Uncertainty clustering internal validity assessment using Fréchet distance for unsupervised learning
ABSTRACT: Knowing the number of clusters a priori is one of the most challenging aspects of unsupervised learning. Clustering Internal Validity Indices (CIVIs) evaluate partitions in unsupervised algorithms based on metrics like compactness, separation, and density. However, specialized CIVIs for sp...
- Autores:
-
Rendón Hurtado, Nestor David
Ramírez García, Edison
Isaza Narváez, Claudia Victoria
Giraldo Zuluaga, Jhony Heriberto
Bouwmans, Thierry
Rodríguez Buriticá, Susana
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/36087
- Acceso en línea:
- https://hdl.handle.net/10495/36087
- Palabra clave:
- Unsupervised learning
Clustering validity
Fréchet distance
Type-2 fuzzy sets
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
