Hexagonal Systems with Minimal Number of Inlets

Let HSh denote the set of hexagonal systems with h hexagons. If U ∈ HSh then the number of inlets of U is denoted by r(U). In this paper we show that r(U) ≥ 3(h − 1) for every U ∈ HSh. Moreover, for every h ≥ 4 we construct hexagonal systems Bh ∈ HSh such that r(Bh) = lp 3(h − 1)

Autores:
Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
Giraldo Salazar, Hernán Alonso
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45976
Acceso en línea:
https://hdl.handle.net/10495/45976
Palabra clave:
Hexagons
Entradas
Inlets
http://id.loc.gov/authorities/subjects/sh85060578
http://id.loc.gov/authorities/subjects/sh85066492
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/