Feed formulation using multi-objective Bayesian optimization

ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical mo...

Full description

Autores:
Uribe Guerra, Gabriel Darío
Múnera Ramírez, Danny Alexandro
Arias Londoño, Julián David
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/40556
Acceso en línea:
https://hdl.handle.net/10495/40556
Palabra clave:
Producción de Alimentos
Food Production
Cerdos
Swine
Métodos de simulación
Simulation methods
Diseño experimetal
Experimental design
Agricultura de precisión
Precision agriculture
http://aims.fao.org/aos/agrovoc/c_92363
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_8c8b179a23e8241fe49211a004f93cfa
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/40556
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Feed formulation using multi-objective Bayesian optimization
title Feed formulation using multi-objective Bayesian optimization
spellingShingle Feed formulation using multi-objective Bayesian optimization
Producción de Alimentos
Food Production
Cerdos
Swine
Métodos de simulación
Simulation methods
Diseño experimetal
Experimental design
Agricultura de precisión
Precision agriculture
http://aims.fao.org/aos/agrovoc/c_92363
title_short Feed formulation using multi-objective Bayesian optimization
title_full Feed formulation using multi-objective Bayesian optimization
title_fullStr Feed formulation using multi-objective Bayesian optimization
title_full_unstemmed Feed formulation using multi-objective Bayesian optimization
title_sort Feed formulation using multi-objective Bayesian optimization
dc.creator.fl_str_mv Uribe Guerra, Gabriel Darío
Múnera Ramírez, Danny Alexandro
Arias Londoño, Julián David
dc.contributor.author.none.fl_str_mv Uribe Guerra, Gabriel Darío
Múnera Ramírez, Danny Alexandro
Arias Londoño, Julián David
dc.contributor.researchgroup.spa.fl_str_mv Intelligent Information Systems Lab.
dc.subject.decs.none.fl_str_mv Producción de Alimentos
Food Production
topic Producción de Alimentos
Food Production
Cerdos
Swine
Métodos de simulación
Simulation methods
Diseño experimetal
Experimental design
Agricultura de precisión
Precision agriculture
http://aims.fao.org/aos/agrovoc/c_92363
dc.subject.lemb.none.fl_str_mv Cerdos
Swine
Métodos de simulación
Simulation methods
Diseño experimetal
Experimental design
dc.subject.agrovoc.none.fl_str_mv Agricultura de precisión
Precision agriculture
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_92363
description ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical models are not flexible enough to incorporate variables related to environmental or zootechnical conditions that affect production efficiency or to include multiple objectives regarding current challenges associated with the adaptability to new environmental contexts and the reduction of ecological footprint. Unlike analytical methods, heuristic approaches can deal with variables from multiple sources using surrogate data-driven models of the objectives functions but commonly require thousands of evaluations of the target function, which is unfeasible in the context of animal diet formulation. This work proposes the use of Bayesian Optimization as an alternative solution to address the animal diet design problem since it is intended to optimize costly-to-evaluate target functions and is able to deal with noisy sampling, which is helpful in handling the intrinsic variability in the nutrient content of raw materials. A multi-objective swine diet design problem is used to evaluate the suitability of Bayesian optimization to optimize three target functions: digestible energy, lysine, and cost, and the solutions are compared with a fractional stochastic programming approach. The analytical formulation of the problem is not considered by the Bayesian optimization approach, but target functions are modeled through surrogate Bayesian models, where only input and output responses are used to drive the optimization process. Results show that a multi-objective Bayesian optimization process is able to find better solutions than previously proposed methods, improving in 10.71%, 14.77%, and 3.79% the three objectives defined. Experiments using batches of query samples per iteration show that the optimization process can also be accelerated by sampling the objective functions simultaneously.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-11T21:36:27Z
dc.date.available.none.fl_str_mv 2024-07-11T21:36:27Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0168-1699
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/40556
dc.identifier.doi.none.fl_str_mv 10.1016/j.compag.2024.109173
dc.identifier.eissn.none.fl_str_mv 1872-7107
identifier_str_mv 0168-1699
10.1016/j.compag.2024.109173
1872-7107
url https://hdl.handle.net/10495/40556
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Comput. Electron. Agric.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 224
