento en tiempo real que son fundamentales para la precisión meteorológica. Además, la tecnología ESP-NOW se utiliza para crear redes cohesivas y confiables entre los sensores y el centro de monitoreo.[2] El proyecto se justifica no solo por su valor educativo y científico, sino también por su potencial para mejorar la vida cotidiana y la gestión ambiental dentro de la comunidad universitaria y su entorno. Con una visión futurista, el documento explora las innovaciones y tendencias futuras, incluyendo la integración más profunda de IoT y aprendizaje automático, que podrían transformar aún más el análisis y la precisión de las predicciones meteorológicas. La metodología incluye el desarrollo de un prototipo de estación meteorológica conectada de manera remota a una base de datos y el uso de técnicas de preprocesamiento y análisis exploratorio de datos para predecir fenómenos atmosféricos. Se comparan tres algoritmos de aprendizaje automático utilizando índices estadísticos como el MSE, MAE y el índice de eficiencia, y se proporciona un análisis detallado de los datos recopilados para entender las relaciones entre diferentes variables climatológicas tales temperatura, humedad, dirección y velocidad del viento, y precipitación.[3] El trabajo enfatiza la importancia del cumplimiento de estándares técnicos y de calidad y competencia en el desarrollo y operación de estaciones meteorológicas, y concluye con una discusión sobre la relevancia de la investigación para el desarrollo tecnológico y la innovación en la región. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-03T15:52:44Z |
dc.date.available.none.fl_str_mv |
2024-10-03T15:52:44Z |
dc.date.created.none.fl_str_mv |
2024-04-24 |
dc.type.spa.fl_str_mv |
bachelorThesis |
dc.type.degree.spa.fl_str_mv |
Monografía |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/41197 |
url |
http://hdl.handle.net/11349/41197 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/6e946c0b-cd68-4c42-9ff5-34fd9dd6c775/download https://repository.udistrital.edu.co/bitstreams/dbc547fc-8d83-4aca-bd51-1a537a0f3e21/download https://repository.udistrital.edu.co/bitstreams/7366a1b3-f35b-49f6-8f23-5b2893514c63/download https://repository.udistrital.edu.co/bitstreams/65f99022-a6d8-45db-bc45-5f8071a7e299/download https://repository.udistrital.edu.co/bitstreams/721cd751-4695-4d53-8c34-b2805679f5dc/download https://repository.udistrital.edu.co/bitstreams/5000938f-ed58-465f-9ea0-5a998fc69e50/download |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 800eaebaedc31fd61ebaebb0da3f684d 8a4280f8011bee8c0e8f410f5dfea685 4460e5956bc1d1639be9ae6146a50347 38446a6d9189625cccbfc3508fc94247 9dc40dd128ec30358a6a92ffe0f356ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837007096341594112 |
spelling |
Hernández Martínez, Henry AlbertoLázaro Mejia, YarokxyCarrillo Romero, Cristhian David2024-10-03T15:52:44Z2024-10-03T15:52:44Z2024-04-24http://hdl.handle.net/11349/41197El documento proporciona un análisis detallado de una estación meteorológica innovadora que combina la recopilación de datos ambientales con tecnología avanzada de IoT y aprendizaje automático para predecir condiciones climáticas en el área de influencia de la Universidad Distrital Francisco José de Caldas, Facultad Tecnológica, se presentan un sistema que no sólo captura datos en tiempo real, sino que también utiliza algoritmos de aprendizaje automático para interpretar y pronosticar eventos climáticos. Este proyecto interdisciplinario muestra una integración de la ingeniería en telecomunicaciones y la ingeniería en control y automatización, lo que demuestra la viabilidad de estaciones meteorológicas de bajo costo y altamente eficientes para la toma de decisiones informadas en varios sectores como la agricultura, la gestión de desastres y la planificación urbana.[1] El proyecto destaca por su diseño enfocado en la sostenibilidad, empleando dispositivos como el microcontrolador ESP32, que se distingue por su procesamiento y bajo consumo energético, sensores de efecto Hall para medir variables como velocidad y dirección del viento, así como la precipitación. La plataforma Firebase de Google juega un papel importante en el almacenamiento y análisis de los datos recogidos, permitiendo un acceso y procesamiento en tiempo real que son fundamentales para la precisión meteorológica. Además, la tecnología ESP-NOW se utiliza para crear redes cohesivas y confiables entre los sensores y el centro de monitoreo.[2] El proyecto se justifica no solo por su valor educativo y científico, sino también por su potencial para mejorar la vida cotidiana y la gestión ambiental dentro de la comunidad universitaria y su entorno. Con una visión futurista, el documento explora las innovaciones y tendencias futuras, incluyendo la integración más profunda de IoT y aprendizaje automático, que podrían transformar aún más el análisis y la precisión de las predicciones meteorológicas. La metodología incluye el desarrollo de un prototipo de estación meteorológica conectada de manera remota a una base de datos y el uso de técnicas de preprocesamiento y análisis exploratorio de datos para predecir fenómenos atmosféricos. Se comparan tres algoritmos de aprendizaje automático utilizando índices estadísticos como el MSE, MAE y el índice de eficiencia, y se proporciona un análisis detallado de los datos recopilados para entender las relaciones entre diferentes variables climatológicas tales temperatura, humedad, dirección y velocidad del viento, y precipitación.