Feed formulation using multi-objective Bayesian optimization
ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical mo...
- Autores:
-
Uribe Guerra, Gabriel Darío
Múnera Ramírez, Danny Alexandro
Arias Londoño, Julián David
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/40556
- Acceso en línea:
- https://hdl.handle.net/10495/40556
- Palabra clave:
- Producción de Alimentos
Food Production
Cerdos
Swine
Métodos de simulación
Simulation methods
Diseño experimetal
Experimental design
Agricultura de precisión
Precision agriculture
http://aims.fao.org/aos/agrovoc/c_92363
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_8c8b179a23e8241fe49211a004f93cfa |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/40556 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Feed formulation using multi-objective Bayesian optimization |
| title |
Feed formulation using multi-objective Bayesian optimization |
| spellingShingle |
Feed formulation using multi-objective Bayesian optimization Producción de Alimentos Food Production Cerdos Swine Métodos de simulación Simulation methods Diseño experimetal Experimental design Agricultura de precisión Precision agriculture http://aims.fao.org/aos/agrovoc/c_92363 |
| title_short |
Feed formulation using multi-objective Bayesian optimization |
| title_full |
Feed formulation using multi-objective Bayesian optimization |
| title_fullStr |
Feed formulation using multi-objective Bayesian optimization |
| title_full_unstemmed |
Feed formulation using multi-objective Bayesian optimization |
| title_sort |
Feed formulation using multi-objective Bayesian optimization |
| dc.creator.fl_str_mv |
Uribe Guerra, Gabriel Darío Múnera Ramírez, Danny Alexandro Arias Londoño, Julián David |
| dc.contributor.author.none.fl_str_mv |
Uribe Guerra, Gabriel Darío Múnera Ramírez, Danny Alexandro Arias Londoño, Julián David |
| dc.contributor.researchgroup.spa.fl_str_mv |
Intelligent Information Systems Lab. |
| dc.subject.decs.none.fl_str_mv |
Producción de Alimentos Food Production |
| topic |
Producción de Alimentos Food Production Cerdos Swine Métodos de simulación Simulation methods Diseño experimetal Experimental design Agricultura de precisión Precision agriculture http://aims.fao.org/aos/agrovoc/c_92363 |
| dc.subject.lemb.none.fl_str_mv |
Cerdos Swine Métodos de simulación Simulation methods Diseño experimetal Experimental design |
| dc.subject.agrovoc.none.fl_str_mv |
Agricultura de precisión Precision agriculture |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_92363 |
| description |
ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical models are not flexible enough to incorporate variables related to environmental or zootechnical conditions that affect production efficiency or to include multiple objectives regarding current challenges associated with the adaptability to new environmental contexts and the reduction of ecological footprint. Unlike analytical methods, heuristic approaches can deal with variables from multiple sources using surrogate data-driven models of the objectives functions but commonly require thousands of evaluations of the target function, which is unfeasible in the context of animal diet formulation. This work proposes the use of Bayesian Optimization as an alternative solution to address the animal diet design problem since it is intended to optimize costly-to-evaluate target functions and is able to deal with noisy sampling, which is helpful in handling the intrinsic variability in the nutrient content of raw materials. A multi-objective swine diet design problem is used to evaluate the suitability of Bayesian optimization to optimize three target functions: digestible energy, lysine, and cost, and the solutions are compared with a fractional stochastic programming approach. The analytical formulation of the problem is not considered by the Bayesian optimization approach, but target functions are modeled through surrogate Bayesian models, where only input and output responses are used to drive the optimization process. Results show that a multi-objective Bayesian optimization process is able to find better solutions than previously proposed methods, improving in 10.71%, 14.77%, and 3.79% the three objectives defined. Experiments using batches of query samples per iteration show that the optimization process can also be accelerated by sampling the objective functions simultaneously. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-07-11T21:36:27Z |
| dc.date.available.none.fl_str_mv |
2024-07-11T21:36:27Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0168-1699 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/40556 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.compag.2024.109173 |
| dc.identifier.eissn.none.fl_str_mv |
1872-7107 |
| identifier_str_mv |
0168-1699 10.1016/j.compag.2024.109173 1872-7107 |
| url |