dc.relation.ispartofjournal.spa.fl_str_mv Computers and Electronics in Agriculture
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Ámsterdam, Países Bajos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/008b2f6d-7e66-4511-a472-0e8b5ec77d43/download
https://bibliotecadigital.udea.edu.co/bitstreams/89dc576e-3938-4e57-b236-e131315b79fb/download
https://bibliotecadigital.udea.edu.co/bitstreams/7193870f-3e55-4cc9-ba0b-1d2ec701134c/download
https://bibliotecadigital.udea.edu.co/bitstreams/073a6735-54da-4579-aa33-07acd921df1c/download
https://bibliotecadigital.udea.edu.co/bitstreams/dedbbef7-2f62-4f21-9ba0-435af0505538/download
bitstream.checksum.fl_str_mv c817fa8883630b26574fb064a65c0a4f
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
cd36fde7bd4154c836ffe644b50171b7
bdf9f5b1e949ac8797d803be119352ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052413284253696
spelling Uribe Guerra, Gabriel DaríoMúnera Ramírez, Danny AlexandroArias Londoño, Julián DavidIntelligent Information Systems Lab.2024-07-11T21:36:27Z2024-07-11T21:36:27Z20240168-1699https://hdl.handle.net/10495/4055610.1016/j.compag.2024.1091731872-7107ABSTRACT: Animal diet design has been addressed mainly by optimizing analytical functions that describe digestible energy and essential nutrients, along with a set of restrictions regarding minimum nutritional content in the feed formulation. This approach results in limitations since theoretical models are not flexible enough to incorporate variables related to environmental or zootechnical conditions that affect production efficiency or to include multiple objectives regarding current challenges associated with the adaptability to new environmental contexts and the reduction of ecological footprint. Unlike analytical methods, heuristic approaches can deal with variables from multiple sources using surrogate data-driven models of the objectives functions but commonly require thousands of evaluations of the target function, which is unfeasible in the context of animal diet formulation. This work proposes the use of Bayesian Optimization as an alternative solution to address the animal diet design problem since it is intended to optimize costly-to-evaluate target functions and is able to deal with noisy sampling, which is helpful in handling the intrinsic variability in the nutrient content of raw materials. A multi-objective swine diet design problem is used to evaluate the suitability of Bayesian optimization to optimize three target functions: digestible energy, lysine, and cost, and the solutions are compared with a fractional stochastic programming approach. The analytical formulation of the problem is not considered by the Bayesian optimization approach, but target functions are modeled through surrogate Bayesian models, where only input and output responses are used to drive the optimization process. Results show that a multi-objective Bayesian optimization process is able to find better solutions than previously proposed methods, improving in 10.71%, 14.77%, and 3.79% the three objectives defined. Experiments using batches of query samples per iteration show that the optimization process can also be accelerated by sampling the objective functions simultaneously.COL002593413 páginasapplication/pdfengElsevierÁmsterdam, Países Bajoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Feed formulation using multi-objective Bayesian optimizationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionProducción de AlimentosFood ProductionCerdosSwineMétodos de simulaciónSimulation methodsDiseño experimetalExperimental designAgricultura de precisiónPrecision agriculturehttp://aims.fao.org/aos/agrovoc/c_92363Comput. Electron. Agric.131224Computers and Electronics in AgriculturePublicationORIGINALUribeGabriel_2024_FeedFormulation.pdfUribeGabriel_2024_FeedFormulation.pdfArtículo de investigaciónapplication/pdf2320236https://bibliotecadigital.udea.edu.co/bitstreams/008b2f6d-7e66-4511-a472-0e8b5ec77d43/downloadc817fa8883630b26574fb064a65c0a4fMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/89dc576e-3938-4e57-b236-e131315b79fb/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/7193870f-3e55-4cc9-ba0b-1d2ec701134c/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTUribeGabriel_2024_FeedFormulation.pdf.txtUribeGabriel_2024_FeedFormulation.pdf.txtExtracted texttext/plain78308https://bibliotecadigital.udea.edu.co/bitstreams/073a6735-54da-4579-aa33-07acd921df1c/downloadcd36fde7bd4154c836ffe644b50171b7MD54falseAnonymousREADTHUMBNAILUribeGabriel_2024_FeedFormulation.pdf.jpgUribeGabriel_2024_FeedFormulation.pdf.jpgGenerated Thumbnailimage/jpeg15470https://bibliotecadigital.udea.edu.co/bitstreams/dedbbef7-2f62-4f21-9ba0-435af0505538/downloadbdf9f5b1e949ac8797d803be119352adMD55falseAnonymousREAD10495/40556oai:bibliotecadigital.udea.edu.co:10495/405562025-03-26 21:57:41.561https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=