[3] El trabajo enfatiza la importancia del cumplimiento de estándares técnicos y de calidad y competencia en el desarrollo y operación de estaciones meteorológicas, y concluye con una discusión sobre la relevancia de la investigación para el desarrollo tecnológico y la innovación en la región.The document provides a detailed analysis of an innovative weather station that combines environmental data collection with advanced IoT technology and machine learning to predict weather conditions in the influence area of the Francisco José de Caldas District University, Technological Faculty. It presents a system that not only captures real-time data but also utilizes machine learning algorithms to interpret and forecast weather events. This interdisciplinary project demonstrates an integration of telecommunications engineering and control and automation engineering, showcasing the feasibility of low-cost and highly efficient weather stations for informed decision-making in various sectors such as agriculture, disaster management, and urban planning. The project stands out for its sustainability-focused design, employing devices such as the ESP32 microcontroller, known for its processing power and low energy consumption, Hall effect sensors to measure variables such as wind speed and direction, as well as precipitation. Google's Firebase platform plays a significant role in storing and analyzing the collected data, enabling real-time access and processing that are crucial for meteorological accuracy. Additionally, ESP-NOW technology is used to create cohesive and reliable networks between the sensors and the monitoring center. The project is justified not only for its educational and scientific value but also for its potential to improve everyday life and environmental management within the university community and its surroundings. With a futuristic vision, the document explores future innovations and trends, including deeper integration of IoT and machine learning, which could further transform weather analysis and prediction accuracy. The methodology includes the development of a remotely connected prototype weather station to a database and the use of preprocessing techniques and exploratory data analysis to predict atmospheric phenomena. Three machine learning algorithms are compared using statistical indices such as MSE, MAE, and efficiency index, and a detailed analysis of the collected data is provided to understand the relationships between different climatological variables such as temperature, humidity, wind direction and speed, and precipitation. The work emphasizes the importance of compliance with technical and quality standards and competence in the development and operation of weather stations, concluding with a discussion on the relevance of research for technological development and innovation in the region.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Estacion MeteorologicaloTAprendizaje automáticoPunto de rocioSensoresIngeniería en Control -- Tesis y disertaciones académicasSistemas de información climáticaAprendizaje automático en meteorologíaInternet de las cosas (IoT)Estaciones meteorológicas de bajo costoPredicción de variables climáticasWeather stationIoT (Internet of Things)Machine learningDew pointSensorsSistema de información climática para caracterizar de forma aproximada el comportamiento de 5 variables mediante una técnica de aprendizaje automático en el área de influencia de la Universidad Distrital Francisco José De Caldas Facultad TecnológicaClimate information system for approximate characterization of 5 variables behavior using machine learning technique in the influence Area of Francisco José De Caldas District University, Technological FacultybachelorThesisMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/6e946c0b-cd68-4c42-9ff5-34fd9dd6c775/download997daf6c648c962d566d7b082dac908dMD54ORIGINALLazaroMejiaYarokxyArjadis2024.pdfLazaroMejiaYarokxyArjadis2024.pdfTrabajo de gradoapplication/pdf3489296https://repository.udistrital.edu.co/bitstreams/dbc547fc-8d83-4aca-bd51-1a537a0f3e21/download800eaebaedc31fd61ebaebb0da3f684dMD51Licencia y autorización de los autores para publicar.pdfLicencia y autorización de los autores para publicar.pdfLicencia de uso y publicacionapplication/pdf245550https://repository.udistrital.edu.co/bitstreams/7366a1b3-f35b-49f6-8f23-5b2893514c63/download8a4280f8011bee8c0e8f410f5dfea685MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/65f99022-a6d8-45db-bc45-5f8071a7e299/download4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILLazaroMejiaYarokxyArjadis2024.pdf.jpgLazaroMejiaYarokxyArjadis2024.pdf.jpgIM Thumbnailimage/jpeg3896https://repository.udistrital.edu.co/bitstreams/721cd751-4695-4d53-8c34-b2805679f5dc/download38446a6d9189625cccbfc3508fc94247MD55Licencia y autorización de los autores para publicar.pdf.jpgLicencia y autorización de los autores para publicar.pdf.jpgIM Thumbnailimage/jpeg9504https://repository.udistrital.edu.co/bitstreams/5000938f-ed58-465f-9ea0-5a998fc69e50/download9dc40dd128ec30358a6a92ffe0f356eaMD5611349/41197oai:repository.udistrital.edu.co:11349/411972025-03-17 01:13:27.378http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |