Unitary invariant and residual independent matrix distributions

ABSTRACT: Define Z13 = A1/2Y A1/2H (A and Y are independent) and Z15 =B1/2 Y B1/2H (B and Y are independent), where Y , A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of s...

Full description

Autores:
Nagar, Daya Krishna
Vélez Caervajal, Astrid Marissa
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2009
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39817
Acceso en línea:
https://hdl.handle.net/10495/39817
Palabra clave:
Funciones hipergeométricas
Hypergeometric functions
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Beta distribution
Inverted complex Wishart
Complex random matrix
Residual independent
Unitary invariant
Zonal polynomial
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/