Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester
ABSTRACT : This work evaluates strategies for detecting SQL injection attacks based on artificial intelligence to generate a recommendation that allows the improvement of the web application firewall of AizoOn Technology Consulting (Mithril). To achieve this, detection techniques known as Naïve Baye...
- Autores:
-
Taborda Echeverri, Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/40601
- Acceso en línea:
- https://hdl.handle.net/10495/40601
- Palabra clave:
- Bosques aleatorios
Random Forest
Seguridad computacional
Computer Security
Procesamiento de datos
http://vocabularies.unesco.org/thesaurus/concept522
Aprendizaje automático (inteligencia artificial)
Machine learning
Análisis de regresión logística
Logistic regression analysis
Integración numérica - procesamiento de datos
Numerical integration - data processing
Inteligencia artificial
Artificial intelligence
Data processing
Inyección SQL (SQLi)
Firewall de Aplicaciones Web
SVM de Una Clase
AizoOn Technology Consulting
https://id.nlm.nih.gov/mesh/D000093743
https://id.nlm.nih.gov/mesh/D016494
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_9498e4b67254671d8ae3af024eff93d9 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/40601 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| dc.title.translated.spa.fl_str_mv |
Evaluación de estrategias de detección de ataques de inyección SQL (SQLi) en aplicaciones web basadas en técnicas de inteligencia computacional. Semestre de industria |
| title |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| spellingShingle |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester Bosques aleatorios Random Forest Seguridad computacional Computer Security Procesamiento de datos http://vocabularies.unesco.org/thesaurus/concept522 Aprendizaje automático (inteligencia artificial) Machine learning Análisis de regresión logística Logistic regression analysis Integración numérica - procesamiento de datos Numerical integration - data processing Inteligencia artificial Artificial intelligence Data processing Inyección SQL (SQLi) Firewall de Aplicaciones Web SVM de Una Clase AizoOn Technology Consulting https://id.nlm.nih.gov/mesh/D000093743 https://id.nlm.nih.gov/mesh/D016494 |
| title_short |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| title_full |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| title_fullStr |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| title_full_unstemmed |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| title_sort |
Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semester |
| dc.creator.fl_str_mv |
Taborda Echeverri, Santiago |
| dc.contributor.advisor.none.fl_str_mv |
Vergara Tejada, Jaime Alberto Triana Maldonado, Jhonny Alexander |
| dc.contributor.author.none.fl_str_mv |
Taborda Echeverri, Santiago |
| dc.subject.decs.none.fl_str_mv |
Bosques aleatorios Random Forest Seguridad computacional Computer Security |
| topic |
Bosques aleatorios Random Forest Seguridad computacional Computer Security Procesamiento de datos http://vocabularies.unesco.org/thesaurus/concept522 Aprendizaje automático (inteligencia artificial) Machine learning Análisis de regresión logística Logistic regression analysis Integración numérica - procesamiento de datos Numerical integration - data processing Inteligencia artificial Artificial intelligence Data processing Inyección SQL (SQLi) Firewall de Aplicaciones Web SVM de Una Clase AizoOn Technology Consulting https://id.nlm.nih.gov/mesh/D000093743 https://id.nlm.nih.gov/mesh/D016494 |
| dc.subject.unesco.none.fl_str_mv |
Procesamiento de datos http://vocabularies.unesco.org/thesaurus/concept522 |
| dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (inteligencia artificial) Machine learning Análisis de regresión logística Logistic regression analysis Integración numérica - procesamiento de datos Numerical integration - data processing Inteligencia artificial Artificial intelligence |
| dc.subject.agrovoc.none.fl_str_mv |
Data processing |
| dc.subject.proposal.spa.fl_str_mv |
Inyección SQL (SQLi) Firewall de Aplicaciones Web SVM de Una Clase AizoOn Technology Consulting |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000093743 https://id.nlm.nih.gov/mesh/D016494 |
| description |
ABSTRACT : This work evaluates strategies for detecting SQL injection attacks based on artificial intelligence to generate a recommendation that allows the improvement of the web application firewall of AizoOn Technology Consulting (Mithril). To achieve this, detection techniques known as Naïve Bayes, logistic regression, random forests, and one-class support vector machines were selected based on their relevance and effectiveness demonstrated in the scientific literature and the company's expressed interests. These techniques were implemented by structuring a hybrid database integrating public data from the "SQL Injection Dataset" available on Kaggle with data processed by Mithril. This process involved data analysis, preprocessing, and conditioning. Data integration proved useful for implementing the machine learning models. Subsequently, hyperparameter tuning was performed to improve the models' performance, identifying the best configurations for each of them, thus increasing detection capabilities and minimizing false positives. The evaluation and benchmarking of the models were conducted using performance metrics such as accuracy, precision, recall, and F1-Score. Finally, the results led to the recommendation of implementing the logistic regression model in Mithril, as it achieved the best performance with accuracy and F1-Score of 99.45%. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-07-16T18:58:39Z |
| dc.date.available.none.fl_str_mv |
2024-07-16T18:58:39Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/40601 |
| url |
https://hdl.handle.net/10495/40601 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.issupplementedby.spa.fl_str_mv |
https://github.com/taechsantiago/ml_sqli_evaluation.git |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
64 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Ingeniería de Telecomunicaciones |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/c7e876e8-26ac-437b-bb63-ff5955d6f69e/download https://bibliotecadigital.udea.edu.co/bitstreams/b006ee66-3998-4e36-a9df-5a3eecf0ce4a/download https://bibliotecadigital.udea.edu.co/bitstreams/1bf533f9-cdfb-4c99-a60a-45fa2cf2e174/download https://bibliotecadigital.udea.edu.co/bitstreams/c89b071f-5d54-4202-92ad-2461fed2e9b5/download https://bibliotecadigital.udea.edu.co/bitstreams/608b201d-12da-4d29-8cd9-f332ee388e9e/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 4766ffcdde9b3d1746d8d71176dda236 d58216eb693918282ef1d4673ccaa37a 6f912d154cec6e67807bddd662e4334b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052581985452032 |
| spelling |
Vergara Tejada, Jaime AlbertoTriana Maldonado, Jhonny AlexanderTaborda Echeverri, Santiago2024-07-16T18:58:39Z2024-07-16T18:58:39Z2024https://hdl.handle.net/10495/40601ABSTRACT : This work evaluates strategies for detecting SQL injection attacks based on artificial intelligence to generate a recommendation that allows the improvement of the web application firewall of AizoOn Technology Consulting (Mithril). To achieve this, detection techniques known as Naïve Bayes, logistic regression, random forests, and one-class support vector machines were selected based on their relevance and effectiveness demonstrated in the scientific literature and the company's expressed interests. These techniques were implemented by structuring a hybrid database integrating public data from the "SQL Injection Dataset" available on Kaggle with data processed by Mithril. This process involved data analysis, preprocessing, and conditioning. Data integration proved useful for implementing the machine learning models. Subsequently, hyperparameter tuning was performed to improve the models' performance, identifying the best configurations for each of them, thus increasing detection capabilities and minimizing false positives. The evaluation and benchmarking of the models were conducted using performance metrics such as accuracy, precision, recall, and F1-Score. Finally, the results led to the recommendation of implementing the logistic regression model in Mithril, as it achieved the best performance with accuracy and F1-Score of 99.45%.RESUMEN : Este trabajo se centra en evaluar estrategias de detección de ataques de inyección SQL basadas en inteligencia computacional para generar una recomendación que permita mejorar el firewall de aplicaciones web de la empresa AizoOn Technology Consulting (Mithril). Para ello, se seleccionaron las técnicas de detección conocidas como Naïve Bayes, regresión logística, bosques aleatorios y máquinas de soporte vectorial de única clase, basándose tanto en su relevancia y efectividad demostrada en la literatura científica como en los intereses expresados por la compañía. Estas técnicas se implementaron a partir de la estructuración de una base de datos híbrida integrando datos públicos del conjunto de datos "SQL Injection Dataset" disponible en Kaggle con datos procesados por Mithril. Este proceso incluyó análisis, pre-procesamiento y acondicionamiento de los datos. La integración de los datos resultó útil para la implementación de los modelos de inteligencia computacional. Posteriormente se realizó el ajuste de hiper-parámetros que permitió mejorar el rendimiento de los modelos, identificando las mejores configuraciones para cada uno de ellos, lo que aumentó las capacidades de detección y minimizó los falsos positivos. La evaluación y comparación de los modelos fue realizada utilizando métricas de desempeño como exactitud, precisión, recall y F1-Score. Finalmente, los resultados obtenidos permitieron recomendar la implementación del modelo de regresión logística en Mithril, debido a que fue el modelo que alcanzó el mejor desempeño con una exactitud y F1-Score del 99.45%.PregradoIngeniero de Telecomunicaciones64 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Ingeniería de Telecomunicacioneshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluation of SQL injection (SQLi) attack detection strategies in web applications using machine learning. Industry semesterEvaluación de estrategias de detección de ataques de inyección SQL (SQLi) en aplicaciones web basadas en técnicas de inteligencia computacional. Semestre de industriaTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftBosques aleatoriosRandom ForestSeguridad computacionalComputer SecurityProcesamiento de datoshttp://vocabularies.unesco.org/thesaurus/concept522Aprendizaje automático (inteligencia artificial)Machine learningAnálisis de regresión logísticaLogistic regression analysisIntegración numérica - procesamiento de datosNumerical integration - data processingInteligencia artificialArtificial intelligenceData processingInyección SQL (SQLi)Firewall de Aplicaciones WebSVM de Una ClaseAizoOn Technology Consultinghttps://id.nlm.nih.gov/mesh/D000093743https://id.nlm.nih.gov/mesh/D016494https://github.com/taechsantiago/ml_sqli_evaluation.gitPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c7e876e8-26ac-437b-bb63-ff5955d6f69e/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b006ee66-3998-4e36-a9df-5a3eecf0ce4a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALTabordaSantiago_2024_MachineLearningSqli.pdfTabordaSantiago_2024_MachineLearningSqli.pdfTrabajo de grado de pregradoapplication/pdf2240315https://bibliotecadigital.udea.edu.co/bitstreams/1bf533f9-cdfb-4c99-a60a-45fa2cf2e174/download4766ffcdde9b3d1746d8d71176dda236MD51trueAnonymousREADTEXTTabordaSantiago_2024_MachineLearningSqli.pdf.txtTabordaSantiago_2024_MachineLearningSqli.pdf.txtExtracted texttext/plain90365https://bibliotecadigital.udea.edu.co/bitstreams/c89b071f-5d54-4202-92ad-2461fed2e9b5/downloadd58216eb693918282ef1d4673ccaa37aMD54falseAnonymousREADTHUMBNAILTabordaSantiago_2024_MachineLearningSqli.pdf.jpgTabordaSantiago_2024_MachineLearningSqli.pdf.jpgGenerated Thumbnailimage/jpeg5914https://bibliotecadigital.udea.edu.co/bitstreams/608b201d-12da-4d29-8cd9-f332ee388e9e/download6f912d154cec6e67807bddd662e4334bMD55falseAnonymousREAD10495/40601oai:bibliotecadigital.udea.edu.co:10495/406012025-03-27 00:37:13.462http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
