Predictive model for estimating nitrogen density in MD2 pineapple crops from multispectral images and sensors integrated in an IoT platform

ABSTRACT : Nitrogen is the most important nutritional element during the vegetative growth phase of the pineapple crop; however, its presence in the soil is insufficient to meet plant demands. In this doctoral research, nine machine learning techniques were validated to estimate total nitrogen (TN)...

Full description

Autores:
Chaparro Mesa, Jorge Enrique
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44223
Acceso en línea:
https://hdl.handle.net/10495/44223
Palabra clave:
Técnicas de predicción
Forecasting techniques
Procesamiento de imágenes
Image processing
Internet de las cosas
Internet of things (IoT)
Multispectral Imaging
Unmanned Aerial Vehicle (UAV)
Sensors in the crop
http://aims.fao.org/aos/agrovoc/c_e4315b22
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/