Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas
Esta investigación aborda la creación de un sistema basado en el Internet de las Cosas (IoT) y optimizado mediante técnicas de aprendizaje automático para la detección temprana de crisis epilépticas. Se desarrolló un algoritmo capaz de capturar señales biológicas a través de sensores portátiles y pr...
- Autores:
-
Peña Arismendi, Santiago Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/42172
- Acceso en línea:
- http://hdl.handle.net/11349/42172
- Palabra clave:
- Detección temprana de crisis epilépticas
Internet de las Cosas (IoT)
Aprendizaje automático en salud
Sensores portátiles biomédicos
Redes neuronales en epilepsia
Monitoreo cardíaco predictivo
Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas
Internet de las Cosas (IoT)
Aprendizaje automático en salud
Detección temprana de crisis epilépticas
Early detection of epileptic seizures
Internet of Things (IoT)
Machine learning in healthcare
Wearable biomedical sensors
Neural networks in epilepsy
Predictive cardiac monitoring
- Rights
- License
- Abierto (Texto Completo)
id |
UDISTRITA2_1eca552e99e28bcca6064c7f335a2542 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/42172 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
dc.title.titleenglish.none.fl_str_mv |
Development of an IoT system with machine learning for the early detection of epileptic seizures |
title |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
spellingShingle |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas Detección temprana de crisis epilépticas Internet de las Cosas (IoT) Aprendizaje automático en salud Sensores portátiles biomédicos Redes neuronales en epilepsia Monitoreo cardíaco predictivo Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas Internet de las Cosas (IoT) Aprendizaje automático en salud Detección temprana de crisis epilépticas Early detection of epileptic seizures Internet of Things (IoT) Machine learning in healthcare Wearable biomedical sensors Neural networks in epilepsy Predictive cardiac monitoring |
title_short |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
title_full |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
title_fullStr |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
title_full_unstemmed |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
title_sort |
Desarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticas |
dc.creator.fl_str_mv |
Peña Arismendi, Santiago Andrés |
dc.contributor.advisor.none.fl_str_mv |
Salcedo Parra , Octavio José Guio Mahecha, Laura Victoria |
dc.contributor.author.none.fl_str_mv |
Peña Arismendi, Santiago Andrés |
dc.contributor.orcid.none.fl_str_mv |
Salcedo Parra , Octavio José []0000-0002-0767-8522 |
dc.subject.none.fl_str_mv |
Detección temprana de crisis epilépticas Internet de las Cosas (IoT) Aprendizaje automático en salud Sensores portátiles biomédicos Redes neuronales en epilepsia Monitoreo cardíaco predictivo |
topic |
Detección temprana de crisis epilépticas Internet de las Cosas (IoT) Aprendizaje automático en salud Sensores portátiles biomédicos Redes neuronales en epilepsia Monitoreo cardíaco predictivo Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas Internet de las Cosas (IoT) Aprendizaje automático en salud Detección temprana de crisis epilépticas Early detection of epileptic seizures Internet of Things (IoT) Machine learning in healthcare Wearable biomedical sensors Neural networks in epilepsy Predictive cardiac monitoring |
dc.subject.lemb.none.fl_str_mv |
Maestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicas Internet de las Cosas (IoT) Aprendizaje automático en salud Detección temprana de crisis epilépticas |
dc.subject.keyword.none.fl_str_mv |
Early detection of epileptic seizures Internet of Things (IoT) Machine learning in healthcare Wearable biomedical sensors Neural networks in epilepsy Predictive cardiac monitoring |
description |
Esta investigación aborda la creación de un sistema basado en el Internet de las Cosas (IoT) y optimizado mediante técnicas de aprendizaje automático para la detección temprana de crisis epilépticas. Se desarrolló un algoritmo capaz de capturar señales biológicas a través de sensores portátiles y procesarlas en una arquitectura IoT. Los datos obtenidos del Hospital de la Misericordia en Bogotá fueron usados para validar diversos modelos, destacándose un árbol de decisión y una red neuronal perceptrón multicapa, que lograron precisiones de 92.47% y 93.56%, respectivamente. En entornos clínicos reales, estos modelos lograron una precisión del 65%. La arquitectura propuesta permite enviar alertas preventivas en tiempo real, ofreciendo una herramienta potencialmente eficaz para mejorar la calidad de vida de personas con epilepsia. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-25T16:09:07Z |
dc.date.available.none.fl_str_mv |
2024-10-25T16:09:07Z |
dc.date.created.none.fl_str_mv |
2024-08-29 |
dc.type.none.fl_str_mv |
masterThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.degree.none.fl_str_mv |
Investigación-Innovación |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/42172 |
url |
http://hdl.handle.net/11349/42172 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Ali A . Abed. (2017). Internet of Things ( IoT ): Architecture and Design. Computer Engineering Department/University of Basra 1, December. Andreessen, M., & Bina, E. (1996). NCSA Mosaic. Software: Practice and Experience, 25, 501–506. Ashton, K. (2009). That “Internet of Things” Thing. RFID Journal. Barrio Andrés, Moisés. (2020). Internet de las cosas / Moisés Barrio Andrés. In Internet de las cosas / (2a. edición.). Reus,. Beniczky, S., Aurlien, H., Brøgger, J. C., Fuglsang-Frederiksen, A., Martins-Da-Silva, A., Trinka, E., Visser, G., Rubboli, G., Hjalgrim, H., Stefan, H., Rosén, I., Zarubova, J., Dobesberger, J., Alving, J., Andersen, K. V., Fabricius, M., Atkins, M. D., Neufeld, M., Plouin, P., … Wolf, P. (2013). Standardized Computer-based Organized Reporting of EEG: SCORE. Epilepsia, 54(6), 1112–1124. https://doi.org/10.1111/epi.12135 Bermeo-Ovalle, A. C., Kennedy, J. D., & Schuele, S. U. (2015). Cardiac and autonomic mechanisms contributing to SUDEP. J Clin Neurophysiol. Abstract: Sudden Unexpected Death in Epilepsy Is Likely Caused by a Cascade of Events Affecting the Vegetative Nervous System Leading to Cardiorespiratory Failure and Death, 1(1), 21– 29. Boyd, D. M., & Ellison, N. B. (2007). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13, 210–230. Cerf, V. G., & Kahn, R. E. (1974). A protocol for packet network intercommunication. IEEE Transactions on Communications, 22(5), 637–648. Chekhmane, G., & Benali, R. (2022). EEG signals analysis using SVM and MLPNN classifiers for epilepsy detection. 2022 5th International Symposium on Informatics and Its Applications (ISIA), 1–6. https://doi.org/10.1109/ISIA55826.2022.9993577 Eggleston, K. S., Olin, B. D., & Fisher, R. S. (2014a). Ictal tachycardia: The head-heart connection. Seizure, 23(7), 496–505. https://doi.org/10.1016/j.seizure.2014.02.012 Evans, D. (2011). The Internet of Things: How the Next Evolution of the Internet Is Changing Everything. Fisher, R. S., Cross, J. H., French, J. A., Higurashi, N., Hirsch, E., Jansen, F. E., Lagae, L., Moshé, S. L., Peltola, J., Roulet Perez, E., Scheffer, I. E., & Zuberi, S. M. (2017). Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 58(4), 522–530. https://doi.org/10.1111/epi.13670 Fisher, R. S., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472. https://doi.org/10.1111/j.0013-9580.2005.66104.x Fujiwara, K., Miyajima, M., Yamakawa, T., Abe, E., Suzuki, Y., Sawada, Y., Kano, M., Maehara, T., Ohta, K., Sasai-Sakuma, T., Sasano, T., Matsuura, M., & Matsushima, E. (2016a). Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features. IEEE Transactions on Biomedical Engineering, 63(6), 1321–1332. https://doi.org/10.1109/TBME.2015.2512276 Giannakakis, G., Tsiknakis, M., & Vorgia, P. (2019). Computer Methods and Programs in Biomedicine Focal epileptic seizures anticipation based on patterns of heart rate variability parameters. 178, 123–133. https://doi.org/10.1016/j.cmpb.2019.05.032 González, D. R. (2013). Arquitectura y Gestión de la IoT IoT Network Management / Abstract. Revista Telem@tica, 12(3), 49–60. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660. Hampel, K. G., Rocamora Zuñiga, R., & Quesada, C. M. (2016). Unravelling the mysteries of sudden unexpected death in epilepsy. Neurologia. https://doi.org/10.1016/j.nrl.2017.02.004 Jansen, K., Varon, C., Van Huffel, S., & Lagae, L. (2013a). Peri-ictal ECG changes in childhood epilepsy: Implications for detection systems. Epilepsy and Behavior, 29(1), 72–76. https://doi.org/10.1016/j.yebeh.2013.06.030 Lasefr, Z., Reddy, R. R., & Elleithy, K. (2017). Smart Phone Application Development for Monitoring Epilepsy Seizure Detection based on EEG signal Classification. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 83–87. Leach, J. P., Stephen, L. J., Salveta, C., & Brodie, M. J. (2006a). Which electroencephalography (EEG) for epilepsy? The relative usefulness of different EEG protocols in patients with possible epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 77(9), 1040–1042. https://doi.org/10.1136/jnnp.2005.084871 Lee, T. M. C., & Chan, J. K. P. (2002). Factores que afectan el estado cognitivo de personas que sufren epilepsia. Departamento de Psicología. Universidad de Hong Kong. Hong Kong, 34(9), 861–865. Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., & Wolff, S. (2009). A brief history of the Internet. ACM SIGCOMM Computer Communication Review, 39(5), 22–31. López, M. (2019). Internet de las cosas La transformación digital de la sociedad. In de Internet de las cosas La transformación digital de la sociedad, Madrid, Ra-Ma. Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews Neuroscience, 9(8), 626–637. Malik, M. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use Task Force of The European Society of Cardiology and the North American Society for Pacing and Electrophysiology. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1542-474X.1996.tb00275.x Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., & Laxminarayan, R. (2016). Health and economic benefits of public financing of epilepsy treatment in India: An agent- based simulation model. Epilepsia, 57(3), 464–474. https://doi.org/10.1111/epi.13294 Ministerio de Salud y Protección Social. (2017, February 13). Epilepsia: mucho más que convulsiones. Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2015). A Review on Internet of Things (loT), Internet of Everything (IoE) and Internet ofNano Things (IoNT). Internet Technologies and Applications (ITA). Moridani, M. K., & Farhadi, H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction. Bratislava Medical Journal, 118(1). https://doi.org/10.4149/BLL_2017_001 Nagai, Y., Goldstein, L. H., Fenwick, P. B. C., & Trimble, M. R. (2004). Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: A preliminary randomized controlled study. Epilepsy and Behavior, 5(2), 216–223. https://doi.org/10.1016/j.yebeh.2003.12.003 Nagai, Y., Jones, C. I., & Sen, A. (2019). Galvanic Skin Response (GSR)/Electrodermal/Skin Conductance Biofeedback on Epilepsy: A Systematic Review and Meta-Analysis. In Frontiers in Neurology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fneur.2019.00377 Nguyen Thi Anh-Dao, Tran Duc-Nghia, Nguyen Thi-Hao, Tran Duc-Tan, Nguyen Linh- Trung, IEEE Communications Society, International Conference on Advanced Technologies for Communications 6 2013.10.16-18 Ho Chi Minh City, & ATC 6 2013.10.16-18 Ho Chi Minh City. (2013). An Effective Procedure for Reducing EOG and EMG Artefacts from EEG Signals. International Conference on Advanced Technologies for Communications Organización Mundial de la Salud (OMS). (2023, February 9). Epilepsia. https://www.who.int/es/news-room/fact-sheets/detail/epilepsy Patel, S., Mancinelli, C., Dalton, A., Patritti, B., Pang, T., Schachter, S., & Bonato, P. (2009). Detecting epileptic seizures using wearable sensors. Bioengineering, Proceedings of the Northeast Conference, 4–5. https://doi.org/10.1109/NEBC.2009.4967771 Rajaguru, H. (2017). EEG features for Epilepsy Detection. Iccmc, 981–984. Ray, A., Tao, J. X., Hawes-Ebersole, S. M., & Ebersole, J. S. (2007a). Localizing value of scalp EEG spikes: A simultaneous scalp and intracranial study. Clinical Neurophysiology, 118(1), 69–79. https://doi.org/10.1016/j.clinph.2006.09.010 Rushalina, D., Wisana, I. D. G. H., Nugraha, P. C., & Ragimova, N. (2022). Analysis of Transmitted and Received ECG Signal Based on Internet of Thing Using Web Browser and Server-Client HTML Protocol. Jurnal Teknokes, 15(4). https://doi.org/10.35882/teknokes.v15i4.469 Singh, B., Bhattacharya, S., Chowdhary, C. L., & Jat, D. S. (2017a). A review on internet of things and its applications in healthcare. Journal of Chemical and Pharmaceutical Sciences, 10(1), 447–452. Smith, A. (2011). Smartphone Adoption and Usage. Pew Internet & American Life Project. Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and Challenges for Realising the Internet of Things. http://europa.eu/information_society Tatum, W. O., Rubboli, G., Kaplan, P. W., Mirsatari, S. M., Radhakrishnan, K., Gloss, D., Caboclo, L. O., Drislane, F. W., Koutroumanidis, M., Schomer, D. L., Kastelijn-Nolst Trenite, D., Cook, M., & Beniczky, S. (2018). Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical Neurophysiology, 129, 1056–1082. https://doi.org/10.1016/j.clinph.2018.01.019 Thara, D. K., Premasudha, B. G., & Krivic, S. (n.d.). Detection of epileptic seizure events using pre-trained convolutional neural network, VGGNet and ResNet. Expert Systems, n/a(n/a), e13447. https://doi.org/https://doi.org/10.1111/exsy.13447 Vergara, P. M., De La Cal, E., Villar, J. R., González, V. M., & Sedano, J. (2017a). An IoT Platform for Epilepsy Monitoring and Supervising. Journal of Sensors, 2017. https://doi.org/10.1155/2017/6043069 Wagle, S. (2016). Semantic data extraction over MQTT for IoTcentric wireless sensor networks. 2016 International Conference on Internet of Things and Applications (IOTA), 227–232. https://doi.org/10.1109/IOTA.2016.7562727 Watthanawisuth, N., Maturos, T., Sappat, A., & Tuantranont, A. (2015). The IoT wearable stretch sensor using 3D-Graphene foam. 2015 IEEE SENSORS - Proceedings, 3–6. https://doi.org/10.1109/ICSENS.2015.7370275 What is ICANN? (2020). ICANN. https://www.icann.org/resources/pages/what-2012-02-25- en Wu, M., Lu, T.-J., Ling, F.-Y., Sun, J., & Du, H.-Y. (2010). Research on the architecture of Internet of Things. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 5, V5-484-V5-487. https://doi.org/10.1109/ICACTE.2010.5579493 Yamakawa, T., Miyajima, M., Fujiwara, K., Kano, M., Suzuki, Y., Watanabe, Y., Watanabe, S., Hoshida, T., Inaji, M., & Maehara, T. (2020). Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability. Sensors (Switzerland), 20(14), 1–16. https://doi.org/10.3390/s20143987 Zapata Barco, A. M., Restrepo-Martínez, M., & Restrepo, D. (2020). Depression in People with Epilepsy. What is the Connection? In Revista Colombiana de Psiquiatria (Vol. 49, Issue 1, pp. 53–61). Elsevier Doyma. https://doi.org/10.1016/j.rcp.2017.10.004 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
pdf |
dc.publisher.none.fl_str_mv |
Universidad Distrital Francisco José de Caldas |
publisher.none.fl_str_mv |
Universidad Distrital Francisco José de Caldas |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/c6e1aa9c-4358-4d30-8175-2b79bf5949cc/download https://repository.udistrital.edu.co/bitstreams/5bab5ee6-9736-4e7a-be97-cf3f56318459/download https://repository.udistrital.edu.co/bitstreams/d99a891c-7e02-4b02-a981-1e60a7361a09/download https://repository.udistrital.edu.co/bitstreams/322495be-18e3-4873-9dcb-41b627492549/download https://repository.udistrital.edu.co/bitstreams/2d391268-f40b-4d87-9526-c0bb1b93b67e/download |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 19fc48047fff7993e0a677265eac03e5 00a996f3883548561b927e15b020514e 8cdac87fef8f74bf5c3cbdb68c7a9c1f adc9d64d6b7ad0cf5c50a85952a89676 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837006965692170240 |
spelling |
Salcedo Parra , Octavio JoséGuio Mahecha, Laura VictoriaPeña Arismendi, Santiago AndrésSalcedo Parra , Octavio José []0000-0002-0767-85222024-10-25T16:09:07Z2024-10-25T16:09:07Z2024-08-29http://hdl.handle.net/11349/42172Esta investigación aborda la creación de un sistema basado en el Internet de las Cosas (IoT) y optimizado mediante técnicas de aprendizaje automático para la detección temprana de crisis epilépticas. Se desarrolló un algoritmo capaz de capturar señales biológicas a través de sensores portátiles y procesarlas en una arquitectura IoT. Los datos obtenidos del Hospital de la Misericordia en Bogotá fueron usados para validar diversos modelos, destacándose un árbol de decisión y una red neuronal perceptrón multicapa, que lograron precisiones de 92.47% y 93.56%, respectivamente. En entornos clínicos reales, estos modelos lograron una precisión del 65%. La arquitectura propuesta permite enviar alertas preventivas en tiempo real, ofreciendo una herramienta potencialmente eficaz para mejorar la calidad de vida de personas con epilepsia.This research addresses the development of a system based on the Internet of Things (IoT) and optimized through machine learning techniques for the early detection of epileptic seizures. An algorithm was developed to capture biological signals through wearable sensors and process them within an IoT architecture. Data obtained from the Hospital de la Misericordia in Bogotá were used to validate various models, with a decision tree and a multilayer perceptron neural network standing out, achieving accuracies of 92.47% and 93.56%, respectively. In real clinical settings, these models achieved an accuracy of 65%. The proposed architecture allows for real-time preventive alerts, offering a potentially effective tool to improve the quality of life for people with epilepsy.pdfspaUniversidad Distrital Francisco José de CaldasDetección temprana de crisis epilépticasInternet de las Cosas (IoT)Aprendizaje automático en saludSensores portátiles biomédicosRedes neuronales en epilepsiaMonitoreo cardíaco predictivoMaestría en Ciencias de la Información y las Comunicaciones -- Tesis y disertaciones académicasInternet de las Cosas (IoT)Aprendizaje automático en saludDetección temprana de crisis epilépticasEarly detection of epileptic seizuresInternet of Things (IoT)Machine learning in healthcareWearable biomedical sensorsNeural networks in epilepsyPredictive cardiac monitoringDesarrollo de un sistema de IoT con machine learning para la detección temprana de crisis epilépticasDevelopment of an IoT system with machine learning for the early detection of epileptic seizuresmasterThesisInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Ali A . Abed. (2017). Internet of Things ( IoT ): Architecture and Design. Computer Engineering Department/University of Basra 1, December.Andreessen, M., & Bina, E. (1996). NCSA Mosaic. Software: Practice and Experience, 25, 501–506.Ashton, K. (2009). That “Internet of Things” Thing. RFID Journal.Barrio Andrés, Moisés. (2020). Internet de las cosas / Moisés Barrio Andrés. In Internet de las cosas / (2a. edición.). Reus,.Beniczky, S., Aurlien, H., Brøgger, J. C., Fuglsang-Frederiksen, A., Martins-Da-Silva, A., Trinka, E., Visser, G., Rubboli, G., Hjalgrim, H., Stefan, H., Rosén, I., Zarubova, J., Dobesberger, J., Alving, J., Andersen, K. V., Fabricius, M., Atkins, M. D., Neufeld, M., Plouin, P., … Wolf, P. (2013). Standardized Computer-based Organized Reporting of EEG: SCORE. Epilepsia, 54(6), 1112–1124. https://doi.org/10.1111/epi.12135Bermeo-Ovalle, A. C., Kennedy, J. D., & Schuele, S. U. (2015). Cardiac and autonomic mechanisms contributing to SUDEP. J Clin Neurophysiol. Abstract: Sudden Unexpected Death in Epilepsy Is Likely Caused by a Cascade of Events Affecting the Vegetative Nervous System Leading to Cardiorespiratory Failure and Death, 1(1), 21– 29.Boyd, D. M., & Ellison, N. B. (2007). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 13, 210–230.Cerf, V. G., & Kahn, R. E. (1974). A protocol for packet network intercommunication. IEEE Transactions on Communications, 22(5), 637–648.Chekhmane, G., & Benali, R. (2022). EEG signals analysis using SVM and MLPNN classifiers for epilepsy detection. 2022 5th International Symposium on Informatics and Its Applications (ISIA), 1–6. https://doi.org/10.1109/ISIA55826.2022.9993577Eggleston, K. S., Olin, B. D., & Fisher, R. S. (2014a). Ictal tachycardia: The head-heart connection. Seizure, 23(7), 496–505. https://doi.org/10.1016/j.seizure.2014.02.012Evans, D. (2011). The Internet of Things: How the Next Evolution of the Internet Is Changing Everything.Fisher, R. S., Cross, J. H., French, J. A., Higurashi, N., Hirsch, E., Jansen, F. E., Lagae, L., Moshé, S. L., Peltola, J., Roulet Perez, E., Scheffer, I. E., & Zuberi, S. M. (2017). Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, 58(4), 522–530. https://doi.org/10.1111/epi.13670Fisher, R. S., Van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J. (2005). Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472. https://doi.org/10.1111/j.0013-9580.2005.66104.xFujiwara, K., Miyajima, M., Yamakawa, T., Abe, E., Suzuki, Y., Sawada, Y., Kano, M., Maehara, T., Ohta, K., Sasai-Sakuma, T., Sasano, T., Matsuura, M., & Matsushima, E. (2016a). Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features. IEEE Transactions on Biomedical Engineering, 63(6), 1321–1332. https://doi.org/10.1109/TBME.2015.2512276Giannakakis, G., Tsiknakis, M., & Vorgia, P. (2019). Computer Methods and Programs in Biomedicine Focal epileptic seizures anticipation based on patterns of heart rate variability parameters. 178, 123–133. https://doi.org/10.1016/j.cmpb.2019.05.032González, D. R. (2013). Arquitectura y Gestión de la IoT IoT Network Management / Abstract. Revista Telem@tica, 12(3), 49–60.Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.Hampel, K. G., Rocamora Zuñiga, R., & Quesada, C. M. (2016). Unravelling the mysteries of sudden unexpected death in epilepsy. Neurologia. https://doi.org/10.1016/j.nrl.2017.02.004Jansen, K., Varon, C., Van Huffel, S., & Lagae, L. (2013a). Peri-ictal ECG changes in childhood epilepsy: Implications for detection systems. Epilepsy and Behavior, 29(1), 72–76. https://doi.org/10.1016/j.yebeh.2013.06.030Lasefr, Z., Reddy, R. R., & Elleithy, K. (2017). Smart Phone Application Development for Monitoring Epilepsy Seizure Detection based on EEG signal Classification. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 83–87.Leach, J. P., Stephen, L. J., Salveta, C., & Brodie, M. J. (2006a). Which electroencephalography (EEG) for epilepsy? The relative usefulness of different EEG protocols in patients with possible epilepsy. Journal of Neurology, Neurosurgery and Psychiatry, 77(9), 1040–1042. https://doi.org/10.1136/jnnp.2005.084871Lee, T. M. C., & Chan, J. K. P. (2002). Factores que afectan el estado cognitivo de personas que sufren epilepsia. Departamento de Psicología. Universidad de Hong Kong. Hong Kong, 34(9), 861–865.Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., & Wolff, S. (2009). A brief history of the Internet. ACM SIGCOMM Computer Communication Review, 39(5), 22–31.López, M. (2019). Internet de las cosas La transformación digital de la sociedad. In de Internet de las cosas La transformación digital de la sociedad, Madrid, Ra-Ma.Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews Neuroscience, 9(8), 626–637.Malik, M. (1996). Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use Task Force of The European Society of Cardiology and the North American Society for Pacing and Electrophysiology. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1542-474X.1996.tb00275.xMegiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., & Laxminarayan, R. (2016). Health and economic benefits of public financing of epilepsy treatment in India: An agent- based simulation model. Epilepsia, 57(3), 464–474. https://doi.org/10.1111/epi.13294Ministerio de Salud y Protección Social. (2017, February 13). Epilepsia: mucho más que convulsiones.Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2015). A Review on Internet of Things (loT), Internet of Everything (IoE) and Internet ofNano Things (IoNT). Internet Technologies and Applications (ITA).Moridani, M. K., & Farhadi, H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction. Bratislava Medical Journal, 118(1). https://doi.org/10.4149/BLL_2017_001Nagai, Y., Goldstein, L. H., Fenwick, P. B. C., & Trimble, M. R. (2004). Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: A preliminary randomized controlled study. Epilepsy and Behavior, 5(2), 216–223. https://doi.org/10.1016/j.yebeh.2003.12.003Nagai, Y., Jones, C. I., & Sen, A. (2019). Galvanic Skin Response (GSR)/Electrodermal/Skin Conductance Biofeedback on Epilepsy: A Systematic Review and Meta-Analysis. In Frontiers in Neurology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fneur.2019.00377Nguyen Thi Anh-Dao, Tran Duc-Nghia, Nguyen Thi-Hao, Tran Duc-Tan, Nguyen Linh- Trung, IEEE Communications Society, International Conference on Advanced Technologies for Communications 6 2013.10.16-18 Ho Chi Minh City, & ATC 6 2013.10.16-18 Ho Chi Minh City. (2013). An Effective Procedure for Reducing EOG and EMG Artefacts from EEG Signals. International Conference on Advanced Technologies for CommunicationsOrganización Mundial de la Salud (OMS). (2023, February 9). Epilepsia. https://www.who.int/es/news-room/fact-sheets/detail/epilepsyPatel, S., Mancinelli, C., Dalton, A., Patritti, B., Pang, T., Schachter, S., & Bonato, P. (2009). Detecting epileptic seizures using wearable sensors. Bioengineering, Proceedings of the Northeast Conference, 4–5. https://doi.org/10.1109/NEBC.2009.4967771Rajaguru, H. (2017). EEG features for Epilepsy Detection. Iccmc, 981–984.Ray, A., Tao, J. X., Hawes-Ebersole, S. M., & Ebersole, J. S. (2007a). Localizing value of scalp EEG spikes: A simultaneous scalp and intracranial study. Clinical Neurophysiology, 118(1), 69–79. https://doi.org/10.1016/j.clinph.2006.09.010Rushalina, D., Wisana, I. D. G. H., Nugraha, P. C., & Ragimova, N. (2022). Analysis of Transmitted and Received ECG Signal Based on Internet of Thing Using Web Browser and Server-Client HTML Protocol. Jurnal Teknokes, 15(4). https://doi.org/10.35882/teknokes.v15i4.469Singh, B., Bhattacharya, S., Chowdhary, C. L., & Jat, D. S. (2017a). A review on internet of things and its applications in healthcare. Journal of Chemical and Pharmaceutical Sciences, 10(1), 447–452.Smith, A. (2011). Smartphone Adoption and Usage. Pew Internet & American Life Project.Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and Challenges for Realising the Internet of Things. http://europa.eu/information_societyTatum, W. O., Rubboli, G., Kaplan, P. W., Mirsatari, S. M., Radhakrishnan, K., Gloss, D., Caboclo, L. O., Drislane, F. W., Koutroumanidis, M., Schomer, D. L., Kastelijn-Nolst Trenite, D., Cook, M., & Beniczky, S. (2018). Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical Neurophysiology, 129, 1056–1082. https://doi.org/10.1016/j.clinph.2018.01.019Thara, D. K., Premasudha, B. G., & Krivic, S. (n.d.). Detection of epileptic seizure events using pre-trained convolutional neural network, VGGNet and ResNet. Expert Systems, n/a(n/a), e13447. https://doi.org/https://doi.org/10.1111/exsy.13447Vergara, P. M., De La Cal, E., Villar, J. R., González, V. M., & Sedano, J. (2017a). An IoT Platform for Epilepsy Monitoring and Supervising. Journal of Sensors, 2017. https://doi.org/10.1155/2017/6043069Wagle, S. (2016). Semantic data extraction over MQTT for IoTcentric wireless sensor networks. 2016 International Conference on Internet of Things and Applications (IOTA), 227–232. https://doi.org/10.1109/IOTA.2016.7562727Watthanawisuth, N., Maturos, T., Sappat, A., & Tuantranont, A. (2015). The IoT wearable stretch sensor using 3D-Graphene foam. 2015 IEEE SENSORS - Proceedings, 3–6. https://doi.org/10.1109/ICSENS.2015.7370275What is ICANN? (2020). ICANN. https://www.icann.org/resources/pages/what-2012-02-25- enWu, M., Lu, T.-J., Ling, F.-Y., Sun, J., & Du, H.-Y. (2010). Research on the architecture of Internet of Things. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 5, V5-484-V5-487. https://doi.org/10.1109/ICACTE.2010.5579493Yamakawa, T., Miyajima, M., Fujiwara, K., Kano, M., Suzuki, Y., Watanabe, Y., Watanabe, S., Hoshida, T., Inaji, M., & Maehara, T. (2020). Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability. Sensors (Switzerland), 20(14), 1–16. https://doi.org/10.3390/s20143987Zapata Barco, A. M., Restrepo-Martínez, M., & Restrepo, D. (2020). Depression in People with Epilepsy. What is the Connection? In Revista Colombiana de Psiquiatria (Vol. 49, Issue 1, pp. 53–61). Elsevier Doyma. https://doi.org/10.1016/j.rcp.2017.10.004LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/c6e1aa9c-4358-4d30-8175-2b79bf5949cc/download997daf6c648c962d566d7b082dac908dMD52ORIGINALPeñaArismendiSantiagoAndres2024.pdfPeñaArismendiSantiagoAndres2024.pdfapplication/pdf4114330https://repository.udistrital.edu.co/bitstreams/5bab5ee6-9736-4e7a-be97-cf3f56318459/download19fc48047fff7993e0a677265eac03e5MD51Licencia de uso y publicacion editable.pdfLicencia de uso y publicacion editable.pdfapplication/pdf398894https://repository.udistrital.edu.co/bitstreams/d99a891c-7e02-4b02-a981-1e60a7361a09/download00a996f3883548561b927e15b020514eMD52THUMBNAILPeñaArismendiSantiagoAndres2024.pdf.jpgPeñaArismendiSantiagoAndres2024.pdf.jpgIM Thumbnailimage/jpeg5602https://repository.udistrital.edu.co/bitstreams/322495be-18e3-4873-9dcb-41b627492549/download8cdac87fef8f74bf5c3cbdb68c7a9c1fMD53Licencia de uso y publicacion editable.pdf.jpgLicencia de uso y publicacion editable.pdf.jpgIM Thumbnailimage/jpeg12279https://repository.udistrital.edu.co/bitstreams/2d391268-f40b-4d87-9526-c0bb1b93b67e/downloadadc9d64d6b7ad0cf5c50a85952a89676MD5411349/42172oai:repository.udistrital.edu.co:11349/421722025-01-31 01:13:39.524open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |