Unitary invariant and residual independent matrix distributions

ABSTRACT: Define Z13 = A1/2Y A1/2H (A and Y are independent) and Z15 =B1/2 Y B1/2H (B and Y are independent), where Y , A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of s...

Full description

Autores:
Nagar, Daya Krishna
Vélez Caervajal, Astrid Marissa
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2009
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39817
Acceso en línea:
https://hdl.handle.net/10495/39817
Palabra clave:
Funciones hipergeométricas
Hypergeometric functions
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Beta distribution
Inverted complex Wishart
Complex random matrix
Residual independent
Unitary invariant
Zonal polynomial
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_34bfbadaa956af26c6dab5527a60b200
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39817
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Unitary invariant and residual independent matrix distributions
title Unitary invariant and residual independent matrix distributions
spellingShingle Unitary invariant and residual independent matrix distributions
Funciones hipergeométricas
Hypergeometric functions
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Beta distribution
Inverted complex Wishart
Complex random matrix
Residual independent
Unitary invariant
Zonal polynomial
title_short Unitary invariant and residual independent matrix distributions
title_full Unitary invariant and residual independent matrix distributions
title_fullStr Unitary invariant and residual independent matrix distributions
title_full_unstemmed Unitary invariant and residual independent matrix distributions
title_sort Unitary invariant and residual independent matrix distributions
dc.creator.fl_str_mv Nagar, Daya Krishna
Vélez Caervajal, Astrid Marissa
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Vélez Caervajal, Astrid Marissa
Gupta, Arjun Kumar
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Funciones hipergeométricas
Hypergeometric functions
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
topic Funciones hipergeométricas
Hypergeometric functions
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Beta distribution
Inverted complex Wishart
Complex random matrix
Residual independent
Unitary invariant
Zonal polynomial
dc.subject.proposal.spa.fl_str_mv Beta distribution
Inverted complex Wishart
Complex random matrix
Residual independent
Unitary invariant
Zonal polynomial
description ABSTRACT: Define Z13 = A1/2Y A1/2H (A and Y are independent) and Z15 =B1/2 Y B1/2H (B and Y are independent), where Y , A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of scalar and matrix valued functions of Z13 and Z15 are derived.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009
dc.date.accessioned.none.fl_str_mv 2024-06-09T14:31:50Z
dc.date.available.none.fl_str_mv 2024-06-09T14:31:50Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0101-8205
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39817
dc.identifier.doi.none.fl_str_mv 10.1590/S0101-82052009000100004
dc.identifier.eissn.none.fl_str_mv 1807-0302
identifier_str_mv 0101-8205
10.1590/S0101-82052009000100004
1807-0302
url https://hdl.handle.net/10495/39817
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Comp. Appl. Math.
dc.relation.citationendpage.spa.fl_str_mv 86
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 63
dc.relation.citationvolume.spa.fl_str_mv 28
dc.relation.ispartofjournal.spa.fl_str_mv Computational and Applied Mathematics
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 24 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.publisher.place.spa.fl_str_mv São Carlos, Brasil
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/baa02efc-1e98-47e2-a8a7-8420e18b1a8e/download
https://bibliotecadigital.udea.edu.co/bitstreams/742db75c-c8db-4b39-aecc-26a676823efa/download
https://bibliotecadigital.udea.edu.co/bitstreams/7d17d103-dd02-44d2-8cd0-316cdd240d7e/download
https://bibliotecadigital.udea.edu.co/bitstreams/b1bcc55a-4ccf-45f7-be15-ec9393e7fea8/download
https://bibliotecadigital.udea.edu.co/bitstreams/35eecc79-d1f5-4c81-8e22-f1521bcdca0c/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bf242a85aa5de6046a7464d8a3d9572b
1646d1f6b96dbbbc38035efc9239ac9c
5517952f0e1efc42887107d0e29fc83d
f20e97d565176ce26cecd71f2a0cfe9a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052651099193344
spelling Nagar, Daya KrishnaVélez Caervajal, Astrid MarissaGupta, Arjun KumarAnálisis Multivariado2024-06-09T14:31:50Z2024-06-09T14:31:50Z20090101-8205https://hdl.handle.net/10495/3981710.1590/S0101-820520090001000041807-0302ABSTRACT: Define Z13 = A1/2Y A1/2H (A and Y are independent) and Z15 =B1/2 Y B1/2H (B and Y are independent), where Y , A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of scalar and matrix valued functions of Z13 and Z15 are derived.COL000053224 páginasapplication/pdfengSociedade Brasileira de Matemática Aplicada e ComputacionalSão Carlos, Brasilhttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Unitary invariant and residual independent matrix distributionsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones hipergeométricasHypergeometric functionsTeoría de las distribuciones (análisis funcional)Theory of distributions (Functional analysis)Beta distributionInverted complex WishartComplex random matrixResidual independentUnitary invariantZonal polynomialComp. Appl. Math.8616328Computational and Applied MathematicsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/baa02efc-1e98-47e2-a8a7-8420e18b1a8e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALVélezAstrid_2009_ UnitaryInvariant.pdfVélezAstrid_2009_ UnitaryInvariant.pdfArtículo de investigaciónapplication/pdf237163https://bibliotecadigital.udea.edu.co/bitstreams/742db75c-c8db-4b39-aecc-26a676823efa/downloadbf242a85aa5de6046a7464d8a3d9572bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7d17d103-dd02-44d2-8cd0-316cdd240d7e/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTVélezAstrid_2009_ UnitaryInvariant.pdf.txtVélezAstrid_2009_ UnitaryInvariant.pdf.txtExtracted texttext/plain39575https://bibliotecadigital.udea.edu.co/bitstreams/b1bcc55a-4ccf-45f7-be15-ec9393e7fea8/download5517952f0e1efc42887107d0e29fc83dMD54falseAnonymousREADTHUMBNAILVélezAstrid_2009_ UnitaryInvariant.pdf.jpgVélezAstrid_2009_ UnitaryInvariant.pdf.jpgGenerated Thumbnailimage/jpeg10792https://bibliotecadigital.udea.edu.co/bitstreams/35eecc79-d1f5-4c81-8e22-f1521bcdca0c/downloadf20e97d565176ce26cecd71f2a0cfe9aMD55falseAnonymousREAD10495/39817oai:bibliotecadigital.udea.edu.co:10495/398172025-03-27 01:39:37.331https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=