Hexagonal Systems with Minimal Number of Inlets
Let HSh denote the set of hexagonal systems with h hexagons. If U ∈ HSh then the number of inlets of U is denoted by r(U). In this paper we show that r(U) ≥ 3(h − 1) for every U ∈ HSh. Moreover, for every h ≥ 4 we construct hexagonal systems Bh ∈ HSh such that r(Bh) = lp 3(h − 1)
- Autores:
-
Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
Giraldo Salazar, Hernán Alonso
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45976
- Acceso en línea:
- https://hdl.handle.net/10495/45976
- Palabra clave:
- Hexagons
Entradas
Inlets
http://id.loc.gov/authorities/subjects/sh85060578
http://id.loc.gov/authorities/subjects/sh85066492
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
