Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática

El constante crecimiento de la población mundial ha obligado a los diferentes eslabones de la producción alimentaria a elaborar alimentos de forma más eficiente conservando la calidad de los productos. Específicamente en el sector de la producción animal. Una de las tantas alternativas para suplir l...

Full description

Autores:
Toro Pérez, Mariana
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45839
Acceso en línea:
https://hdl.handle.net/10495/45839
Palabra clave:
Proteínas de Insectos
Insect Proteins
Insectos Comestibles
Edible Insects
Alimentación Animal
Animal Feed
Valor Nutritivo
Nutritive Value
Seguridad Alimentaria
Food Security
Entomofagia
Entomophagy
http://aims.fao.org/aos/agrovoc/c_1387360333011
https://id.nlm.nih.gov/mesh/D019476
https://id.nlm.nih.gov/mesh/D000080702
https://id.nlm.nih.gov/mesh/D000821
https://id.nlm.nih.gov/mesh/D009753
https://id.nlm.nih.gov/mesh/D000082302
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UDEA2_1f39321227cce88e7375d7dea2268492
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45839
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
title Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
spellingShingle Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
Proteínas de Insectos
Insect Proteins
Insectos Comestibles
Edible Insects
Alimentación Animal
Animal Feed
Valor Nutritivo
Nutritive Value
Seguridad Alimentaria
Food Security
Entomofagia
Entomophagy
http://aims.fao.org/aos/agrovoc/c_1387360333011
https://id.nlm.nih.gov/mesh/D019476
https://id.nlm.nih.gov/mesh/D000080702
https://id.nlm.nih.gov/mesh/D000821
https://id.nlm.nih.gov/mesh/D009753
https://id.nlm.nih.gov/mesh/D000082302
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
title_short Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
title_full Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
title_fullStr Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
title_full_unstemmed Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
title_sort Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemática
dc.creator.fl_str_mv Toro Pérez, Mariana
dc.contributor.advisor.none.fl_str_mv Galeano Vasco, Luis Fernando
Agudelo Trujillo, Jorge Hernán
dc.contributor.author.none.fl_str_mv Toro Pérez, Mariana
dc.contributor.jury.none.fl_str_mv Peña Serna, Carolina
Vanegas Azuero, Ana Milena
dc.subject.decs.none.fl_str_mv Proteínas de Insectos
Insect Proteins
Insectos Comestibles
Edible Insects
Alimentación Animal
Animal Feed
Valor Nutritivo
Nutritive Value
Seguridad Alimentaria
Food Security
topic Proteínas de Insectos
Insect Proteins
Insectos Comestibles
Edible Insects
Alimentación Animal
Animal Feed
Valor Nutritivo
Nutritive Value
Seguridad Alimentaria
Food Security
Entomofagia
Entomophagy
http://aims.fao.org/aos/agrovoc/c_1387360333011
https://id.nlm.nih.gov/mesh/D019476
https://id.nlm.nih.gov/mesh/D000080702
https://id.nlm.nih.gov/mesh/D000821
https://id.nlm.nih.gov/mesh/D009753
https://id.nlm.nih.gov/mesh/D000082302
ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
dc.subject.agrovoc.none.fl_str_mv Entomofagia
Entomophagy
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_1387360333011
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D019476
https://id.nlm.nih.gov/mesh/D000080702
https://id.nlm.nih.gov/mesh/D000821
https://id.nlm.nih.gov/mesh/D009753
https://id.nlm.nih.gov/mesh/D000082302
dc.subject.ods.none.fl_str_mv ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
description El constante crecimiento de la población mundial ha obligado a los diferentes eslabones de la producción alimentaria a elaborar alimentos de forma más eficiente conservando la calidad de los productos. Específicamente en el sector de la producción animal. Una de las tantas alternativas para suplir la necesidad de alimento son los insectos, sin embargo, existe un gran desconocimiento sobre sus características productivas, ambientales y nutricionales, lo que conlleva a una baja utilización como alternativa para la alimentación humana y animal. En ese sentido, los insectos son una interesante alternativa para la alimentación animal debido a que tienen altos niveles de proteína, lípidos, vitaminas y minerales; además, se requiere poco espacio para su producción, y se pueden alimentar con diversos residuos orgánicos de bajo costo. Dado que existe una gran variedad de insectos potencialmente utilizables para ese fin, antes de usarlos se deben identificar sus características productivas y necesidades ambientales para determinar las especies más promisorias. El objetivo de este proyecto es compilar y analizar mediante una revisión sistemática la información científica disponible, utilizando estrategias validadas de búsqueda, con el fin de determinar las características productivas nutricionales y ambientales de los insectos para la alimentación animal y humana. Los artículos científicos fueron recolectados y analizados mediante una revisión sistemática, utilizando los parámetros PRISMA 2020 (Preferred Reporting Items for Systematic reviews and Meta-Analyses). Entre los insectos más frecuentemente encontrados se destacan el Tenebrio molitor, Hermetia Illucens, Acheta domesticus, Bombyx mori, Zophobas morio y Locusta migratoria. Estos insectos mostraron altos niveles de omega 6 y 9, así como valores óptimos de aminoácidos y minerales, lo que los hace adecuados tanto para la alimentación animal como humana. Los resultados de conversión alimenticia y supervivencia indican que estos insectos pueden ser criados en diversas condiciones y comparados con otras fuentes de alimentos, con menores impactos ambientales.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-08T22:30:24Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv Toro-Pérez, Galeano-Vasco & Agudelo-Trujillo, (2025). Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana: Una revisión sistemática. [Tesis de maestría]. Universidad dé Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45839
identifier_str_mv Toro-Pérez, Galeano-Vasco & Agudelo-Trujillo, (2025). Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana: Una revisión sistemática. [Tesis de maestría]. Universidad dé Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/45839
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aboelkheir, MG., Visconte, LY., Oliveira, GE., Filho, RDT., y Souza Jr, FG. (2019). El efecto biodegradable de las larvas de Tenebrio molitor (Linnaeus) sobre SBR vulcanizado y migajas de neumáticos. Science Total of Environment. 1(649), pp. 1075−1082. DOI: 10.1016/j.scitotenv.2018.08.228.
Adámková A., Mlček J., Kouřimská L., Borkovcová M., Bušina T., Adámek M., Bednářová M., Krajsa J. (2017). Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int J Environ Res Public Health. 12;14(5):521. DOI: 10.3390/ijerph14050521.
Agredo, JA., y Rojas, DM. (2018). Utilización de harina de pupa (Bombyx mori) en alimentación de pollos de engorde [Tesis de Grado]. Universidad del Cauca, Colombia.
Aguilar-Miranda, ED., López, MG., Escamilla-Santana, C., y Barba de la Rosa, AP. (2002). Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. Journal of Agricultural and Food Chemistry. 50(1), pp. 192–195. DOI: 10.1021/jf010691y.
Ahmed, E., Fukuma, N., Hanada, M., & Nishida, T. (2021). Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals, 11(11), 2648. https://doi.org/10.3390/ani11092648.
Aigbodion, FI., Egbon, IN., y Erukakpomren, EA. (2012). Preliminary study on the entomophagous response of Gallus gallus domesticus (Galliformes: Phasianidae) to adult Periplaneta americana. International Journal of Tropical Insect Science, 32(3), pp. 123–125. DOI:10.1017/S1742758412000276. Aires, D., Capdevila, N., & Segundo, M. J. (2005). Ácidos Grasos Esenciales. Offarm, 24(4), 96-105. https://www.elsevier.es/es-revista-offarm-4-articulo-acidos-grasos-esenciales-13073447.
Altmann, BA, Neumann, C., Rothstein, S., Liebert, F. y Mörlein, D. (2019). ¿Las alternativas dietéticas a la soja conducen a mejoras o inconvenientes en la calidad de la carne de cerdo? Una mirada a las microalgas y proteínas de insectos en dietas porcinas. Ciencia de la carne, 153, 26-34.
Alves, A. V., Sanjinez-Argandoña, E. J., Linzmeier, A. M., Cardoso, C. A., & Macedo, M. L. (2016). Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour. PLoS One, 11(3), e0151275. https://doi.org/10.1371/journal.pone.0151275.
Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Antonopoulou, E. (2021). Towards Functional Insect Feeds: Agri-Food By-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants (Basel), 11(1), 68. https://doi.org/10.3390/antiox11010068.
Anene, A., Olivia, C., Ike, K., y Ekekwe, NH. (2013). Preliminary investigations on quantity and proximate quality of maggots produced from four different sources of livestock wastes. Journal on Research in Biology. 3(6), pp. 2–7.
Antunes, A. L. M., Mesquita, B. M. A. D. C., Fonseca, F. S. A. D., Carvalho, L. M. D., Brandi, I. V., Carvalho, G. G. P. D., & Coimbra, J. S. D. R. (2024). Extraction and application of lipids from edible insects. Critical Reviews in Food Science and Nutrition, 1-9. https://doi.org/10.1080/10408398.2024.2394798
Arango, GP., Vergara, RA., y Mejía, H. (2004). Análisis composicional, microbiológico y digestibilidad de la proteína de la harina de larvas de Hermetia illuscens l (diptera:stratiomyiidae) en Angelópolis-Antioquia, Colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2), pp. 2491-2500. https://repositorio.unal.edu.co/handle/unal/36534
Arellano, D., y Velásquez, S. (2007). Cría de Invertebrados para alimentación complementaria. 1–7
Arksey, H., y O´Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), pp. 19-32. DOI:10.1080/1364557032000119616.
Avendaño, C., Sánchez, M., y Valenzuela, C. (2020). Insectos: son realmente una alternativa para la alimentación de animales y humanos. Revista chilena de nutrición. 47(6), pp. 1029-1037. DOI:10.4067/s0717-75182020000601029.
Barragán-Fonseca, KB., Dicke, M., y van Loon, JJ. (2017). Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. Journal of Insects as Food and Feed. 3(2), pp. 105-120. DOI:10.3920/JIFF2016.0055.
Bazinet, R. P., & Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15, 771–785. DOI: org/10.1038/nrn3820.
Bbosa, T., Ndagire, C. T., Mukisa, I. M., Fiaboe, K. K. M., & Nakimbugwe, D. (2019). Nutritional characteristics of selected insects in Uganda for use as alternative protein sources in food and feed. Journal of Insect Science, 19(6), 23. https://doi.org/10.1093/jisesa/iez124.
Bednářová, M., Borkovcová, M., Mlček, J., Rop, O., & Zeman, L. (2013). Edible insects - species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(3), 587-593. https://doi.org/10.11118/actuan 201361030587.
Beniers, J. J. A., & Graham, R. I. (2019). Effect of protein and carbohydrate feed concentrations on the growth and composition of black soldier fly (Hermetia illucens) larvae. Journal of Insects as Food and Feed, 5(3), 193-199. https://doi.org/10.3920/JIFF2018.0001.
Benzertiha, A., Kieronczyk, B., Kołodziejski, P., Pruszynska–Oszmałek, E., Rawski, M., Józefiak, D., y Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science. 99(1), pp. 196-206. DOI:10.3382/ps/pez450.
Blanco, VCP., Chavarro, CFG., Polanco, YMT., y Ruiz, XMC. (2020). Insectos: Recursos del pasado que podrían ser una solución nutricional para el futuro. Avances en Investigación Agropecuaria. 24(2), pp. 81-100. https://revistasacademicas.ucol.mx/index.php/agropecuaria/article/view/199.
Boland, MJ., Rae, AN., Vereijken, JM., Meuwissen, MPM., Fischer, ARH., Hendriks, WH. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology. 29(1), pp. 62–73. DOI:10.1016/j.tifs.2012.07.002.
Bordiean, A., Krzyzaniak, ˙ M., & Stolarski, M. J. (2022b). Bioconversion Potential of Agro-Industrial Byproducts by Tenebrio molitor—Long-Term Results. Insects, 13(9), 810. https://doi.org/10.3390/insects13090810.
Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. (2022a). Influence of different diets on growth and nutritional composition of yellow mealworm. Foods, 11(19), 3075. https://doi.org/10.3390/foods11193075.
Bordiean, A., Krzyżaniak, M., Stolarski, M. J., & Peni, D. (2020). Growth potential of yellow mealworm reared on industrial residues. Agriculture, 10(12), 599. https://doi.org/10.3390/agriculture10120599
Boulos, S., Tännler, A., & Nyström, L. (2020a). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in nutrition, 7, 89. https://doi.org/10.3389/fnut.2020.00089.
Cabrera, D., y López, AL. (2021). Evaluación de la larva de mosca soldado-negra (Hermetia illucens) como alternativa para la degradación de residuos sólidos urbanos. [Trabajo de grado]. Fundación Universidad de América, Bogotá.
Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x.
Cartay, A., Dimitrov, V., y Feldman, M. (2020). An insect bad for agriculture but good for human consumption: The case of Rhynchophorus palmarum: A social science perspective. Edible Insects. London, England. Ed. IntechOpen. DOI: 10.5772/intechopen.87165.
Cerisuelo, A., y Calvet S. (2020). La alimentación en producción intensiva de animales monogástricos: Un elemento clave para reducir su impacto ambiental. ITEA-Información Técnica Económica Agraria. 116(5), pp. 483-506. DOI:10.12706/itea.2020.039.
Chávez Vera, WM. (2022). La entomofagia y la industrialización de los insectos: una revisión sistemática. Revista Estudiantil AGRO-VET. 6(2), pp. 108–118. Recuperado a partir de https://agrovet.umsa.bo/index.php/AGV/article/view/136.
Cifuentes, CA., y Sohn, KW. (1998). Manual técnico de sericultura: cultivo de la morera y cría del gusano de seda en el trópico. Convenio Sena, Pereira. Tomado de: https://agris.fao.org/search/en/providers/122621/records/647396c568b4c299a3fb71b0.
Cléries, PR. (2019). Puesta en marcha de una granja experimental para la cría de insectos destinados a alimentación. [Trabajo de grado]. Universidad de Zaragoza, España.
Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N. M., ... & Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS journal, 21, 57-64. https://doi.org/10.1016/j.nfs.2020.10.00
Cruz, C. G. M., & Suclupe, P. R. V. (2024). Potencial proteico de harina de grillo (Acheta domesticus) como una alternativa sostenible para el consumo humano. Revista Científica Pakamuros, 12(1), 16-26. https://doi.org/10.37787/jh8b0c66
Cullere, M., Tasoniero, G., Giaccone, V., Acuti, G., Marangon, A., Dalle Zotte, A. (2018). Black soldier fly as dietary protein source for broiler quails: meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animals.12(3), pp. 640-647. DOI:10.1017/S1751731117001860.
Dabbou, S., Gai, F., Biasato, I., Capucchio, M. T., Biasibetti, E., Dezzutto, D., y Schiavone, A. (2018). Black soldiers fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology, and histological features. Journal of Animal Science and Biotechnology. 9(49), pp. 1-10. DOI:10.1186/s40104-018-0266-9.
De Carvalho, NM., Madureira, AR., y Pintado, ME. (2019). El potencial de los insectos como fuente de alimento: una revisión. Reseñas críticas en ciencia de los alimentos y nutrición, pp. 1–11. DOI:10.1080/10408398.2019.1703170.
De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science Technology. 209, pp. 211–218. DOI:10.1016/j.anifeedsci.2015.08.006.
Declaración PRISMA 2020. (2021). Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología. 74, pp. 790-799.
Diener, S., Zurbrügg, C., Roa Gutiérrez, F., Nguyen Dang Hong, MA., Koottatep, T y Tockner, K. (2011). Black soldier fly larvae for organic waste treatment–prospects and constraints. In: WasteSafe. 2nd Int. Conference on Solid Waste Management in the Developing Countries. Khulna, Bangladesh, pp. 52–59.
DiGiacomo, K., y Leury, BJ. (2019). Review: Insect meal: a future source of protein feed for pigs? Animals. 13(12), pp. 3022-3030. DOI:10.1017/s1751731119001873.
Do, S., Koutsos, L., Utterback, P. L., Parsons, C. M., de Godoy, M. R. C., & Swanson, K. S. (2020). Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. Journal of Animal Science, 98(1), skz363. https://doi.org/10.1093/jas/skz363.
Dobermann, D., Swift, JA., y Field, LM. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), pp. 293-308. DOI:10.1111/nbu.12291.
Dos Santos Aguilar, JG (2021). Una visión general de los lípidos de los insectos. Biocatálisis y Biotecnología Agrícola, 33, 101967.
Dragojlović, D., Đuragić, O., Pezo, L., Popović, L., Rakita, S., Tomičić, Z., & Spasevski, N. (2022). Comparison of Nutritional Profiles of Super Worm (Zophobas morio) and Yellow Mealworm (Tenebrio molitor) as Alternative Feeds Used in Animal Husbandry: Is Super Worm Superior?. Animals, 12(10), 1277. https://doi.org/10.3390/ani12101277.
Dudley, N., Alexander, S., 2017. Agriculture and biodiversity: a review. Biodiversity 18,pp. 45–49. DOI:10.1080/14888386.2017.1351892.
Eberle, S., Schaden, L.-M., Tintner, J., Stauffer, C., & Schebeck, M. (2022) Effect of Temperature and Photoperiod on Development, Survival, and Growth Rate of Mealworms, Tenebrio molitor. Insects, 13(4), 321. https://doi.org/10.3390/insects13040321.
