Uncertainty clustering internal validity assessment using Fréchet distance for unsupervised learning

ABSTRACT: Knowing the number of clusters a priori is one of the most challenging aspects of unsupervised learning. Clustering Internal Validity Indices (CIVIs) evaluate partitions in unsupervised algorithms based on metrics like compactness, separation, and density. However, specialized CIVIs for sp...

Full description

Autores:
Rendón Hurtado, Nestor David
Ramírez García, Edison
Isaza Narváez, Claudia Victoria
Giraldo Zuluaga, Jhony Heriberto
Bouwmans, Thierry
Rodríguez Buriticá, Susana
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/36087
Acceso en línea:
https://hdl.handle.net/10495/36087
Palabra clave:
Unsupervised learning
Clustering validity
Fréchet distance
Type-2 fuzzy sets
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/