https://hdl.handle.net/10495/40556 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Comput. Electron. Agric. |
| dc.relation.citationendpage.spa.fl_str_mv |
13 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
224 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Computers and Electronics in Agriculture |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Ámsterdam, Países Bajos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/008b2f6d-7e66-4511-a472-0e8b5ec77d43/download https://bibliotecadigital.udea.edu.co/bitstreams/89dc576e-3938-4e57-b236-e131315b79fb/download https://bibliotecadigital.udea.edu.co/bitstreams/7193870f-3e55-4cc9-ba0b-1d2ec701134c/download https://bibliotecadigital.udea.edu.co/bitstreams/073a6735-54da-4579-aa33-07acd921df1c/download https://bibliotecadigital.udea.edu.co/bitstreams/dedbbef7-2f62-4f21-9ba0-435af0505538/download |
| bitstream.checksum.fl_str_mv |
c817fa8883630b26574fb064a65c0a4f b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 cd36fde7bd4154c836ffe644b50171b7 bdf9f5b1e949ac8797d803be119352ad |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052413284253696 |
| spelling |
Uribe Guerra, Gabriel DaríoMúnera Ramírez, Danny AlexandroArias Londoño, Julián DavidIntelligent Information Systems Lab.2024-07-11T21:36:27Z2024-07-11T21:36:27Z20240168-1699https://hdl.handle.net/10495/4055610.1016/j.compag.2024.1091731872-7107ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical models are not flexible enough to incorporate variables related to environmental or zootechnical conditions that affect production efficiency or to include multiple objectives regarding current challenges associated with the adaptability to new environmental contexts and the reduction of ecological footprint. Unlike analytical methods, heuristic approaches can deal with variables from multiple sources using surrogate data-driven models of the objectives functions but commonly require thousands of evaluations of the target function, which is unfeasible in the context of animal diet formulation. This work proposes the use of Bayesian Optimization as an alternative solution to address the animal diet design problem since it is intended to optimize costly-to-evaluate target functions and is able to deal with noisy sampling, which is helpful in handling the intrinsic variability in the nutrient content of raw materials. A multi-objective swine diet design problem is used to evaluate the suitability of Bayesian optimization to optimize three target functions: digestible energy, lysine, and cost, and the solutions are compared with a fractional stochastic programming approach. The analytical formulation of the problem is not considered by the Bayesian optimization approach, but target functions are modeled through surrogate Bayesian models, where only input and output responses are used to drive the optimization process. Results show that a multi-objective Bayesian optimization process is able to find better solutions than previously proposed methods, improving in 10.71%, 14.77%, and 3.79% the three objectives defined. Experiments using batches of query samples per iteration show that the optimization process can also be accelerated by sampling the objective functions simultaneously.COL002593413 páginasapplication/pdfengElsevierÁmsterdam, Países Bajoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Feed formulation using multi-objective Bayesian optimizationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionProducción de AlimentosFood ProductionCerdosSwineMétodos de simulaciónSimulation methodsDiseño experimetalExperimental designAgricultura de precisiónPrecision agriculturehttp://aims.fao.org/aos/agrovoc/c_92363Comput. Electron. Agric.131224Computers and Electronics in AgriculturePublicationORIGINALUribeGabriel_2024_FeedFormulation.pdfUribeGabriel_2024_FeedFormulation.pdfArtículo de investigaciónapplication/pdf2320236https://bibliotecadigital.udea.edu.co/bitstreams/008b2f6d-7e66-4511-a472-0e8b5ec77d43/downloadc817fa8883630b26574fb064a65c0a4fMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/89dc576e-3938-4e57-b236-e131315b79fb/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/7193870f-3e55-4cc9-ba0b-1d2ec701134c/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTUribeGabriel_2024_FeedFormulation.pdf.txtUribeGabriel_2024_FeedFormulation.pdf.txtExtracted texttext/plain78308https://bibliotecadigital.udea.edu.co/bitstreams/073a6735-54da-4579-aa33-07acd921df1c/downloadcd36fde7bd4154c836ffe644b50171b7MD54falseAnonymousREADTHUMBNAILUribeGabriel_2024_FeedFormulation.pdf.jpgUribeGabriel_2024_FeedFormulation.pdf.jpgGenerated Thumbnailimage/jpeg15470https://bibliotecadigital.udea.edu.co/bitstreams/dedbbef7-2f62-4f21-9ba0-435af0505538/downloadbdf9f5b1e949ac8797d803be119352adMD55falseAnonymousREAD10495/40556oai:bibliotecadigital.udea.edu.co:10495/405562025-03-26 21:57:41.561https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