Finke, M.D. and Oonincx, D.G.A.B. (2017) Nutrient content of insects (eds. A. van Huis & J. K. Tomberlin). Insects as Food and Feed: From Production to Consumption. Wageningen Academic Publishers, Wageningen, the Netherlands.
Fleta Zaragozano, J. (2018). Entomofagia: ¿una alternativa a nuestra dieta tradicional? Sanidad Militar, 74(1), 41-46. https://doi.org/10.4321/s1887-85712018000100008
Florença, SG., Guine, RP., Goncalves, FJ., Barroca, MJ., Ferreira, M., Costa, CA., y Cunha, LM. (2022). The motivations for consumption of edible insects: A systematic review. Foods, 11(22), 3643. DOI:10.3390/foods11223643.
Fombong, FT., Kinyuru ,J., Nanga, J., Ayieko, M., Tanga, CM., Vanden Broeck, J., Van Der Borght, M. (2021). Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods, 10(1),144. https://doi.org/10.3390/foods10010144.
Food and Agriculture Organization (FAO) (2012). Assessing the Potential of Insects as Food and Feed in assuring Food Security. http:// www.fao.org/3/an233e/an233e00.pdf.
Food and Agriculture Organization of the United Nations. (1985). Insectos que dañan granos productos almacenados. Oficina Regional de la FAO para América Latina y El Caribe. Santiago, Chile. 146 p. https://www.fao.org/4/x5053s/x5053s00.htm
Food and Agriculture Organization of the United Nations. (2013). Edible insects: Future prospects for food and feed security. FAO, Roma, Italia. Recuperado de: http://www.fao.org/3/i3253e/i3253e.pdf
Francardi, V., Cito, A., Fusi, S., Botta, M., & Dreassi, E. (2017). Linseed to increase n-3 fatty acids in Tenebrio molitor (Coleoptera Tenebrionidae). Redia, 100, 73-76. https://doi.org/10.19263/REDIA-100.17.08-.
Gahukar, R. (2011). Entomophagy and human food security. International Journal of Tropical Insect Science. 31, pp. 129 - 144. DOI:10.1017/S1742758411000257. Garino, C., Zagon, J., Braeuning, A. (2019). Insects in food and feed–allergenicity risk assessment and analytical detection. EFSA Journal. 17(S2). DOI:10.2903/j.efsa.2019.e170907.
Gaua, E. (2012). Guía sobre la cría de grillos (Acheta domesticus L.). México D.F Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Part, ¨ T., Bretagnolle, V., Plantegenest, M., Clement, L.W., Dennis, C., Palmer, C., Onate, ˜ J.J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hanke, ¨ S., Fischer, C., Goedhart, P.W., Inchausti, P., (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105. DOI:10.1016/j.baae.2009.12.001. Georgescu, B., Boaru, A. M., Muntean, L., Sima, N., Struți, D. I., Păpuc, T. A., & Georgescu, C. (2022). Modulating the fatty acid profiles of Hermetia illucens larvae fats by dietary enrichment with different oilseeds: A sustainable way for future use in feed and food. Insects, 13(9), 801. https://doi.org/10.3390/insects13090801 Ghaly, A. E., & Alkoaik, F. N. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331. https://doi.org/10.3844/ajabssp.2009.319.331
Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/j.tifs.2021.11.024.
Gobbi, FP. (2012). Biología reproductiva y caracterización morfológica de los estadios larvarios de Hermetia illucens (L., 1758) (Diptera: Stratiomyidae). Bases para su producción masiva en Europa. [ Tesis de doctorado], Universidad de Alicante, Alicante, España.
Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends Food Science Technology. 91(1), pp. 436-445. DOI:10.1016/j.tifs.2019.07.032.
Ha, N.I., Mun, S.K., Im, S.B., Jang, H.Y., Jeong, H.G., Kang, K.Y., Park, K.W., Seo, K.S., Ban, S.E., Kim, K.J., Yee, S.T. (2022). Changes in Functionality of Tenebrio molitor Larvae Fermented by Cordyceps militaris Mycelia. Foods. 17;11(16):2477. DOI: 10.3390/foods11162477.
Hameed, A., Majeed, W., Naveed, M., Ramzan, U., Bordiga, M., Hameed, M., ... y Rana, N. (2022). Éxito de la industria de la acuicultura con nuevos conocimientos sobre el uso de insectos como alimento: una revisión. Fishes , 7 (6), 395. https://doi.org/10.3390/fishes7060395.
Hardouin, J., y Mahoux, G. (2003). Zootechnie d’insectes – Elevage et utilisation au bénéfice de l’homme et de certains animaux. In: Bureau pour l’Echange et la Distribution de l’Information sur le Mini-élevage (BEDIM). Tropicultura. 22(2) 164 p.
Hawkey, KJ., Lopez-Viso, C., Brameld, JM., Parr, T., y Salter, AM. (2020). Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annual Review of Animal Biosciences. 9(1). DOI:10.1146/annurev-animal-021419-083930.
Henry, M., Gasco, L., Piccolo, G., y Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, 203, pp.1–22. DOI:10.1016/j.anifeedsci.2015.03.001.
Hermans, W. J., Senden, J. M., Churchward-Venne, T. A., Paulussen, K. J., Fuchs, C. J., Smeets, J. S., & van Loon, L. J. (2021). Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. The American journal of clinical nutrition, 114(3), 934-944. DOI: 10.1093/ajcn/nqab115
Heussler, CD., Walter, A., Oberkofler, H., Insam, H., Arthofer, W., Schlick-Steiner, BC., y Steiner, FM. (2018). Influence of three artificial light sources on oviposition and half-life of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): improving small-scale indoor rearing. PLoS ONE 13. DOI:10.1371/journal.pone.0197896.
Heuzé V., Tran G., (2015). Housefly maggot meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Last updated on October 21, 2015, 11:30. Recuperado de https://www.feedipedia.org/node/671.
Honan, M., Feng, X., Tricarico, J. M., & Kebreab, E. (2022). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Animal Production Science, 62, 1303-1317. https://doi.org/10.1071/AN20295
Hong, J., Han, T., y Kim, YY. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals. 10(11), 2068. DOI:10.3390/ani10112068.
Horcajo, IP. (2018). Caracterización de la harina de grillo común (Acheta domesticus) y el estudio de las propiedades nutricionales, fisicoquímicas y sensoriales al introducirlas en una crema de cacao soluble. [Trabajo Fin de Grado]. Universidad Miguel Hernández, España. https://doi.org/10.1111/1744-7917.12669
Hua, K. A. (2021). Meta-Analysis of the Effects of Replacing Fish Meals with Insect Meals on Growth Performance of Fish. Aquaculture, 530, 735732. https://doi.org/10.1016/j.aquaculture.2020.735732
Hussein .M, Pillai V. V, Goddard J. M, Park H. G, Kothapalli S, Ross D. A, Ketterings Q .M, Brenna J.T, Milstein M.B, Marquis H, Johnson P.A, Nyrop J.P y Selvaraj V. (2017). Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS ONE 12(2):1–19. https://doi.org/10.1371/journal.pone.0171708.
Ido, A., Iwai, T., Ito, K., Ohta, T., Mizushige, T., Kishida, T y Miura, T. (2015). Dietary effects of housefly (Musca domestica). (Diptera: Muscidae) pupae on the growth performance and there sresistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Applied Entomology and Zoology, 50(2), pp. 213–221. DOI:10.1007/s13355-015-0325-z.
Irungu, F. G., Mutungi, C. M., Faraj, A. K., Affognon, H., Tanga, C., Ekesi, S., Nakimbugwe, D., & Fiaboe, K.K.M (2018). Minerals content of extruded fish feeds containing cricket (Acheta domesticus) and black soldier fly larvae (Hermetia illucens) fractions. International Aquatic Research, 10, 101-113. https://doi.org/10.1007/s40071-018-0191-8.
Janssen, R. H., Vincken, J.-P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471.
Jin, X. H., Heo, PS., Hong, JS., Kim, NJ., y Kim, YY. (2016). Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian-Australasian Journal of Animal Sciences, 29(7), pp. 979–986. DOI:10.5713/ajas.15.0535.
Jonas-Levi, A., y Martinez, JJ. (2017). The high level of protein content reported in insects for food and feed is overestimated. Journal Food Composition Analysis. 62, pp. 184–188. DOI:10.1016/j.jfca.2017.06.004.
Jongema, Y. List of Edible Insects of the World (2017); Wageningen UR: Wageningen, The Netherlands, 2017. Recuperado de: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm.
Keil, C., Grebenteuch, S., Kröncke, N., Kulow, F., Pfeif, S., Kanzler, C., Rohn, S., Boeck, G., Benning, R., & Haase, H. (2022). Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes. Insects, 13, 166. https://doi.org/10.3390/insects13020166.
Kenis, M., Bouwassi, B., Boafo, H., Devic, E., Han, R., Koko, G., Koné, NG., Maciel-Vergara, G., Nacambo, S., Pomalegni, SCB., Roffeis, M., Wakefield, M., Zhu, F. y Fitches, E. (2018). Small-scale fly larvae production for animal feed. Edible insects in sustainable food systems. Springer International Publishing, pp. 239-261. DOI:10.1007/978-3-319-74011-9_15.
Khan, S., Dong, Y., Nadir, S., Schaefer, DA., Mortimer, PE., Xu, J., y Sheng, J. (2021). Valorizar los residuos plásticos por el consumo de insectos. Sistemas Agrícolas Circulares. 1(1), pp. 1-9.
Khatun, H., Claes, J., Smets, R., De Winne, A., Akhtaruzzaman, M., & Van Der Borght, M. (2021). Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. European Food Research and Technology, 247, 1291-1305. DOI:10.1007/s00217-021-03709-x.
Kim, M. H., & Choi, M. K. (2013). Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biological Trace Element Research, 153(1-3), 69-75. https://doi.org/10.1007/s12011-013-9656-1.
Kim, S. K., Weaver, C. M., & Choi, M. K. (2017). Proximate composition and mineral content of five edible insects consumed in Korea. CyTA-Journal of Food, 15(1), 143-146. https://doi.org/10.1080/19476337.2016.1223172
Kim, T. K., Yong, H. I., Jeong, C. H., Han, S. G., Kim, Y. B., Paik, H. D., & Choi, Y. S. (2019). Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects. Food science of animal resources, 39(4), 643–654. https://doi.org/10.5851/kosfa.2019.e56
Kinyuru, JN., GM. Kenji., SN. Muhoho., y M, Ayieko. (2010). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. Journal Agricultural, Science and Technology. 12, pp. 32–46.
Koo, H., Kim, S., Oh, H., Kim, J., Choi, D., Kim, D., & Kim, I. (2013). Temperature-dependent development model of larvae of mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Korean Journal of Applied Entomology, 52, 387–394. DOI:10.5656/KSAE.2013.11.0.066
Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S., Chotimanothum, B. (2019). Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals. 9:155. DOI:10.3390/ani9040155.
Kowalski, S., Mikulec, A., Mickowska, B., Skotnicka, M., & Mazurek, A. (2022). Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT, 159, 113220. https://doi.org/10.1016/j.lwt.2022.113220.
Kröncke, N., & Benning, R. (2022). Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects, 13(6), 560. https://doi.org/10.3390/insects13060560. https://doi.org/10.3390/insects13060560
Krzyżaniak, M., Aljewicz, M., Bordiean, A., & Stolarski, M. J. (2022). Yellow mealworm composition after convective and freeze drying—Preliminary results. Agriculture, 12(2), 149. DOI: doi.org/10.3390/agriculture12020149
Lawal, K.G., Kavle, R.R., Akanbi, T.O., Mirosa, M., y Agyei, D. (2021). Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods, 3, 100016. DOI:10.1016/j.fufo.2021.100016.
Lehtovaara, VJ., Valtonen, A., Sorjonen, J., Hiltunen, M., Rutaro, K., Malinga, GM., y Roininen, H. (2017). El contenido de ácidos grasos del saltamontes comestible Ruspolia diferens puede manipularse mediante dietas artificiales. Revista de insectos como alimento y pienso. 3(4), pp. 253-262.
Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., & Hernández-Mendoza, A. (2022). Insects as an alternative protein source. Annual Review of Food Science and Technology, 13(1), 19-34. https://doi.org/10.1146/annurev-food-052720-112443.
Liland, N.S.; Araujo, P.; Xu, X.X.; Lock, E.J.; Radhakrishnan, G.; Prabhu, A.J.P.; Belghit, I. A. (2021). Meta-Analysis on the Nutritional Value of Insects in Aquafeeds. J. Insects Food Feed, 7, 743–759. DOI:10.3920/JIFF2020.0147
Liu, X., Chen, X., Wang, H., Yang, Q., Rehman, K. U., Li, W., Cai, M., Li, Q., Mazza, L., Zhang, J., Yu, Z., & Zheng, L. (2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One, 12(8), e0182601. https://doi.org/10.1371/journal.pone.0182601.
Losada Luna, O. F., Gutierrez Garaviz, J., & Angarita Maldonado, W. L. (2019). Grianza, microganadería sustentable: resultados proyecto de investigación. Sistema de Gestión Estratégica de la Investigación,Desarrollo Tecnológico e Innovación (SENNOVA).
Lu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., ... & Paengkoum, P. (2022). Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects, 13(9), 831. https://doi.org/10.3390/insects13090831
Makkar, HPS., Tran, G., Heuzé, V., y Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, pp. 1–33. DOI:10.1016/j.anifeedsci.2014.07.008.
Mancini, S., Fratini, F., Provera, I., Dovicchi, J., Tuccinardi, T., Minieri, S., ... & Paci, G. (2022). Growth performances, chemical composition, and microbiological loads of mealworm reared with brewery spent grains and bread leftovers. Italian Journal of Animal Science, 21(1), 1419-1429. https://doi.org/10.1080/1828051X.2022.2120422.
Mancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., ... & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. DOI: 10.3390/ani9080484.
McDonald, P. (2011). Animal nutrition. Prentice Hall/Pearson.
Melgar, L., Hernandez, A., y Salinas, C. (2019). Edible insects processing: traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety. 18(4), pp. 1166-1191. DOI:10.1111/1541-4337.12463.
Méndez, A. D., Martínez, A. P., Pedroza, S. I. M., Montes, E. S., Panduro, A. P., Cerón, F. G., & Contreras, D. Z. (2024). Larva de mosca soldado negra (Hermetia illucens L.) en la nutrición animal: una innovación en la alimentación avícola. Agro divulgación, 4(2), 27-31. DOI: https://doi.org/10.54767/ad.v4i2.251
Meza-Cureño, LT., Mendieta Sánchez, AM., Castillo, AM., Cabello Hernandez, C., Carmona, A., Alavez, V., y Cerritos, R. (2022). Matter flow through an animal model feed with grasshopper Sphenarium purpurascens: evidence of a sustainable and nutritious protein production system. Frontiers in Sustainable Food Systems, 6, 785048. DOI:10.3389/fsufs.2022.785048
Mina, G., Peira, G., y Bonadonna, A. (2023). The potential future of insects in the European food system: A systematic review based on the consumer point of view. Foods. 12(3), 646. DOI:10.3390/foods12030646.
Ministerio de Agricultura de Colombia (Minagricultura). (2021). Boletín de precios de alimento balanceado para animales. No 1 del 2021.
Mlček, J., Adamek, M., Adámková, A., Borkovcová, M., Bednářová, M., & Skácel, J. (2017). Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravinarstvo Slovak Journal of Food Sciences. https://doi.org/10.5219/850
Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M., & Knížková, I. (2019). Fat from Tenebrionidae bugs–sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journal of Food and Nutrition Sciences. https://doi.org/10.31883/pjfns/109666
Moher, D., Cook, DJ., Eastwood, S., Olkin, I., Rennie, D., Stroup, DF., (1999). Improving the quality of reports of meta-analyses of randomised controlled trials: The QUOROM statement. Quality of Reporting of meta-analyses. Lancet. 354(9193), pp. 1896-1900. DOI:10.1016/s0140-6736(99)04149-5.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., y PRISMA Group*, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Analysis of internal medicine. 151(4), pp. 264-269. DOI: 10.1371/journal.pmed.1000097.
Morales, J. P. Z., Pizarro, W. J. Z., Macías, V. I. V., & Moreno, E. A. (2017). Los aminoácidos en el cuerpo humano. Revista Científica Mundo de la Investigación y el Conocimiento, 1(5), 379–391. https://doi.org/10.26820/recimundo/1.5.2017.379-391.
Moreno, B., Muñoz, M., Cuellar, J., Domancic, S., y Villanueva, J. (2018). Revisiones Sistemáticas: definición y nociones básicas. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral. 11(3), pp- 184–186. DOI:10.4067/s0719-01072018000300184.
Moreno, FL., Ton, AP., Rosa, CM., y Freitas, LW. (2021). Use of insects as an alternative in poultry nutrition: review. Research, Society and Development, 10(3), e25810313274. DOI:10.33448/rsd-v10i3.13274.
Motte-Florac, ME., y Thomas, J. (2000). Les "insectes" dans la tradition orale / "Insects" in oral literature and traditions. 11 Peeters Publishers.
Mozaffarian, D., & Wu, J. H. (2011). Omega-3 Fatty Acids and Cardiovascular Disease. Journal of the American College of Cardiology, 58(20), 2047–2067. https://doi.org/10.1016/j.jacc.2011.06.063.
Mshayisa, V. V., Van Wyk, J., & Zozo, B. (2022). Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods, 11(5), 724. https://doi.org/10.3390/foods11050724.
Muñoz-Seijas, N., Fernandes, H., López-Periago, J. E., Outeiriño, D., Morán-Aguilar, M. G., Domínguez, J. M., & Salgado, J. M. (2024). Characterization of all life stages of Tenebrio molitor: envisioning innovative applications for this edible insect. Future Foods, 100404. https://doi.org/10.1016/j.fufo.2024.100404
Newton, GL., Sheppard, DC., Watson, DW., Burtle, GJ., Dove, CR., Tomberlin, JK., y Thelen, EE. (2005). The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In: Proceedings of the Symposium State of the Science, Animal Manure and Waste Management. 1, pp, 57.
Nguyen, TT., Tomberlin, JK., y Vanlaerhoven, S. (2015). Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental Entomology. 44(2), pp. 406-410. DOI:10.1093/ee/nvv002.
Nyangena, D.N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S., Nakimbugwe, D., Fiaboe, KKM. (2020). Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods. 9(5):574. DOI:10.3390/foods9050574.
Ochieng, BO., Anyango, JO., Nduko, JM., Cheseto, X., Mudalungu, CM., Khamis, FM., y Tanga, CM. (2022). Dynamics in nutrients, sterols and total flavonoid content during processing of the edible Long-Horned grasshopper (Ruspolia differens Serville) for food. Food Chemistry, 383, 132397. DOI:10.1016/j.foodchem.2022.132397.
Onsongo, VO., Osuga, IM., Gachuiri, CK., Wachira, AM., Miano, DM.,Tanga, CM., Ekesi, S., Nakimbugwe, D., y Fiaboe KKM. (2018). Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. Journal of Economic Entomology, 111(4), pp.1966-1973. DOI:10.1093/jee/toy118.
Oonincx, D. G., Laurent, S., Veenenbos, M. E., & van Loon, J. J. (2020). Dietary enrichment of edible insects with omega 3 fatty acids. Insect science, 27(3), 500-509. https://doi.org/10.1111/1744-7917.12669
Oonincx, DG., Van Itterbeeck, J., Heetkamp, MJ., Van Den Brand, H., Van Loon, JJ., y Van Huis, (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one. 5(12), e14445. https://doi.org/10.1371/journal.pone.0014445
Oonincx, DGAB., Van Broekhoven, S., Van Huis, A., Van Loon, JJA. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE. 10, e0144601. https://doi.org/10.1371/journal.pone.0144601
Opare, L. O., Holm, S., & Esperk, T. (2022). Temperature-modified density effects in the black soldier fly: low larval density leads to large size, short development time and high fat content. Journal of Insects as Food and Feed, 8(7), 783-802. DOI:10.3920/JIFF2021.0147
Ortiz, JC., Ruiz, AT., Morales-Ramos, JA., Thomas, M., Rojas, MG., Tomberlin, JK., Yi, L., Han, R., Giroud, L., y Jullien, RL. (2016). Insect mass production technologies. Insects as sustainable food ingredients, pp. 153-201. London, England. Ed. Academic Press. DOI:10.1016/B978-0-12-802856-8.00006-5.
Parra, A. (2023). Aplicaciones de Acheta Domesticus (grillo doméstico) en la industria alimentaria. [Trabajo de grado]. Universidad Rey Juan Carlos.
Pasini, G., Cullere, M., Vegro, M., Simonato, B., & Dalle Zotte, A. (2022). Potentiality of protein fractions from the house cricket (Acheta domesticus) and yellow mealworm (Tenebrio molitor) for pasta formulation. LWT, 164, 113638. https://doi.org/10.1016/j.lwt.2022.113638
Perez-Jimenez F, Alvarez de Cienfuegos G, Badimon L, Barja G, Battino M, Blanco A, Bonanome A, Colomer R, Corella-Piquer D, Covas I, Chamorro-Quiros J, Escrich E, Gaforio JJ, Garcia Luna PP, Hidalgo L, Kafatos A, Kris-Etherton PM, Lairon D, Lamuela-Raventos R, Lopez-Miranda J, Lopez-Segura F, Martinez-Gonzalez MA, Mata P, Mataix J, Ordovas J, Osada J, Pacheco-Reyes R, Perucho M, Pineda-Priego M, Quiles JL, Ramirez-Tortosa MC, Ruiz-Gutierrez V, Sanchez-Rovira P, Solfrizzi V, Soriguer-Escofet F, de la Torre-Fornell R, Trichopoulos A, Villalba-Montoro JM, Villar-Ortiz JR, Visioli F. International conference on the healthy effect of virgin olive oil. Eur J Clin Invest. 2005 Jul;35(7):421-4. doi: 10.1111/j.1365-2362.2005.01516.x. PMID: 16008542. DOI: 10.1111/j.1365-2362.2005.01516.x
Pizo, MA. (2019). Evaluación del desempeño productivo de parentales de gusano de seda Bombyx mori en el municipio de Popayán, departamento del Cauca [Investigación Trabajo de Grado]. Universidad del Cauca, Colombia.
Poveda Arias, J. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Universidad Surcolombiana. DOI: https://doi.org/10.25054/22161325.184.
Psarianos M., Fricke A., Ojha S., Baldermann S., Schreiner M., Schlüter OK. (2022). Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets. Foods. 11(21):3487. DOI:10.3390/foods11213487.
Punzo, F., & Mutchmor, J. A. (1980). Effects of temperature, relative humidity and period of exposure on the survival capacity of Tenebrio molitor. Journal of Kansas Entomological Society, 53(2), 260–270.
Purschke, B., Brüggen, H., Scheibelberger, R., y Jäger, H. (2018). Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research Technology. 244, pp. 269-280. DOI:10.1007/s00217-017-2953-8
Ramos-Elorduy, J., Pino Moreno, JM., Escamilla Prado, E., Alvarado Perez, M., Lagunez Otero, J., Ladron de Guevara, O. (1997). Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition Analysys. 10(2), pp. 142–57. https://doi.org/10.1006/jfca.1997.0530
Rao. KR., Pritchard, ETM., y Bekhit, AEDA. (2022). Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal Tropical Insects Science. 42, pp. 3335–3355. DOI:10.1007/s42690-022-00814-6.
Ravagli, AC. (2021). Prospección de los insectos comestibles como fuente de proteína animal para el consumo humano. [Trabajo de grado]. Universidad Militar Nueva Granada, Colombia.
Refael, G., Riess, H. T., Levi, C. S., Magzal, F., Tamir, S., Koren, O., & Lesmes, U. (2022). Responses of the human gut microbiota to physiologically digested insect powders or isolated chitin thereof. Future Foods, 6, 100197. https://doi.org/10.1016/j.fufo.2022.100197
Reglamento de Ejecución (UE) 2021/882. (2021). Por el que se autoriza la comercialización de larvas de Tenebrio molitor desecadas como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión.
Reglamento de Ejecución (UE) 2022/169. (2022). Por el que se autoriza la comercialización de las formas congelada, desecada y en polvo del gusano de la harina (larva de Tenebrio molitor) como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión.
Reis, T.L., y Dias, A.C.C. (2020). Harina de insectos en piensos para no rumiantes, una alternativa alimentaria. ISSN Electrónico 2178-3764.
Reyes-Herrera, A., Pérez-Carrillo, E., Amador-Espejo, G., Valdivia-Nájar, G., y Ibarra-Herrera, C. C. (2022). Changes in the chemical composition of edible grasshoppers (Sphenarium purpurascens) fed exclusively with soy sprouts or maize leaves. Insects, 13(6), 510. https://doi.org/10.3390/insects13060510
Rodríguez, AM. (2020). Propuesta de alternativas de producción de proteína para alimentación animal a partir de insectos en Colombia. [Trabajo de grado]. UNAD, Colombia. https://repository.unad.edu.co/handle/10596/36259.
Rodríguez, M., Barroso F.G., Fabrikov, D., Sánchez-Muros, M.J. (2022). In Vitro Crude Protein Digestibility of Insects: A Review. Insects; 13(8):682. https://doi.org/10.3390/insects13080682.
Roig Cléries, P. (2019). Puesta en marcha de una granja experimental para la cría de insectos destinados a alimentación (Trabajo de grado). Facultad Veterinaria, Universidad de Zaragoza, España.
Rumbos, C. I., Bliamplias, D., Gourgouta, M., Michail, V., & Athanassiou, C. G. (2021). Rearing Tenebrio molitor and Alphitobius diaperinus Larvae on Seed Cleaning Process Byproducts. Insects, 12(4), 293. https://doi.org/10.3390/insects12040293.
Sánchez, MJ., Barroso, FG., y Manzano, F. (2014). Insect meal as renewable source of food for animal feeding: a review,.. Journal of Cleaner Production, 65, pp. 16-27. DOI:10.1016/j.jclepro.2013.11.068.
Sayed, W. A., Alm-Eldin, M. M., Hassan, R. S., Sileem, T. M., & Rumpold, B. A. (2023). Recycling of Mediterranean fruit Fly rearing waste by black soldier Fly, Hermetia illucens. Waste and Biomass Valorization, 14(1), 93-104. Waste and Biomass Valorization (2023) 14:93–104. https://doi.org/10.1007/s12649-022-01847-1
Schneider, JC. (2020). Effects of light intensity on mating of the black soldier fly (Hermetia illucens, Diptera: Stratiomyidae). Journal of Insects as Food and Feed. 6, pp. 111-119. DOI:10.3920/ JIFF2019.0003.
Schreven, S. J., de Vries, H., Hermes, G. D., Zeni, G., Smidt, H., Dicke, M., & Van Loon, J. J. (2022). Black soldier fly larvae influence internal and substrate bacterial community composition depending on substrate type and larval density. Applied and Environmental Microbiology, 88(10), e00084-22. https://doi.org/10.1128/aem.00084-22
Sedgh-Gooya, S., Torki, M., Darbemamieh, M., Khamisabadi, H., & Abdolmohamadi, A. (2022). Growth performance and intestinal morphometric features of broiler chickens fed on dietary inclusion of yellow mealworm (Tenebrio molitor) larvae powder. Veterinary Medicine and Science, 8(5), 2050-2058. https://doi.org/10.1002/vms3.881.
Selaledi, L., & Mabelebele, M. (2021). The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects, 12(4), 333. https://doi.org/10.3390/insects12040333
Selaledi, L., Mbajiorgu, C. y Mabelebele, M. (2019). The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets. Tropical Animal Health and Production. 52(11), pp 7-16. DOI: 10.1007/s11250-019-02033-7
Sen, S., Makkar, H., & Becker, K. (1998). Alfalfa saponins and their implication in animal nutrition. Journal of Agricultural and Food Chemistry, 46(1), 131–140. DOI: 10.1021/jf970389i
Sheppard, DC., Newton, GL., Thompson, SA., y Savage, SA. (1994). Value-added manure management-system using the black soldier fly. Bioresource Technology. 1994, 50(3), pp. 275–279. https://doi.org/10.1016/0960-8524(94)90102-3
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6.
Siulapwa, N., A. Mwambungu, E., Lungu, y W. Sichilima. (2014). Nutritional value of four common edible insects in Zambia. International Journal of Science Research. 3, pp. 876–884.
Sogari, G., Menozzi, D., y Mora, C. (2017). Exploring young foodies׳ knowledge and attitude regarding entomophagy: A qualitative study in Italy. International Journal of Gastronomy Food Science. 7, pp. 16–19. DOI:10.1016/j.ijgfs.2016.12.002.
Son, Y.-J., Choi, S. Y., Hwang, I.-K., Nho, C. W., & Kim, S. H. (2020). Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods, 9(1), 40. https://doi.org/10.3390/foods9010040.
Soulsby, EJL. (1987). Parasitología y enfermedades parasitarias en los animales domésticos. México D. F. Editorial Interamericana. 823 p.
Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Advances in Nutrition, 3(1), 1-7. https://doi.org/10.3945/an.111.000893.
Tomberlin, J.K., Sheppard, D.C. and Joyce, J.A. (2002). Selected lifehistory traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America, 95(3), pp.379-386. DOI:10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2
Tran, H.Q.; Nguyen, T.T.; Prokešová, M.; Gebauer, T.; Van Doan, H.; Stejskal, V. (2022). Systematic Review and Meta-Analysis of Production Performance of Aquaculture Species Fed Dietary Insect Meals. Rev. Aquac. , 14, 1637–1655. https://doi.org/10.1111/raq.12666
Truzzi, C., Illuminati, S., Girolametti, F., Antonucci, M., Scarponi, G., Ruschioni, S., ... & Annibaldi, A. (2019). Influence of feeding substrates on the presence of toxic metals (Cd, Pb, Ni, As, Hg) in larvae of Tenebrio molitor: risk assessment for human consumption. International journal of environmental research and public health, 16(23), 4815. https://doi.org/10.3390/ijerph16234815
Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., Whitbread, A., 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59. https://doi. org/10.1016/j.biocon.2012.01.068
Vaca, JG. (2022). Evaluación de dietas en la cría y reproducción de grillos (Acheta domesticus linnaeus) para la obtención de harina en la granja experimental la Pradera-Chaltura. [Trabajo de grado]. Universidad Técnica del Norte. México.
Vaga, M., Berggren, Å., & Jansson, A. (2021). Growth, survival and development of house crickets (Acheta domesticus) fed flowering plants. Journal of insects as food and feed, 7(2), 151-161. DOI 10.3920/JIFF2020.0048
Vaga, M., Berggren, Å., Pauly, T., & Jansson, A. (2020). Effect of red clover-only diets on house crickets (Acheta domesticus) growth and survival. Journal of Insects as Food and Feed, 6(2), 179-189. https://doi.org/10.3920/JIFF2019.0038.
Valipour, M., Ziatabar, AM., y Raeini-sarjaz, M. (2015). Agricultural water management in the world during last half century. Archives of Agronomy and Soil Science. 61(5), pp. 657–678. DOI:10.1080/03650340.2014.944903.
Van Huis A. (2016). Edible insects are the future? Proceedings of the Nutrition Society 75(3), pp. 294-305.
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology. 58, pp. 563-583. DOI:10.1146/annurev-ento-120811-153704.
Van Huis, A., (2020). Los insectos como alimento y pienso, un nuevo sector agrícola emergente: una revisión. Revista de insectos como alimento y pienso. 6(1), pp. 27-44.
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., y Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations (FAO). Italy. 191 p.
Van Huis, A., y Tomberlin, J. (2017). The potential of insects as food and feed. In: Van Huis, A. and Tomberlin, J.K. (eds.) Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 25-58. DOI:10.3920/978-90-8686-849-0.
Veldkamp, T., Van Duinkerker, G., Van Huis, A., Iakemond, CMM., Ottevanger, E., Bosch, G., y Van Boekel, MAJS. (2012). Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets – a feasibility Study. Wageningen UR Livestock Research. 48 pp.
Verspoor, R. L., Soglo, M., Adeoti, R., Djouaka, R., Edwards, S., Fristedt, R., ... & Landberg, R. (2020). Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Scientific Reports, 10(1), 6146. https://doi.org/10.1038/s41598-020-63157-7 1
Vlahova-Vangelova, D., Balev, D., Dinkova, R., Kolev, N., & Stankov, S. (2022). Technological and Sensory Properties of Sponge Cakes Containing Cricket Flour (Acheta Domesticus). Carpathian Journal of Food Science and Technology, 14(1), 89-97. https://doi.org/10.31219/osf.io/yazpd.
Walker, T. (2007). Featured Creatures. University of Florida/IFAS. House cricket, Acheta domesticus L.
Wendin, K., Mårtensson, L., Djerf, H., & Langton, M. (2020). Product quality during the storage of foods with insects as an ingredient: Impact of particle size, antioxidant, oil content and salt content. Foods, 9(6), 791. https://doi.org/10.3390/foods9060791
Wina, E., Muetzel, S., & Becker, K. (2005). The impact of saponins or saponin-containing plant materials on ruminant production. Journal of Agricultural and Food Chemistry, 53(21), 8093–8105. doi: 10.1021/jf048053d.
Withers, P.J.A., Neal, C., Jarvie, H.P., Doody, D.G., 2014. Agriculture and eutrophication: where do we go from here? Sustain 6, 5853–5875. https://doi.org/ 10.3390/su6095853.
Xie, X., Yuan, Z., Fu, K., An, J., & Deng, L. (2022). Effect of Partial Substitution of Flour with Mealworm (Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods (Basel, Switzerland), 11(14), 2156. https://doi.org/10.3390/foods11142156.
Zhang, F., Xu, Y., Kong, B., Chen, Q., Sun, F., Zhang, H., & Liu, Q. (2022). Comparative study of two types of pre-extraction treatment (drying or non-drying) on physicochemical, structural and functional properties of extracted insect proteins from Tenebrio molitor larvae. Current Research in Food Science, 5, 1570-1580. https://doi.org/10.1016/j.crfs.2022.09.004
Zhang, T., Wang, T., Liu, R., Chang, M., Jin, Q., & Wang, X. (2020). Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics. LWT, 118, 108725. https://doi.org/10.1016/j.lwt.2019.108725.
Zielińska E. (2022). Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules; 27(19):6339. DOI:10.3390/molecules27196339.
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 100 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Animales
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.branch.none.fl_str_mv Medellín, Colombia
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/fa0f79cf-689a-41ca-9416-7b8d929129ab/download
https://bibliotecadigital.udea.edu.co/bitstreams/2da29b35-0a21-4d70-8d7b-0cda52279e6e/download
https://bibliotecadigital.udea.edu.co/bitstreams/a83a8e37-53c1-4b18-8eef-2c2c88ddeb4e/download
https://bibliotecadigital.udea.edu.co/bitstreams/2247240f-ddeb-4c46-a6f5-fc885c61d57a/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
f210d08f2e9a292a7ca4a2654dc464a6
d76885dcca8b995d6e5c053a20a0c83f
854c412b10d5aeaf4750617fbbb4760b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052130847162368
spelling Galeano Vasco, Luis FernandoAgudelo Trujillo, Jorge HernánToro Pérez, MarianaPeña Serna, CarolinaVanegas Azuero, Ana Milena2025-05-08T22:30:24Z2025Toro-Pérez, Galeano-Vasco & Agudelo-Trujillo, (2025). Identificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana: Una revisión sistemática. [Tesis de maestría]. Universidad dé Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/45839El constante crecimiento de la población mundial ha obligado a los diferentes eslabones de la producción alimentaria a elaborar alimentos de forma más eficiente conservando la calidad de los productos. Específicamente en el sector de la producción animal. Una de las tantas alternativas para suplir la necesidad de alimento son los insectos, sin embargo, existe un gran desconocimiento sobre sus características productivas, ambientales y nutricionales, lo que conlleva a una baja utilización como alternativa para la alimentación humana y animal. En ese sentido, los insectos son una interesante alternativa para la alimentación animal debido a que tienen altos niveles de proteína, lípidos, vitaminas y minerales; además, se requiere poco espacio para su producción, y se pueden alimentar con diversos residuos orgánicos de bajo costo. Dado que existe una gran variedad de insectos potencialmente utilizables para ese fin, antes de usarlos se deben identificar sus características productivas y necesidades ambientales para determinar las especies más promisorias. El objetivo de este proyecto es compilar y analizar mediante una revisión sistemática la información científica disponible, utilizando estrategias validadas de búsqueda, con el fin de determinar las características productivas nutricionales y ambientales de los insectos para la alimentación animal y humana. Los artículos científicos fueron recolectados y analizados mediante una revisión sistemática, utilizando los parámetros PRISMA 2020 (Preferred Reporting Items for Systematic reviews and Meta-Analyses). Entre los insectos más frecuentemente encontrados se destacan el Tenebrio molitor, Hermetia Illucens, Acheta domesticus, Bombyx mori, Zophobas morio y Locusta migratoria. Estos insectos mostraron altos niveles de omega 6 y 9, así como valores óptimos de aminoácidos y minerales, lo que los hace adecuados tanto para la alimentación animal como humana. Los resultados de conversión alimenticia y supervivencia indican que estos insectos pueden ser criados en diversas condiciones y comparados con otras fuentes de alimentos, con menores impactos ambientales.The constant growth of the world population has forced the different links in food production to produce food more efficiently while preserving the quality of the products. Specifically in the animal production sector. One of the many alternatives to meet the need for food are insects, however, there is a great lack of knowledge about their productive, environmental, and nutritional characteristics, which leads to a low use as an alternative for human and animal nutrition. In that sense, insects are an interesting alternative for animal feed because they have high levels of protein, lipids, vitamins, and minerals; Furthermore, little space is required for their production, and they can be fed with various low-cost organic waste. Given that there is a wide variety of insects potentially usable for this purpose, before using them, their productive characteristics and environmental needs must be identified to determine the most promising species. The objective of this project is to compile and analyze the available scientific information through a systematic review, using validated search strategies, to determine the nutritional and environmental productive characteristics of insects for animal and human consumption. The scientific articles were collected and analyzed through a systematic review, using the PRISMA 2020 parameters (Preferred Reporting Items for Systematic reviews and Meta-Analyses). Among the most frequently found insects, Tenebrio molitor, Hermetia Illucens, Acheta domesticus, Bombyx mori, Zophobas morio and Locusta migratoria stand out. These insects showed high levels of omega 6 and 9, as well as optimal values of amino acids and minerals, which makes them suitable for both animal and human food. The feed conversion and survival results indicate that these insects can be raised in diverse conditions and compared to other food sources, with lower environmental impacts.Tabla de contenido Abstract 8 Introducción general 9 Objetivos 11 Objetivo general 11 Objetivos específicos 11 Capítulo 1: Marco teórico 12 Insectos en la alimentación animal y humana 13 Ventajas del uso de insectos para la alimentación 14 Desventajas del uso de insectos para la alimentación. 17 Especies de insectos más utilizadas para la alimentación. 18 Gusano de la harina (Tenebrio molitor) 18 Grillo doméstico (Acheta domesticus) 22 Otras especies de insectos utilizadas para la alimentación. 24 Grillo o saltamontes arbustivo (Ruspolia differens) 24 Larva de la mosca común (Musca domestica) 24 Gusano de seda (Bombyx mori) 25 Antecedentes de la alimentación con insectos en animales monogástricos. 25 Antecedentes de la alimentación con insectos en humanos. 27 Avances en la investigación sobre el uso de insectos como alimento para humanos 28 Capítulo 2: Metodología para realizar una revisión sistemática 31 Revisión sistemática. 32 Método PRISMA. 32 Palabras clave de la búsqueda. 33 Criterios de selección de los artículos. 33 Selección y extracción de los datos. 34 Capítulo 3: Resultados y discusión de la revisión sistemática 37 Número de artículos por año 37 Número de artículos por insecto 38 Número de artículos sobre el uso de Insectos en la alimentación por continentes 40 Número de artículos y factor de impacto por revista 42 Composición nutricional de los insectos 47 Composición lipídica 47 Composición proteica 51 Composición mineral 58 Características ambientales y productivas de los insectos 62 Conclusiones 68 Anexo 70 Referencias bibliográficas 71MaestríaMagíster en Ciencias Animales100 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Ciencias AnimalesMedellín, ColombiaFacultad de Ciencias AgrariasMedellín, ColombiaIdentificación y caracterización de insectos como fuente alternativa para la alimentación animal y humana : una revisión sistemáticaTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAboelkheir, MG., Visconte, LY., Oliveira, GE., Filho, RDT., y Souza Jr, FG. (2019). El efecto biodegradable de las larvas de Tenebrio molitor (Linnaeus) sobre SBR vulcanizado y migajas de neumáticos. Science Total of Environment. 1(649), pp. 1075−1082. DOI: 10.1016/j.scitotenv.2018.08.228.Adámková A., Mlček J., Kouřimská L., Borkovcová M., Bušina T., Adámek M., Bednářová M., Krajsa J. (2017). Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int J Environ Res Public Health. 12;14(5):521. DOI: 10.3390/ijerph14050521.Agredo, JA., y Rojas, DM. (2018). Utilización de harina de pupa (Bombyx mori) en alimentación de pollos de engorde [Tesis de Grado]. Universidad del Cauca, Colombia.Aguilar-Miranda, ED., López, MG., Escamilla-Santana, C., y Barba de la Rosa, AP. (2002). Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. Journal of Agricultural and Food Chemistry. 50(1), pp. 192–195. DOI: 10.1021/jf010691y.Ahmed, E., Fukuma, N., Hanada, M., & Nishida, T. (2021). Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals, 11(11), 2648. https://doi.org/10.3390/ani11092648.Aigbodion, FI., Egbon, IN., y Erukakpomren, EA. (2012). Preliminary study on the entomophagous response of Gallus gallus domesticus (Galliformes: Phasianidae) to adult Periplaneta americana. International Journal of Tropical Insect Science, 32(3), pp. 123–125. DOI:10.1017/S1742758412000276. Aires, D., Capdevila, N., & Segundo, M. J. (2005). Ácidos Grasos Esenciales. Offarm, 24(4), 96-105. https://www.elsevier.es/es-revista-offarm-4-articulo-acidos-grasos-esenciales-13073447.Altmann, BA, Neumann, C., Rothstein, S., Liebert, F. y Mörlein, D. (2019). ¿Las alternativas dietéticas a la soja conducen a mejoras o inconvenientes en la calidad de la carne de cerdo? Una mirada a las microalgas y proteínas de insectos en dietas porcinas. Ciencia de la carne, 153, 26-34.Alves, A. V., Sanjinez-Argandoña, E. J., Linzmeier, A. M., Cardoso, C. A., & Macedo, M. L. (2016). Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour. PLoS One, 11(3), e0151275. https://doi.org/10.1371/journal.pone.0151275.Andreadis, S. S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Antonopoulou, E. (2021). Towards Functional Insect Feeds: Agri-Food By-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants (Basel), 11(1), 68. https://doi.org/10.3390/antiox11010068.Anene, A., Olivia, C., Ike, K., y Ekekwe, NH. (2013). Preliminary investigations on quantity and proximate quality of maggots produced from four different sources of livestock wastes. Journal on Research in Biology. 3(6), pp. 2–7.Antunes, A. L. M., Mesquita, B. M. A. D. C., Fonseca, F. S. A. D., Carvalho, L. M. D., Brandi, I. V., Carvalho, G. G. P. D., & Coimbra, J. S. D. R. (2024). Extraction and application of lipids from edible insects. Critical Reviews in Food Science and Nutrition, 1-9. https://doi.org/10.1080/10408398.2024.2394798Arango, GP., Vergara, RA., y Mejía, H. (2004). Análisis composicional, microbiológico y digestibilidad de la proteína de la harina de larvas de Hermetia illuscens l (diptera:stratiomyiidae) en Angelópolis-Antioquia, Colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2), pp. 2491-2500. https://repositorio.unal.edu.co/handle/unal/36534Arellano, D., y Velásquez, S. (2007). Cría de Invertebrados para alimentación complementaria. 1–7Arksey, H., y O´Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), pp. 19-32. DOI:10.1080/1364557032000119616.Avendaño, C., Sánchez, M., y Valenzuela, C. (2020). Insectos: son realmente una alternativa para la alimentación de animales y humanos. Revista chilena de nutrición. 47(6), pp. 1029-1037. DOI:10.4067/s0717-75182020000601029.Barragán-Fonseca, KB., Dicke, M., y van Loon, JJ. (2017). Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. Journal of Insects as Food and Feed. 3(2), pp. 105-120. DOI:10.3920/JIFF2016.0055.Bazinet, R. P., & Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15, 771–785. DOI: org/10.1038/nrn3820.Bbosa, T., Ndagire, C. T., Mukisa, I. M., Fiaboe, K. K. M., & Nakimbugwe, D. (2019). Nutritional characteristics of selected insects in Uganda for use as alternative protein sources in food and feed. Journal of Insect Science, 19(6), 23. https://doi.org/10.1093/jisesa/iez124.Bednářová, M., Borkovcová, M., Mlček, J., Rop, O., & Zeman, L. (2013). Edible insects - species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(3), 587-593. https://doi.org/10.11118/actuan 201361030587.Beniers, J. J. A., & Graham, R. I. (2019). Effect of protein and carbohydrate feed concentrations on the growth and composition of black soldier fly (Hermetia illucens) larvae. Journal of Insects as Food and Feed, 5(3), 193-199. https://doi.org/10.3920/JIFF2018.0001.Benzertiha, A., Kieronczyk, B., Kołodziejski, P., Pruszynska–Oszmałek, E., Rawski, M., Józefiak, D., y Józefiak, A. (2020). Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science. 99(1), pp. 196-206. DOI:10.3382/ps/pez450.Blanco, VCP., Chavarro, CFG., Polanco, YMT., y Ruiz, XMC. (2020). Insectos: Recursos del pasado que podrían ser una solución nutricional para el futuro. Avances en Investigación Agropecuaria. 24(2), pp. 81-100. https://revistasacademicas.ucol.mx/index.php/agropecuaria/article/view/199.Boland, MJ., Rae, AN., Vereijken, JM., Meuwissen, MPM., Fischer, ARH., Hendriks, WH. (2013). The future supply of animal-derived protein for human consumption. Trends in Food Science & Technology. 29(1), pp. 62–73. DOI:10.1016/j.tifs.2012.07.002.Bordiean, A., Krzyzaniak, ˙ M., & Stolarski, M. J. (2022b). Bioconversion Potential of Agro-Industrial Byproducts by Tenebrio molitor—Long-Term Results. Insects, 13(9), 810. https://doi.org/10.3390/insects13090810.Bordiean, A., Krzyżaniak, M., Aljewicz, M., & Stolarski, M. (2022a). Influence of different diets on growth and nutritional composition of yellow mealworm. Foods, 11(19), 3075. https://doi.org/10.3390/foods11193075.Bordiean, A., Krzyżaniak, M., Stolarski, M. J., & Peni, D. (2020). Growth potential of yellow mealworm reared on industrial residues. Agriculture, 10(12), 599. https://doi.org/10.3390/agriculture10120599Boulos, S., Tännler, A., & Nyström, L. (2020a). Nitrogen-to-Protein Conversion Factors for Edible Insects on the Swiss Market: T. molitor, A. domesticus, and L. migratoria. Frontiers in nutrition, 7, 89. https://doi.org/10.3389/fnut.2020.00089.Cabrera, D., y López, AL. (2021). Evaluación de la larva de mosca soldado-negra (Hermetia illucens) como alternativa para la degradación de residuos sólidos urbanos. [Trabajo de grado]. Fundación Universidad de América, Bogotá.Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x.Cartay, A., Dimitrov, V., y Feldman, M. (2020). An insect bad for agriculture but good for human consumption: The case of Rhynchophorus palmarum: A social science perspective. Edible Insects. London, England. Ed. IntechOpen. DOI: 10.5772/intechopen.87165.Cerisuelo, A., y Calvet S. (2020). La alimentación en producción intensiva de animales monogástricos: Un elemento clave para reducir su impacto ambiental. ITEA-Información Técnica Económica Agraria. 116(5), pp. 483-506. DOI:10.12706/itea.2020.039.Chávez Vera, WM. (2022). La entomofagia y la industrialización de los insectos: una revisión sistemática. Revista Estudiantil AGRO-VET. 6(2), pp. 108–118. Recuperado a partir de https://agrovet.umsa.bo/index.php/AGV/article/view/136.Cifuentes, CA., y Sohn, KW. (1998). Manual técnico de sericultura: cultivo de la morera y cría del gusano de seda en el trópico. Convenio Sena, Pereira. Tomado de: https://agris.fao.org/search/en/providers/122621/records/647396c568b4c299a3fb71b0.Cléries, PR. (2019). Puesta en marcha de una granja experimental para la cría de insectos destinados a alimentación. [Trabajo de grado]. Universidad de Zaragoza, España.Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N. M., ... & Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS journal, 21, 57-64. https://doi.org/10.1016/j.nfs.2020.10.00Cruz, C. G. M., & Suclupe, P. R. V. (2024). Potencial proteico de harina de grillo (Acheta domesticus) como una alternativa sostenible para el consumo humano. Revista Científica Pakamuros, 12(1), 16-26. https://doi.org/10.37787/jh8b0c66Cullere, M., Tasoniero, G., Giaccone, V., Acuti, G., Marangon, A., Dalle Zotte, A. (2018). Black soldier fly as dietary protein source for broiler quails: meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animals.12(3), pp. 640-647. DOI:10.1017/S1751731117001860.Dabbou, S., Gai, F., Biasato, I., Capucchio, M. T., Biasibetti, E., Dezzutto, D., y Schiavone, A. (2018). Black soldiers fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology, and histological features. Journal of Animal Science and Biotechnology. 9(49), pp. 1-10. DOI:10.1186/s40104-018-0266-9.De Carvalho, NM., Madureira, AR., y Pintado, ME. (2019). El potencial de los insectos como fuente de alimento: una revisión. Reseñas críticas en ciencia de los alimentos y nutrición, pp. 1–11. DOI:10.1080/10408398.2019.1703170.De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science Technology. 209, pp. 211–218. DOI:10.1016/j.anifeedsci.2015.08.006.Declaración PRISMA 2020. (2021). Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología. 74, pp. 790-799.Diener, S., Zurbrügg, C., Roa Gutiérrez, F., Nguyen Dang Hong, MA., Koottatep, T y Tockner, K. (2011). Black soldier fly larvae for organic waste treatment–prospects and constraints. In: WasteSafe. 2nd Int. Conference on Solid Waste Management in the Developing Countries. Khulna, Bangladesh, pp. 52–59.DiGiacomo, K., y Leury, BJ. (2019). Review: Insect meal: a future source of protein feed for pigs? Animals. 13(12), pp. 3022-3030. DOI:10.1017/s1751731119001873.Do, S., Koutsos, L., