Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala
El ácido láctico es un compuesto clave con aplicaciones en las industrias alimentaria, farmacéutica y de plásticos biodegradables, siendo en la actualidad de gran interés, debido a la producción sostenible a partir de sustratos agroindustriales y que representa una alternativa a las materias primas...
- Autores:
-
Saavedra Caicedo, Nicol Stefanía
- Tipo de recurso:
- Review article
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/47916
- Acceso en línea:
- https://hdl.handle.net/10495/47916
- Palabra clave:
- Revisión sistemática
Systematic review
Ácido láctico
Lactic acid
Agroindustria
Agro-industry
Biorreactor
Bioreactors
Producción industrial
Industrial production
http://aims.fao.org/aos/agrovoc/c_4142
http://aims.fao.org/aos/agrovoc/c_28831
http://aims.fao.org/aos/agrovoc/c_27469
http://aims.fao.org/aos/agrovoc/c_44ff9464
https://id.nlm.nih.gov/mesh/D000078182
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_4e8d3931d5af05047de7c2cf6fd42a98 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/47916 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| title |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| spellingShingle |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala Revisión sistemática Systematic review Ácido láctico Lactic acid Agroindustria Agro-industry Biorreactor Bioreactors Producción industrial Industrial production http://aims.fao.org/aos/agrovoc/c_4142 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_27469 http://aims.fao.org/aos/agrovoc/c_44ff9464 https://id.nlm.nih.gov/mesh/D000078182 ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| title_short |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| title_full |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| title_fullStr |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| title_full_unstemmed |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| title_sort |
Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escala |
| dc.creator.fl_str_mv |
Saavedra Caicedo, Nicol Stefanía |
| dc.contributor.advisor.none.fl_str_mv |
Restrepo Escobar, Natalia |
| dc.contributor.author.none.fl_str_mv |
Saavedra Caicedo, Nicol Stefanía |
| dc.subject.decs.none.fl_str_mv |
Revisión sistemática Systematic review |
| topic |
Revisión sistemática Systematic review Ácido láctico Lactic acid Agroindustria Agro-industry Biorreactor Bioreactors Producción industrial Industrial production http://aims.fao.org/aos/agrovoc/c_4142 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_27469 http://aims.fao.org/aos/agrovoc/c_44ff9464 https://id.nlm.nih.gov/mesh/D000078182 ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| dc.subject.agrovoc.none.fl_str_mv |
Ácido láctico Lactic acid Agroindustria Agro-industry Biorreactor Bioreactors Producción industrial Industrial production |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_4142 http://aims.fao.org/aos/agrovoc/c_28831 http://aims.fao.org/aos/agrovoc/c_27469 http://aims.fao.org/aos/agrovoc/c_44ff9464 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000078182 |
| dc.subject.ods.none.fl_str_mv |
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación |
| description |
El ácido láctico es un compuesto clave con aplicaciones en las industrias alimentaria, farmacéutica y de plásticos biodegradables, siendo en la actualidad de gran interés, debido a la producción sostenible a partir de sustratos agroindustriales y que representa una alternativa a las materias primas derivadas del petróleo si no también la oportunidad de abordar materias primas . Sin embargo, el escalamiento desde el laboratorio hasta la escala piloto presenta desafíos relacionados con la selección del sustrato, el tipo de microorganismo, los parámetros operativos y la configuración del biorreactor. En este trabajo, se realizó una revisión bibliográfica de acuerdo con el protocolo PRISMA, a partir de trabajos encontrados en bases de datos como Scopus y Web of Science, publicados en los últimos diez años en donde se analizaron aspectos como la composición del sustrato y la optimización del proceso, identificando factores críticos que afectan el rendimiento y la productividad del ácido láctico. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-23T15:07:23Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_dcae04bc |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_dcae04bc |
| status_str |
draft |
| dc.identifier.citation.none.fl_str_mv |
Saavedra, Caicedo, N. (2025). Factores clave en la productividad del ácido láctico: una revisión sistemática de los avances y limitaciones en su producción a gran escala [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/47916 |
| identifier_str_mv |
Saavedra, Caicedo, N. (2025). Factores clave en la productividad del ácido láctico: una revisión sistemática de los avances y limitaciones en su producción a gran escala [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia. |
| url |
https://hdl.handle.net/10495/47916 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Aarti, C., Khusro, A., Arasu, M. V., Agastian, P., & Al-Dhabi, N. A. (2016). Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SpringerPlus, 5(1]. https://doi.org/10.1186/s40064-016-3452-2 Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. In Biotechnology Advances (Vol. 31, Issue 6, pp. 877–902). https://doi.org/10.1016/j.biotechadv.2013.04.002 Anumudu, C. K., Miri, T., & Onyeaka, H. (2024). Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods, 13(23). https://doi.org/10.3390/foods13233714 Ayadi, K., Meziane, M., Bounedjar, K., Douma, D. T., Bensouna, S., Fellah, M., & El-Miloudi, K. (2022). Lactic acid production by immobilization of Lactobacillus sp. isolated from olive mill wastewater. Desalination and Water Treatment, 255, 83–93. https://doi.org/10.5004/dwt.2022.28324 Brobbey, M. S., Louw, J. P., Louw, J., & Görgens, J. F. (2024). Effect of production scale on the techno-economic viability and environmental life cycle analysis of lactic acid production in a sugarcane biorefinery. Food and Bioproducts Processing, 148, 269–284. https://doi.org/10.1016/j.fbp.2024.09.020 Cai, D., Deng, L., Wu, J., Su, C., Wu, Y., Bi, H., Wang, Y., Wang, B., Zhang, C., & Qin, P. (2025). Alkali pretreated corn stalk combined with enzyme cocktail at low cellulase dosage for the high-titer L-lactic acid production. Industrial Crops and Products, 224. https://doi.org/10.1016/j.indcrop.2024.120332 Cai, Y., Dun, Y., Dong, W., Chen, Q., Lei, Y., Hu, J., Peng, N., & Zhao, S. (2024). Direct lactic acid production from raw jerusalem artichoke powder by Lacticaseibacillus paracasei NJ and the comparative transcriptomic profiling of inulin and monosaccharide utilization. Food Bioscience, 61. https://doi.org/10.1016/j.fbio.2024.104736 Carpinelli Macedo, J. V., de Barros Ranke, F. F., Escaramboni, B., Campioni, T. S., Fernández Núñez, E. G., & de Oliva Neto, P. (2020). Cost-effective lactic acid production by fermentation of agro-industrial residues. Biocatalysis and Agricultural Biotechnology, 27. https://doi.org/10.1016/j.bcab.2020.101706 Chai, C. Y., Tan, I. S., Foo, H. C. Y., Lam, M. K., Tong, K. T. X., & Lee, K. T. (2021). Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation L-lactic acid production. Bioresource Technology, 330. https://doi.org/10.1016/j.biortech.2021.124930 Chen, P. T., Hong, Z. S., Cheng, C. L., Ng, I. S., Lo, Y. C., Nagarajan, D., & Chang, J. S. (2020). Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 308. https://doi.org/10.1016/j.biortech.2020.123266 Chenebault, C., Moscoviz, R., Trably, E., Escudié, R., & Percheron, B. (2022). Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. Bioresource Technology, 354. https://doi.org/10.1016/j.biortech.2022.127230 Chenebault, C., Moscoviz, R., Trably, E., Escudié, R., & Percheron, B. (2022). Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. Bioresource Technology, 354. https://doi.org/10.1016/j.biortech.2022.127230 Choi, B., Tafur Rangel, A., Kerkhoven, E. J., & Nygård, Y. (2024). Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass. Metabolic Engineering, 84, 23–33. https://doi.org/10.1016/j.ymben.2024.05.003 Costa, S., Summa, D., Semeraro, B., Zappaterra, F., Rugiero, I., & Tamburini, E. (2020). Fermentation as a strategy for bio-transforming waste into resources: Lactic acid production from agri-food residues. Fermentation, 7(1]. https://doi.org/10.3390/fermentation7010003 Cox, R., Narisetty, V., Castro, E., Agrawal, D., Jacob, S., Kumar, G., Kumar, D., & Kumar, V. (2023). Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. Waste Management, 166, 336–345. https://doi.org/10.1016/j.wasman.2023.05.015 Delmoitié, B., Sakarika, M., Rabaey, K., de Wever, H., & Regueira, A. (2025). Tailoring non-axenic lactic acid fermentation from cheese whey permeate targeting a flexible lactic acid platform. Journal of Environmental Management, 373. Derabli, B., Nancib, A., Nancib, N., Aníbal, J., Raposo, S., Rodrigues, B., & Boudrant, J. (2022). Opuntia ficus indica waste as a cost effective carbon source for lactic acid production by Lactobacillus plantarum. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.131005 El-Sheshtawy, H. S., Fahim, I., Hosny, M., & El-Badry, M. A. (2022). Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 5. https://doi.org/10.1016/j.crgsc.2021.100228 El-Sheshtawy, H. S., Fahim, I., Hosny, M., & El-Badry, M. A. (2022). Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 5. https://doi.org/10.1016/j.crgsc.2021.100228 Eş, I., Mousavi Khaneghah, A., Barba, F. J., Saraiva, J. A., Sant’Ana, A. S., & Hashemi, S. M. B. (2018). Recent advancements in lactic acid production - a review. In Food Research International (Vol. 107, pp. 763–770). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2018.01.001 Farooq, U., Muhammad Anjum, F., Zahoor, T., Atif Randhawa, M., Ahmed, A., & Akram, K. (2012). Optimization of lactic acid production from cheap raw material: sugarcane molasses. In Pak. J. Bot (Vol. 44, Issue 1). Fu, X., Wang, Y., Wang, J., Garza, E., Manow, R., & Zhou, S. (2017). Semi-industrial scale (30 m3) fed-batch fermentation for the production of d-lactate by Escherichia coli strain HBUT-D15. Journal of Industrial Microbiology and Biotechnology, 44(2), 221–228. https://doi.org/10.1007/s10295-016-1877-9 Fukuda, D., Aso, Y., & Nolasco-Hipólito, C. (2023). Genome and fermentation analyses of Enterococcus faecalis DB-5 isolated from Japanese Mandarin orange: An assessment of potential application in lactic acid production. Journal of Bioscience and Bioengineering, 136(1), 20–27. https://doi.org/10.1016/j.jbiosc.2023.04.003 Germec, M., Karhan, M., Bialka, K. L., Demirci, A., & Turhan, I. (2018). Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis and Agricultural Biotechnology, 14, 254–263. https://doi.org/10.1016/j.bcab.2018.03.018 Grand View Research. (2024). Lactic Acid Market Size, Share & Trends Analysis Report By Raw Material (Corn, Sugarcane, Cassava, Yeast Extract), By Form (Dry, Liquid), By Application, By Region, & Segment Forecasts, 2024 - 2030 (Report ID: 978-1-68038-126-9). Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-market Granget, C., Manikandan, N. A., Amulya, K., Dabros, M., Fahy, S., Kelleher, S. M., Rochfort, K. D., Gaughran, J., & Freeland, B. (2024). Brewer’s spent grain as a self-sufficient feedstock for homofermentative production of optically pure L-lactic acid using Lactobacillus rhamnosus. Environmental Technology and Innovation, 34. https://doi.org/10.1016/j.eti.2024.103582 Granget, C., Manikandan, N. A., Amulya, K., Dabros, M., Fahy, S., Kelleher, S. M., Rochfort, K. D., Gaughran, J., & Freeland, B. (2024). Brewer’s spent grain as a self-sufficient feedstock for homofermentative production of optically pure L-lactic acid using Lactobacillus rhamnosus. Environmental Technology and Innovation, 34. https://doi.org/10.1016/j.eti.2024.103582 Gugel, I., Marchetti, F., Costa, S., Gugel, I., Baldini, E., Vertuani, S., & Manfredini, S. (2024). 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation. Applied Microbiology and Biotechnology, 108(1). https://doi.org/10.1007/s00253-024-13217-z Gutiérrez-Sarmiento, W., María Cristina Ventura-Canseco, L., Gutiérrez-Miceli, F., & Celina Luján-Hidalgo, M. (s.f.). OPTIMIZATION OF BIOMASS PRODUCTION, LACTIC ACID, AND GASTROINTESTINAL SIMULATION SURVIVAL OF Lactobacillus plantarum BAL-03-ITTG CULTURED IN STIRRED TANK BIOREACTOR. https://www.researchgate.net/publication/341459268 Hassan, N., Idris, A., Ali El-Enshasy, H., Abd Malek, R., & Bahru, J. (2017). Scaling-up SSF of EFB. In BioResources (Vol. 12, Issue 4). Khasanah, Y., Indrianingsih, A. W., Triwitono, P., & Murdiati, A. (2024). Production, biological activities and functional food of modified cassava flour (mocaf). Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 7(2), 213–229. https://doi.org/10.20956/canrea.v7i2.1280 Kim, J., Kim, Y. M., Lebaka, V. R., & Wee, Y. J. (2022). Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications. In Fermentation (Vol. 8, Issue 11). MDPI. https://doi.org/10.3390/fermentation8110609 Kuznetsov, A., Beloded, A., Derunets, A., Grosheva, V., Vakar, L., Kozlovskiy, R., & Shvets, V. (2017). Biosynthesis of lactic acid in a membrane bioreactor for cleaner technology of polylactide production. Clean Technologies and Environmental Policy, 19(3), 869–882. https://doi.org/10.1007/s10098-016-1275-z Li, Z., Zhang, L., Zhang, B., & Bao, J. (2025). pH shifting adaptive evolution stimulates the low pH tolerance of Pediococcus acidilactici and high L-lactic acid fermentation efficiency. Bioresource Technology, 416. https://doi.org/10.1016/j.biortech.2024.131813 Lian, T., Zhang, W., Cao, Q., Wang, S., Yin, F., Chen, Y., Zhou, T., & Dong, H. (2021). Optimization of lactate production from co-fermentation of swine manure with apple waste and dynamics of microbial communities. Bioresource Technology, 336. https://doi.org/10.1016/j.biortech.2021.125307 Liu, T., Sun, L., Zhang, C., Liu, Y., Li, J., Du, G., Lv, X., & Liu, L. (2023). Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Bioresource Technology, 379. https://doi.org/10.1016/j.biortech.2023.129023 Liu, Y. J., Zhang, Y., Chi, F., Chen, C., Wan, W., Feng, Y., Song, X., & Cui, Q. (2023). Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions. Journal of Environmental Management, 342. https://doi.org/10.1016/j.jenvman.2023.118281 Lojananan, N., Cheirsilp, B., Intasit, R., Billateh, A., Srinuanpan, S., Suyotha, W., & Boonsawang, P. (2024). Successive process for efficient biovalorization of Brewers’ spent grain to lignocellulolytic enzymes and lactic acid production through simultaneous saccharification and fermentation. Bioresource Technology, 397. https://doi.org/10.1016/j.biortech.2024.130490 Lu, Z., Wei, M., & Yu, L. (2012). Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochemistry, 47(3), 410–415. https://doi.org/10.1016/j.procbio.2011.11.022 Lu, Z., Wei, M., & Yu, L. (2012). Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochemistry, 47(3), 410–415. https://doi.org/10.1016/j.procbio.2011.11.022 Martínez-Trujillo, M. A., Bautista-Rangel, K., García-Rivero, M., Martínez-Estrada, A., & Cruz-Díaz, M. R. (2020). Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering, 43(3), 413–427. https://doi.org/10.1007/s00449-019-02237-z Marzo-Gago, C., Unger, P., Schneider, R., Venus, J., & López-Gómez, J. P. (2024). Valorising pasta industry wastes by the scale up and integration of solid-state and liquid-submerged fermentations. Bioresource Technology, 391. https://doi.org/10.1016/j.biortech.2023.129909 Milon, R. B., Hu, P., Zhang, X., Hu, X., & Ren, L. (2024). Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. Bioresources and Bioprocessing, 11(1]. https://doi.org/10.1186/s40643-024-00747-7 Minervini, F., Comitini, F., de Boni, A., Fiorino, G. M., Rodrigues, F., Tlais, A. Z. A., Carafa, I., & de Angelis, M. (2022). Sustainable and Health-Protecting Food Ingredients from Bioprocessed Food By-Products and Wastes. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215283 Mukherjee, P., & Sivaprakasam, S. (2025). Engineering the D-lactic acid responsive promoter/repressor system as dynamic metabolic engineering tool in Lactobacillus delbrueckii subsp. bulgaricus for controlled D-lactic acid biosynthesis. Enzyme and Microbial Technology, 185. Mukherjee, P., & Sivaprakasam, S. (2025]. Engineering the D-lactic acid responsive promoter/repressor system as dynamic metabolic engineering tool in Lactobacillus delbrueckii subsp. bulgaricus for controlled D-lactic acid biosynthesis. Enzyme and Microbial Technology, 185. Naomi David, A., Sewsynker-Sukai, Y., & Gueguim Kana, E. B. (2022). Co-valorization of corn cobs and dairy wastewater for simultaneous saccharification and lactic acid production: Process optimization and kinetic assessment. Bioresource Technology, 348. https://doi.org/10.1016/j.biortech.2022.126815 Nastouli, A., Sweeney, J., Harasek, M., Karabelas, A. J., & Patsios, S. I. (2024). Development of a hybrid bio-purification process of lactic acid solutions employing an engineered E. coli strain in a membrane bioreactor. Biotechnology for Biofuels and Bioproducts, 17(1). https://doi.org/10.1186/s13068-024-02497-2 Nataraj, B. H., Ramesh, C., & Mallappa, R. H. (2021]. Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. LWT, 151. https://doi.org/10.1016/j.lwt.2021.112195 Ngouénam, J. R., Momo Kenfack, C. H., Foko Kouam, E. M., Kaktcham, P. M., Maharjan, R., & Ngoufack, F. Z. (2021). Lactic acid production ability of Lactobacillus sp. from four tropical fruits using their by-products as carbon source. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07079 Oliveira, R. A., Vaz Rossell, C. E., Pereira, G. A. G., & Filho, R. M. I. (2020). Second-generation (2G) lactic acid production and new developments - A mini-review. Chemical Engineering Transactions, 80, 223–228. https://doi.org/10.3303/CET2080038 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol. 2021;74[9]:790-799. doi:10.1016/j.recesp.2021.06.016 Panesar, P. S., & Kaur, S. (2015). Bioutilisation of agro-industrial waste for lactic acid production. In International Journal of Food Science and Technology (Vol. 50, Issue 10, pp. 2143–2151). https://doi.org/10.1111/ijfs.12886 Pau, S., Oliva, A., Tan, L. C., Arriaga, S., & Lens, P. N. L. (2024). Recovery of organic acids from lactic acid-enriched fermentation broth via salting-out assisted solvent extraction. Process Safety and Environmental Protection, 187, 376–384. https://doi.org/10.1016/j.psep.2024.04.127 Pontes, R., Romaní, A., Michelin, M., Domingues, L., Teixeira, J., & Nunes, J. (2021). L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 170. https://doi.org/10.1016/j.indcrop.2021.113775 Research, S. (s. f.). Lactic Acid Market Size, Share | Growth Analysis Report 2033. https://straitsresearch.com/report/lactic-acid market#:~:text=How%20big%20is%20the%20lactic,period%20(2025%E2%80%932033). Rezvani, F., Ardestani, F., & Najafpour, G. (2017). Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Brazilian Journal of Microbiology, 48(2), 251–258. https://doi.org/10.1016/j.bjm.2016.12.007 Romo-Buchelly, J., Rodríguez-Torres, M., & Orozco-Sánchez, F. (2019). Biotechnological valorization of agro industrial and household wastes for lactic acid production. Revista Colombiana de Biotecnología, 21(1), 113–127. https://doi.org/10.15446/rev.colomb.biote.v21n1.69284 Rosero-Chasoy, G., Pabon, O. V., Valencia-Hernández, L. J., & Cock, L. S. (2024). Kinetic analysis of lactic acid fermentation by using an extended logistic model. Process Biochemistry, 144, 1–5. https://doi.org/10.1016/j.procbio.2024.05.002 Roslan, E., Mohamed, H., Abu Hassan, S. H., Carrere, H., & Trably, E. (2024). Coupling lactic acid fermentation of food waste at various concentrations as storage strategy with dark fermentation for biohydrogen production. International Journal of Hydrogen Energy, 88, 358–368. https://doi.org/10.1016/j.ijhydene.2024.09.134 Ryu, H.-W., Wee, Y.-J., & Kim, J.-N. (n.d.). Biotechnological production of lactic acid and its recent applications Food Technol Biotechnological Production of Lactic Acid and Its Recent Applications. https://www.researchgate.net/publication/228357901 Santos-Rocha, S. J., Mendoza-Ortiz, C., Tobon-Gonzalez, J., Ríos-Estepa, R., & Orozco-Sánchez, F. (2024). Oxygen Transfer Effect on the Growth of Limosilactobacillus reuteri ATCC 53608 and on Its Metabolic Capacity. Current Microbiology, 81(11). https://doi.org/10.1007/s00284-024-03822-6 Savithra Krishna, B., Saibaba, N. K., Sai Nikhilesh Gantala, S., Tarun, B., Sarva Sai Nikhilesh, G., Saibaba V, N. K., & Gopinadh, R. (2018). Industrial production of lactic acid and its applications (Vol. 1, Issue 1). https://www.researchgate.net/publication/330292057 Schroedter, L., Schneider, R., & Venus, J. (2025). Transforming waste wood into pure L-(+)-lactic acid: Efficient use of mixed sugar media through cell-recycled continuous fermentation. Bioresource Technology, 419. https://doi.org/10.1016/j.biortech.2024.132010 Simonetti, M., Butti, P., di Lorenzo, R. D., Mapelli, V., & Branduardi, P. (2024). Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast. Microbial Cell Factories, 23(1). https://doi.org/10.1186/s12934-024-02384-3 Simonetti, M., Butti, P., di Lorenzo, R. D., Mapelli, V., & Branduardi, P. (2024). Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast. Microbial Cell Factories, 23(1]. https://doi.org/10.1186/s12934-024-02384-3 Siriwong, T., Lunprom, S., & Salakkam, A. (2024). Integrating use of sugarcane bagasse with sugarcane juice for efficient l-lactic acid production through fed-batch simultaneous saccharification and fermentation: Process configurations and kinetic analysis. Industrial Crops and Products, 222. https://doi.org/10.1016/j.indcrop.2024.119724 Srivastava, A. K., Tripathi, A. D., Jha, A., Poonia, A., & Sharma, N. (2015). Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). Journal of Food Science and Technology, 52(6), 3571–3578. https://doi.org/10.1007/s13197-014-1423-6 Susmozas, A., Schroedter, L., Manzanares, P., Iglesias, R., Schneider, R., Venus, J., & Ballesteros, I. (2025). Enhanced enzymatic digestibility of steam-exploded short rotation hardwood species Betula pendula and its potential for lactic acid production. Journal of Cleaner Production, 494. https://doi.org/10.1016/j.jclepro.2025.145042 Susmozas, A., Schroedter, L., Manzanares, P., Iglesias, R., Schneider, R., Venus, J., & Ballesteros, I. (2025]. Enhanced enzymatic digestibility of steam-exploded short rotation hardwood species Betula pendula and its potential for lactic acid production. Journal of Cleaner Production, 494. https://doi.org/10.1016/j.jclepro.2025.145042 Tabanelli, G., Pasini, F., Riciputi, Y., Vannini, L., Gozzi, G., Balestra, F., Caboni, M. F., Gardini, F., & Montanari, C. (2018). Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production. Journal of Food Science, 83(3), 711–722. https://doi.org/10.1111/1750-3841.14036 Tang, I., Ladero, M., & Santos, V. E. (2020). D-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 146. https://doi.org/10.1016/j.indcrop.2020.112176 Tang, J., Hu, Z., Pu, Y., Wang, X. C., & Abomohra, A. (2024). Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. In Journal of Environmental Management (Vol. 369). Academic Press. https://doi.org/10.1016/j.jenvman.2024.122372 Teke, G. M., Gakingo, G. K., & Pott, R. W. M. (2022). The liquid-liquid extractive fermentation of L–lactic acid in a novel semi-partition bioreactor (SPB). Journal of Biotechnology, 360, 55–61. https://doi.org/10.1016/j.jbiotec.2022.10.017 Thangavelu, V., & Rajendran, A. (2008). Recent Trends in the Production, Purification and Application of Lactic Acid. https://www.researchgate.net/publication/27208692 Totaro, D., Rothbauer, M., Steiger, M. G., Mayr, T., Wang, H. Y., Lin, Y. S., Sauer, M., Altvater, M., Ertl, P., & Mattanovich, D. (2020). Downscaling screening cultures in a multifunctional bioreactor array-on-a-chip for speeding up optimization of yeast-based lactic acid bioproduction. Biotechnology and Bioengineering, 117(7), 2046–2057. https://doi.org/10.1002/bit.27338 Totaro, D., Rothbauer, M., Steiger, M. G., Mayr, T., Wang, H. Y., Lin, Y. S., Sauer, M., Altvater, M., Ertl, P., & Mattanovich, D. (2020). Downscaling screening cultures in a multifunctional bioreactor array-on-a-chip for speeding up optimization of yeast-based lactic acid bioproduction. Biotechnology and Bioengineering, 117[7), 2046–2057. https://doi.org/10.1002/bit.27338 Vance, C., Mediboyina, M. K., Papadopoulou, E., Cabrera-González, M., Reif, D., Sweeney, J., Harasek, M., & Murphy, F. (2024). Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions. Journal of Cleaner Production, 484. https://doi.org/10.1016/j.jclepro.2024.144347 Wang, Z., Zhong, H., Li, J., Jiang, M., Li, A., & Cheng, K. (2024). Statistical optimization of cassava starch medium for D-lactic acid production using Leuconostoc mesenteroides ZL01. Biochemical Engineering Journal, 204. https://doi.org/10.1016/j.bej.2024.109247 Wei, C., Liu, G., Zhang, J., & Bao, J. (2018). Elevating fermentation yield of cellulosic lactic acid in calcium lactate form from corn stover feedstock. Industrial Crops and Products, 126, 415–420. https://doi.org/10.1016/j.indcrop.2018.10.041 Wong, K. H., Tan, I. S., Foo, H. C. Y., Chin, L. M., Cheah, J. R. N., Sia, J. K., Tong, K. T. X., & Lam, M. K. (2022). Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Conversion and Management, 253. https://doi.org/10.1016/j.enconman.2021.115155 Wong, K. H., Tan, I. S., Foo, H. C. Y., Chin, L. M., Cheah, J. R. N., Sia, J. K., Tong, K. T. X., & Lam, M. K. (2022). Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Conversion and Management, 253. https://doi.org/10.1016/j.enconman.2021.115155 Wu, H., Scheve, T., Dalke, R., Holtzapple, M., & Urgun-Demirtas, M. (2023). Scaling up carboxylic acid production from cheese whey and brewery wastewater via methane-arrested anaerobic digestion. Chemical Engineering Journal, 459. https://doi.org/10.1016/j.cej.2022.140080 Wu, R., Yang, J., Jiang, Y., & Xin, F. (2025). Advances and prospects for lactic acid production from lignocellulose. In Enzyme and Microbial Technology (Vol. 182). Elsevier Inc. https://doi.org/10.1016/j.enzmictec.2024.110542 Wu, X., Jiang, S., Liu, M., Pan, L., Zheng, Z., & Luo, S. (2011). Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. Journal of Industrial Microbiology and Biotechnology, 38(4), 565–571. https://doi.org/10.1007/s10295-010-0804-8 Yan, Y., Shan, W., Zhang, C., Wu, Y., Xing, X., Chen, J., & Hu, W. (2024). Strain engineering of Bacillus coagulans with high osmotic pressure tolerance for effective L-lactic acid production from sweet sorghum juice under unsterile conditions. Bioresource Technology, 400. https://doi.org/10.1016/j.biortech.2024.130648 Yang, C. C., Chou, C. H., Guo, G. L., Lin, Y. J., & Wen, F. S. (2024). From agricultural biomass to D form lactic acid in ton scale via strain engineering of Lactiplantibacillus pentosus. Bioresource Technology, 413. https://doi.org/10.1016/j.biortech.2024.131553 Zakaria, Z., Hall, G. M., & Shama, G. (s.f.). Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery (Vol. 33, Issue 1]. Zhang, B., Han, Y., & Bao, J. (2024). Formulating the racemic lactic acids-free nitrogen ingredients from plant proteins for cellulosic chiral lactic acid fermentation. Industrial Crops and Products, 217. https://doi.org/10.1016/j.indcrop.2024.118821 Zhang, B., Li, J., Liu, X., & Bao, J. (2022). Continuous simultaneous saccharification and co-fermentation (SSCF) for cellulosic L-lactic acid production. Industrial Crops and Products, 187. https://doi.org/10.1016/j.indcrop.2022.115527 Zhang, S., Liu, Y., Zhou, C., Li, Z., & Gao, W. (2024). The production of D-lactic acid by fermentation from waste newspapers recycling as the carbon source. Environmental Technology and Innovation, 36. https://doi.org/10.1016/j.eti.2024.103898 Zhang, Y., Xu, Z., Lu, M., Ma, X., Chen, S., Wang, Y., Shen, W., Li, P., & Jin, M. (2023). High titer (>200 g/L) lactic acid production from undetoxified pretreated corn stover. Bioresource Technology, 388. https://doi.org/10.1016/j.biortech.2023.129729 Zu, H., Wu, Y., Liao, Z., Wang, Y., Wang, B., Qin, P., Ren, W., Zhao, J., & Cai, D. (2024). Research progress on the biosynthesis of D-lactic acid from low-value biomass materials. In Biomass and Bioenergy (Vol. 182). Elsevier Ltd. Zu, H., Wu, Y., Liao, Z., Wang, Y., Wang, B., Qin, P., Ren, W., Zhao, J., & Cai, D. (2024). Research progress on the biosynthesis of D-lactic acid from low-value biomass materials. Biomass and Bioenergy, 182. https://doi.org/10.1016/j.biombioe.2024.107067 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
52 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Microbiología Industrial y Ambiental |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Escuela de Microbiología |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/a81d5ebb-9329-4a65-b5e2-722187ca8004/download https://bibliotecadigital.udea.edu.co/bitstreams/1da92813-ad0d-46fd-9a48-07cd58ec9cbc/download https://bibliotecadigital.udea.edu.co/bitstreams/68208a4c-2b54-4f73-badc-491b6fd340e7/download https://bibliotecadigital.udea.edu.co/bitstreams/850b521e-d1ad-4a0a-94f9-a4a699044525/download https://bibliotecadigital.udea.edu.co/bitstreams/74341856-da1c-4683-90b5-7c8aa72fc73d/download |
| bitstream.checksum.fl_str_mv |
ecd1186a14f5805142897178a873614d 5643bfd9bcf29d560eeec56d584edaa9 b76e7a76e24cf2f94b3ce0ae5ed275d0 adbc9d61505d2af6c783db5340db7c09 461d475bb69aa7dfefc11c1c0f2cf919 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052518602178560 |
| spelling |
Restrepo Escobar, NataliaSaavedra Caicedo, Nicol Stefanía2025-10-23T15:07:23Z2025Saavedra, Caicedo, N. (2025). Factores clave en la productividad del ácido láctico: una revisión sistemática de los avances y limitaciones en su producción a gran escala [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/47916El ácido láctico es un compuesto clave con aplicaciones en las industrias alimentaria, farmacéutica y de plásticos biodegradables, siendo en la actualidad de gran interés, debido a la producción sostenible a partir de sustratos agroindustriales y que representa una alternativa a las materias primas derivadas del petróleo si no también la oportunidad de abordar materias primas . Sin embargo, el escalamiento desde el laboratorio hasta la escala piloto presenta desafíos relacionados con la selección del sustrato, el tipo de microorganismo, los parámetros operativos y la configuración del biorreactor. En este trabajo, se realizó una revisión bibliográfica de acuerdo con el protocolo PRISMA, a partir de trabajos encontrados en bases de datos como Scopus y Web of Science, publicados en los últimos diez años en donde se analizaron aspectos como la composición del sustrato y la optimización del proceso, identificando factores críticos que afectan el rendimiento y la productividad del ácido láctico.Lactic acid is a key compound with applications in the food, pharmaceutical and biodegradable plastics industries. It is currently of great interest due to its sustainable production from agro industrial substrates, representing an alternative to petroleum-derived raw materials and an opportunity to address raw materials. However, scaling up from the laboratory to the pilot scale presents challenges related to substrate selection, microorganism type, operating parameters and bioreactor configuration. In this work, a literature review was conducted in accordance with the PRISMA protocol, based on studies found in databases such as Scopus and Web of Science, published in the last ten years, where aspects such as substrate composition and process optimisation were analysed, identifying critical factors that affect lactic acid yield and productivity.PregradoMicrobiólogo Industrial y Ambiental52 páginasapplication/pdfspaUniversidad de AntioquiaMicrobiología Industrial y AmbientalMedellín, ColombiaEscuela de MicrobiologíaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Factores clave en la productividad del ácido láctico : una revisión de los avances y limitaciones en su producción a gran escalaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAarti, C., Khusro, A., Arasu, M. V., Agastian, P., & Al-Dhabi, N. A. (2016). Biological potency and characterization of antibacterial substances produced by Lactobacillus pentosus isolated from Hentak, a fermented fish product of North-East India. SpringerPlus, 5(1]. https://doi.org/10.1186/s40064-016-3452-2Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. In Biotechnology Advances (Vol. 31, Issue 6, pp. 877–902). https://doi.org/10.1016/j.biotechadv.2013.04.002Anumudu, C. K., Miri, T., & Onyeaka, H. (2024). Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods, 13(23). https://doi.org/10.3390/foods13233714Ayadi, K., Meziane, M., Bounedjar, K., Douma, D. T., Bensouna, S., Fellah, M., & El-Miloudi, K. (2022). Lactic acid production by immobilization of Lactobacillus sp. isolated from olive mill wastewater. Desalination and Water Treatment, 255, 83–93. https://doi.org/10.5004/dwt.2022.28324Brobbey, M. S., Louw, J. P., Louw, J., & Görgens, J. F. (2024). Effect of production scale on the techno-economic viability and environmental life cycle analysis of lactic acid production in a sugarcane biorefinery. Food and Bioproducts Processing, 148, 269–284. https://doi.org/10.1016/j.fbp.2024.09.020Cai, D., Deng, L., Wu, J., Su, C., Wu, Y., Bi, H., Wang, Y., Wang, B., Zhang, C., & Qin, P. (2025). Alkali pretreated corn stalk combined with enzyme cocktail at low cellulase dosage for the high-titer L-lactic acid production. Industrial Crops and Products, 224. https://doi.org/10.1016/j.indcrop.2024.120332Cai, Y., Dun, Y., Dong, W., Chen, Q., Lei, Y., Hu, J., Peng, N., & Zhao, S. (2024). Direct lactic acid production from raw jerusalem artichoke powder by Lacticaseibacillus paracasei NJ and the comparative transcriptomic profiling of inulin and monosaccharide utilization. Food Bioscience, 61. https://doi.org/10.1016/j.fbio.2024.104736Carpinelli Macedo, J. V., de Barros Ranke, F. F., Escaramboni, B., Campioni, T. S., Fernández Núñez, E. G., & de Oliva Neto, P. (2020). Cost-effective lactic acid production by fermentation of agro-industrial residues. Biocatalysis and Agricultural Biotechnology, 27. https://doi.org/10.1016/j.bcab.2020.101706Chai, C. Y., Tan, I. S., Foo, H. C. Y., Lam, M. K., Tong, K. T. X., & Lee, K. T. (2021). Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation L-lactic acid production. Bioresource Technology, 330. https://doi.org/10.1016/j.biortech.2021.124930Chen, P. T., Hong, Z. S., Cheng, C. L., Ng, I. S., Lo, Y. C., Nagarajan, D., & Chang, J. S. (2020). Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 308. https://doi.org/10.1016/j.biortech.2020.123266Chenebault, C., Moscoviz, R., Trably, E., Escudié, R., & Percheron, B. (2022). Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. Bioresource Technology, 354. https://doi.org/10.1016/j.biortech.2022.127230Chenebault, C., Moscoviz, R., Trably, E., Escudié, R., & Percheron, B. (2022). Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. Bioresource Technology, 354. https://doi.org/10.1016/j.biortech.2022.127230Choi, B., Tafur Rangel, A., Kerkhoven, E. J., & Nygård, Y. (2024). Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass. Metabolic Engineering, 84, 23–33. https://doi.org/10.1016/j.ymben.2024.05.003Costa, S., Summa, D., Semeraro, B., Zappaterra, F., Rugiero, I., & Tamburini, E. (2020). Fermentation as a strategy for bio-transforming waste into resources: Lactic acid production from agri-food residues. Fermentation, 7(1]. https://doi.org/10.3390/fermentation7010003Cox, R., Narisetty, V., Castro, E., Agrawal, D., Jacob, S., Kumar, G., Kumar, D., & Kumar, V. (2023). Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. Waste Management, 166, 336–345. https://doi.org/10.1016/j.wasman.2023.05.015Delmoitié, B., Sakarika, M., Rabaey, K., de Wever, H., & Regueira, A. (2025). Tailoring non-axenic lactic acid fermentation from cheese whey permeate targeting a flexible lactic acid platform. Journal of Environmental Management, 373.Derabli, B., Nancib, A., Nancib, N., Aníbal, J., Raposo, S., Rodrigues, B., & Boudrant, J. (2022). Opuntia ficus indica waste as a cost effective carbon source for lactic acid production by Lactobacillus plantarum. Food Chemistry, 370. https://doi.org/10.1016/j.foodchem.2021.131005El-Sheshtawy, H. S., Fahim, I., Hosny, M., & El-Badry, M. A. (2022). Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 5. https://doi.org/10.1016/j.crgsc.2021.100228El-Sheshtawy, H. S., Fahim, I., Hosny, M., & El-Badry, M. A. (2022). Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 5. https://doi.org/10.1016/j.crgsc.2021.100228Eş, I., Mousavi Khaneghah, A., Barba, F. J., Saraiva, J. A., Sant’Ana, A. S., & Hashemi, S. M. B. (2018). Recent advancements in lactic acid production - a review. In Food Research International (Vol. 107, pp. 763–770). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2018.01.001Farooq, U., Muhammad Anjum, F., Zahoor, T., Atif Randhawa, M., Ahmed, A., & Akram, K. (2012). Optimization of lactic acid production from cheap raw material: sugarcane molasses. In Pak. J. Bot (Vol. 44, Issue 1).Fu, X., Wang, Y., Wang, J., Garza, E., Manow, R., & Zhou, S. (2017). Semi-industrial scale (30 m3) fed-batch fermentation for the production of d-lactate by Escherichia coli strain HBUT-D15. Journal of Industrial Microbiology and Biotechnology, 44(2), 221–228. https://doi.org/10.1007/s10295-016-1877-9Fukuda, D., Aso, Y., & Nolasco-Hipólito, C. (2023). Genome and fermentation analyses of Enterococcus faecalis DB-5 isolated from Japanese Mandarin orange: An assessment of potential application in lactic acid production. Journal of Bioscience and Bioengineering, 136(1), 20–27. https://doi.org/10.1016/j.jbiosc.2023.04.003Germec, M., Karhan, M., Bialka, K. L., Demirci, A., & Turhan, I. (2018). Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis and Agricultural Biotechnology, 14, 254–263. https://doi.org/10.1016/j.bcab.2018.03.018Grand View Research. (2024). Lactic Acid Market Size, Share & Trends Analysis Report By Raw Material (Corn, Sugarcane, Cassava, Yeast Extract), By Form (Dry, Liquid), By Application, By Region, & Segment Forecasts, 2024 - 2030 (Report ID: 978-1-68038-126-9). Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-marketGranget, C., Manikandan, N. A., Amulya, K., Dabros, M., Fahy, S., Kelleher, S. M., Rochfort, K. D., Gaughran, J., & Freeland, B. (2024). Brewer’s spent grain as a self-sufficient feedstock for homofermentative production of optically pure L-lactic acid using Lactobacillus rhamnosus. Environmental Technology and Innovation, 34. https://doi.org/10.1016/j.eti.2024.103582Granget, C., Manikandan, N. A., Amulya, K., Dabros, M., Fahy, S., Kelleher, S. M., Rochfort, K. D., Gaughran, J., & Freeland, B. (2024). Brewer’s spent grain as a self-sufficient feedstock for homofermentative production of optically pure L-lactic acid using Lactobacillus rhamnosus. Environmental Technology and Innovation, 34. https://doi.org/10.1016/j.eti.2024.103582Gugel, I., Marchetti, F., Costa, S., Gugel, I., Baldini, E., Vertuani, S., & Manfredini, S. (2024). 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation. Applied Microbiology and Biotechnology, 108(1). https://doi.org/10.1007/s00253-024-13217-zGutiérrez-Sarmiento, W., María Cristina Ventura-Canseco, L., Gutiérrez-Miceli, F., & Celina Luján-Hidalgo, M. (s.f.). OPTIMIZATION OF BIOMASS PRODUCTION, LACTIC ACID, AND GASTROINTESTINAL SIMULATION SURVIVAL OF Lactobacillus plantarum BAL-03-ITTG CULTURED IN STIRRED TANK BIOREACTOR. https://www.researchgate.net/publication/341459268Hassan, N., Idris, A., Ali El-Enshasy, H., Abd Malek, R., & Bahru, J. (2017). Scaling-up SSF of EFB. In BioResources (Vol. 12, Issue 4).Khasanah, Y., Indrianingsih, A. W., Triwitono, P., & Murdiati, A. (2024). Production, biological activities and functional food of modified cassava flour (mocaf). Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 7(2), 213–229. https://doi.org/10.20956/canrea.v7i2.1280Kim, J., Kim, Y. M., Lebaka, V. R., & Wee, Y. J. (2022). Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications. In Fermentation (Vol. 8, Issue 11). MDPI. https://doi.org/10.3390/fermentation8110609Kuznetsov, A., Beloded, A., Derunets, A., Grosheva, V., Vakar, L., Kozlovskiy, R., & Shvets, V. (2017). Biosynthesis of lactic acid in a membrane bioreactor for cleaner technology of polylactide production. Clean Technologies and Environmental Policy, 19(3), 869–882. https://doi.org/10.1007/s10098-016-1275-zLi, Z., Zhang, L., Zhang, B., & Bao, J. (2025). pH shifting adaptive evolution stimulates the low pH tolerance of Pediococcus acidilactici and high L-lactic acid fermentation efficiency. Bioresource Technology, 416. https://doi.org/10.1016/j.biortech.2024.131813Lian, T., Zhang, W., Cao, Q., Wang, S., Yin, F., Chen, Y., Zhou, T., & Dong, H. (2021). Optimization of lactate production from co-fermentation of swine manure with apple waste and dynamics of microbial communities. Bioresource Technology, 336. https://doi.org/10.1016/j.biortech.2021.125307Liu, T., Sun, L., Zhang, C., Liu, Y., Li, J., Du, G., Lv, X., & Liu, L. (2023). Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Bioresource Technology, 379. https://doi.org/10.1016/j.biortech.2023.129023Liu, Y. J., Zhang, Y., Chi, F., Chen, C., Wan, W., Feng, Y., Song, X., & Cui, Q. (2023). Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions. Journal of Environmental Management, 342. https://doi.org/10.1016/j.jenvman.2023.118281Lojananan, N., Cheirsilp, B., Intasit, R., Billateh, A., Srinuanpan, S., Suyotha, W., & Boonsawang, P. (2024). Successive process for efficient biovalorization of Brewers’ spent grain to lignocellulolytic enzymes and lactic acid production through simultaneous saccharification and fermentation. Bioresource Technology, 397. https://doi.org/10.1016/j.biortech.2024.130490Lu, Z., Wei, M., & Yu, L. (2012). Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochemistry, 47(3), 410–415. https://doi.org/10.1016/j.procbio.2011.11.022Lu, Z., Wei, M., & Yu, L. (2012). Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochemistry, 47(3), 410–415. https://doi.org/10.1016/j.procbio.2011.11.022Martínez-Trujillo, M. A., Bautista-Rangel, K., García-Rivero, M., Martínez-Estrada, A., & Cruz-Díaz, M. R. (2020). Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess and Biosystems Engineering, 43(3), 413–427. https://doi.org/10.1007/s00449-019-02237-zMarzo-Gago, C., Unger, P., Schneider, R., Venus, J., & López-Gómez, J. P. (2024). Valorising pasta industry wastes by the scale up and integration of solid-state and liquid-submerged fermentations. Bioresource Technology, 391. https://doi.org/10.1016/j.biortech.2023.129909Milon, R. B., Hu, P., Zhang, X., Hu, X., & Ren, L. (2024). Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. Bioresources and Bioprocessing, 11(1]. https://doi.org/10.1186/s40643-024-00747-7Minervini, F., Comitini, F., de Boni, A., Fiorino, G. M., Rodrigues, F., Tlais, A. Z. A., Carafa, I., & de Angelis, M. (2022). Sustainable and Health-Protecting Food Ingredients from Bioprocessed Food By-Products and Wastes. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215283Mukherjee, P., & Sivaprakasam, S. (2025). Engineering the D-lactic acid responsive promoter/repressor system as dynamic metabolic engineering tool in Lactobacillus delbrueckii subsp. bulgaricus for controlled D-lactic acid biosynthesis. Enzyme and Microbial Technology, 185.Mukherjee, P., & Sivaprakasam, S. (2025]. Engineering the D-lactic acid responsive promoter/repressor system as dynamic metabolic engineering tool in Lactobacillus delbrueckii subsp. bulgaricus for controlled D-lactic acid biosynthesis. Enzyme and Microbial Technology, 185.Naomi David, A., Sewsynker-Sukai, Y., & Gueguim Kana, E. B. (2022). Co-valorization of corn cobs and dairy wastewater for simultaneous saccharification and lactic acid production: Process optimization and kinetic assessment. Bioresource Technology, 348. https://doi.org/10.1016/j.biortech.2022.126815Nastouli, A., Sweeney, J., Harasek, M., Karabelas, A. J., & Patsios, S. I. (2024). Development of a hybrid bio-purification process of lactic acid solutions employing an engineered E. coli strain in a membrane bioreactor. Biotechnology for Biofuels and Bioproducts, 17(1). https://doi.org/10.1186/s13068-024-02497-2Nataraj, B. H., Ramesh, C., & Mallappa, R. H. (2021]. Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. LWT, 151. https://doi.org/10.1016/j.lwt.2021.112195Ngouénam, J. R., Momo Kenfack, C. H., Foko Kouam, E. M., Kaktcham, P. M., Maharjan, R., & Ngoufack, F. Z. (2021). Lactic acid production ability of Lactobacillus sp. from four tropical fruits using their by-products as carbon source. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07079Oliveira, R. A., Vaz Rossell, C. E., Pereira, G. A. G., & Filho, R. M. I. (2020). Second-generation (2G) lactic acid production and new developments - A mini-review. Chemical Engineering Transactions, 80, 223–228. https://doi.org/10.3303/CET2080038Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol. 2021;74[9]:790-799. doi:10.1016/j.recesp.2021.06.016Panesar, P. S., & Kaur, S. (2015). Bioutilisation of agro-industrial waste for lactic acid production. In International Journal of Food Science and Technology (Vol. 50, Issue 10, pp. 2143–2151). https://doi.org/10.1111/ijfs.12886Pau, S., Oliva, A., Tan, L. C., Arriaga, S., & Lens, P. N. L. (2024). Recovery of organic acids from lactic acid-enriched fermentation broth via salting-out assisted solvent extraction. Process Safety and Environmental Protection, 187, 376–384. https://doi.org/10.1016/j.psep.2024.04.127Pontes, R., Romaní, A., Michelin, M., Domingues, L., Teixeira, J., & Nunes, J. (2021). L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 170. https://doi.org/10.1016/j.indcrop.2021.113775 Research, S. (s. f.). Lactic Acid Market Size, Share | Growth Analysis Report 2033. https://straitsresearch.com/report/lactic-acid market#:~:text=How%20big%20is%20the%20lactic,period%20(2025%E2%80%932033).Rezvani, F., Ardestani, F., & Najafpour, G. (2017). Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Brazilian Journal of Microbiology, 48(2), 251–258. https://doi.org/10.1016/j.bjm.2016.12.007Romo-Buchelly, J., Rodríguez-Torres, M., & Orozco-Sánchez, F. (2019). Biotechnological valorization of agro industrial and household wastes for lactic acid production. Revista Colombiana de Biotecnología, 21(1), 113–127. https://doi.org/10.15446/rev.colomb.biote.v21n1.69284Rosero-Chasoy, G., Pabon, O. V., Valencia-Hernández, L. J., & Cock, L. S. (2024). Kinetic analysis of lactic acid fermentation by using an extended logistic model. Process Biochemistry, 144, 1–5. https://doi.org/10.1016/j.procbio.2024.05.002Roslan, E., Mohamed, H., Abu Hassan, S. H., Carrere, H., & Trably, E. (2024). Coupling lactic acid fermentation of food waste at various concentrations as storage strategy with dark fermentation for biohydrogen production. International Journal of Hydrogen Energy, 88, 358–368. https://doi.org/10.1016/j.ijhydene.2024.09.134Ryu, H.-W., Wee, Y.-J., & Kim, J.-N. (n.d.). Biotechnological production of lactic acid and its recent applications Food Technol Biotechnological Production of Lactic Acid and Its Recent Applications. https://www.researchgate.net/publication/228357901Santos-Rocha, S. J., Mendoza-Ortiz, C., Tobon-Gonzalez, J., Ríos-Estepa, R., & Orozco-Sánchez, F. (2024). Oxygen Transfer Effect on the Growth of Limosilactobacillus reuteri ATCC 53608 and on Its Metabolic Capacity. Current Microbiology, 81(11). https://doi.org/10.1007/s00284-024-03822-6Savithra Krishna, B., Saibaba, N. K., Sai Nikhilesh Gantala, S., Tarun, B., Sarva Sai Nikhilesh, G., Saibaba V, N. K., & Gopinadh, R. (2018). Industrial production of lactic acid and its applications (Vol. 1, Issue 1). https://www.researchgate.net/publication/330292057Schroedter, L., Schneider, R., & Venus, J. (2025). Transforming waste wood into pure L-(+)-lactic acid: Efficient use of mixed sugar media through cell-recycled continuous fermentation. Bioresource Technology, 419. https://doi.org/10.1016/j.biortech.2024.132010Simonetti, M., Butti, P., di Lorenzo, R. D., Mapelli, V., & Branduardi, P. (2024). Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast. Microbial Cell Factories, 23(1). https://doi.org/10.1186/s12934-024-02384-3Simonetti, M., Butti, P., di Lorenzo, R. D., Mapelli, V., & Branduardi, P. (2024). Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast. Microbial Cell Factories, 23(1]. https://doi.org/10.1186/s12934-024-02384-3Siriwong, T., Lunprom, S., & Salakkam, A. (2024). Integrating use of sugarcane bagasse with sugarcane juice for efficient l-lactic acid production through fed-batch simultaneous saccharification and fermentation: Process configurations and kinetic analysis. Industrial Crops and Products, 222. https://doi.org/10.1016/j.indcrop.2024.119724Srivastava, A. K., Tripathi, A. D., Jha, A., Poonia, A., & Sharma, N. (2015). Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). Journal of Food Science and Technology, 52(6), 3571–3578. https://doi.org/10.1007/s13197-014-1423-6Susmozas, A., Schroedter, L., Manzanares, P., Iglesias, R., Schneider, R., Venus, J., & Ballesteros, I. (2025). Enhanced enzymatic digestibility of steam-exploded short rotation hardwood species Betula pendula and its potential for lactic acid production. Journal of Cleaner Production, 494. https://doi.org/10.1016/j.jclepro.2025.145042Susmozas, A., Schroedter, L., Manzanares, P., Iglesias, R., Schneider, R., Venus, J., & Ballesteros, I. (2025]. Enhanced enzymatic digestibility of steam-exploded short rotation hardwood species Betula pendula and its potential for lactic acid production. Journal of Cleaner Production, 494. https://doi.org/10.1016/j.jclepro.2025.145042Tabanelli, G., Pasini, F., Riciputi, Y., Vannini, L., Gozzi, G., Balestra, F., Caboni, M. F., Gardini, F., & Montanari, C. (2018). Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production. Journal of Food Science, 83(3), 711–722. https://doi.org/10.1111/1750-3841.14036Tang, I., Ladero, M., & Santos, V. E. (2020). D-lactic acid production from orange waste enzymatic hydrolysates with L. delbrueckii cells in growing and resting state. Industrial Crops and Products, 146. https://doi.org/10.1016/j.indcrop.2020.112176Tang, J., Hu, Z., Pu, Y., Wang, X. C., & Abomohra, A. (2024). Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. In Journal of Environmental Management (Vol. 369). Academic Press. https://doi.org/10.1016/j.jenvman.2024.122372Teke, G. M., Gakingo, G. K., & Pott, R. W. M. (2022). The liquid-liquid extractive fermentation of L–lactic acid in a novel semi-partition bioreactor (SPB). Journal of Biotechnology, 360, 55–61. https://doi.org/10.1016/j.jbiotec.2022.10.017Thangavelu, V., & Rajendran, A. (2008). Recent Trends in the Production, Purification and Application of Lactic Acid. https://www.researchgate.net/publication/27208692Totaro, D., Rothbauer, M., Steiger, M. G., Mayr, T., Wang, H. Y., Lin, Y. S., Sauer, M., Altvater, M., Ertl, P., & Mattanovich, D. (2020). Downscaling screening cultures in a multifunctional bioreactor array-on-a-chip for speeding up optimization of yeast-based lactic acid bioproduction. Biotechnology and Bioengineering, 117(7), 2046–2057. https://doi.org/10.1002/bit.27338Totaro, D., Rothbauer, M., Steiger, M. G., Mayr, T., Wang, H. Y., Lin, Y. S., Sauer, M., Altvater, M., Ertl, P., & Mattanovich, D. (2020). Downscaling screening cultures in a multifunctional bioreactor array-on-a-chip for speeding up optimization of yeast-based lactic acid bioproduction. Biotechnology and Bioengineering, 117[7), 2046–2057. https://doi.org/10.1002/bit.27338Vance, C., Mediboyina, M. K., Papadopoulou, E., Cabrera-González, M., Reif, D., Sweeney, J., Harasek, M., & Murphy, F. (2024). Using process modeling and simulation to determine the sustainability of a novel lactic acid biorefinery in Europe: Influence of process improvements, scale, energy source, and market conditions. Journal of Cleaner Production, 484. https://doi.org/10.1016/j.jclepro.2024.144347Wang, Z., Zhong, H., Li, J., Jiang, M., Li, A., & Cheng, K. (2024). Statistical optimization of cassava starch medium for D-lactic acid production using Leuconostoc mesenteroides ZL01. Biochemical Engineering Journal, 204. https://doi.org/10.1016/j.bej.2024.109247Wei, C., Liu, G., Zhang, J., & Bao, J. (2018). Elevating fermentation yield of cellulosic lactic acid in calcium lactate form from corn stover feedstock. Industrial Crops and Products, 126, 415–420. https://doi.org/10.1016/j.indcrop.2018.10.041Wong, K. H., Tan, I. S., Foo, H. C. Y., Chin, L. M., Cheah, J. R. N., Sia, J. K., Tong, K. T. X., & Lam, M. K. (2022). Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Conversion and Management, 253. https://doi.org/10.1016/j.enconman.2021.115155Wong, K. H., Tan, I. S., Foo, H. C. Y., Chin, L. M., Cheah, J. R. N., Sia, J. K., Tong, K. T. X., & Lam, M. K. (2022). Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: Prospects of Industry 5.0 algae. Energy Conversion and Management, 253. https://doi.org/10.1016/j.enconman.2021.115155Wu, H., Scheve, T., Dalke, R., Holtzapple, M., & Urgun-Demirtas, M. (2023). Scaling up carboxylic acid production from cheese whey and brewery wastewater via methane-arrested anaerobic digestion. Chemical Engineering Journal, 459. https://doi.org/10.1016/j.cej.2022.140080Wu, R., Yang, J., Jiang, Y., & Xin, F. (2025). Advances and prospects for lactic acid production from lignocellulose. In Enzyme and Microbial Technology (Vol. 182). Elsevier Inc. https://doi.org/10.1016/j.enzmictec.2024.110542Wu, X., Jiang, S., Liu, M., Pan, L., Zheng, Z., & Luo, S. (2011). Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. Journal of Industrial Microbiology and Biotechnology, 38(4), 565–571. https://doi.org/10.1007/s10295-010-0804-8Yan, Y., Shan, W., Zhang, C., Wu, Y., Xing, X., Chen, J., & Hu, W. (2024). Strain engineering of Bacillus coagulans with high osmotic pressure tolerance for effective L-lactic acid production from sweet sorghum juice under unsterile conditions. Bioresource Technology, 400. https://doi.org/10.1016/j.biortech.2024.130648Yang, C. C., Chou, C. H., Guo, G. L., Lin, Y. J., & Wen, F. S. (2024). From agricultural biomass to D form lactic acid in ton scale via strain engineering of Lactiplantibacillus pentosus. Bioresource Technology, 413. https://doi.org/10.1016/j.biortech.2024.131553Zakaria, Z., Hall, G. M., & Shama, G. (s.f.). Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery (Vol. 33, Issue 1].Zhang, B., Han, Y., & Bao, J. (2024). Formulating the racemic lactic acids-free nitrogen ingredients from plant proteins for cellulosic chiral lactic acid fermentation. Industrial Crops and Products, 217. https://doi.org/10.1016/j.indcrop.2024.118821Zhang, B., Li, J., Liu, X., & Bao, J. (2022). Continuous simultaneous saccharification and co-fermentation (SSCF) for cellulosic L-lactic acid production. Industrial Crops and Products, 187. https://doi.org/10.1016/j.indcrop.2022.115527Zhang, S., Liu, Y., Zhou, C., Li, Z., & Gao, W. (2024). The production of D-lactic acid by fermentation from waste newspapers recycling as the carbon source. Environmental Technology and Innovation, 36. https://doi.org/10.1016/j.eti.2024.103898Zhang, Y., Xu, Z., Lu, M., Ma, X., Chen, S., Wang, Y., Shen, W., Li, P., & Jin, M. (2023). High titer (>200 g/L) lactic acid production from undetoxified pretreated corn stover. Bioresource Technology, 388. https://doi.org/10.1016/j.biortech.2023.129729Zu, H., Wu, Y., Liao, Z., Wang, Y., Wang, B., Qin, P., Ren, W., Zhao, J., & Cai, D. (2024). Research progress on the biosynthesis of D-lactic acid from low-value biomass materials. In Biomass and Bioenergy (Vol. 182). Elsevier Ltd.Zu, H., Wu, Y., Liao, Z., Wang, Y., Wang, B., Qin, P., Ren, W., Zhao, J., & Cai, D. (2024). Research progress on the biosynthesis of D-lactic acid from low-value biomass materials. Biomass and Bioenergy, 182. https://doi.org/10.1016/j.biombioe.2024.107067Revisión sistemáticaSystematic reviewÁcido lácticoLactic acidAgroindustriaAgro-industryBiorreactorBioreactorsProducción industrialIndustrial productionhttp://aims.fao.org/aos/agrovoc/c_4142http://aims.fao.org/aos/agrovoc/c_28831http://aims.fao.org/aos/agrovoc/c_27469http://aims.fao.org/aos/agrovoc/c_44ff9464https://id.nlm.nih.gov/mesh/D000078182ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónPublicationORIGINALSaavedraNicol_2025_Productividad_Acido_Lactico.pdfSaavedraNicol_2025_Productividad_Acido_Lactico.pdfapplication/pdf566593https://bibliotecadigital.udea.edu.co/bitstreams/a81d5ebb-9329-4a65-b5e2-722187ca8004/downloadecd1186a14f5805142897178a873614dMD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/1da92813-ad0d-46fd-9a48-07cd58ec9cbc/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/68208a4c-2b54-4f73-badc-491b6fd340e7/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADTEXTSaavedraNicol_2025_Productividad_Acido_Lactico.pdf.txtSaavedraNicol_2025_Productividad_Acido_Lactico.pdf.txtExtracted texttext/plain102052https://bibliotecadigital.udea.edu.co/bitstreams/850b521e-d1ad-4a0a-94f9-a4a699044525/downloadadbc9d61505d2af6c783db5340db7c09MD56falseAnonymousREADTHUMBNAILSaavedraNicol_2025_Productividad_Acido_Lactico.pdf.jpgSaavedraNicol_2025_Productividad_Acido_Lactico.pdf.jpgGenerated Thumbnailimage/jpeg6594https://bibliotecadigital.udea.edu.co/bitstreams/74341856-da1c-4683-90b5-7c8aa72fc73d/download461d475bb69aa7dfefc11c1c0f2cf919MD57falseAnonymousREAD10495/47916oai:bibliotecadigital.udea.edu.co:10495/479162025-10-24 04:07:45.44http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
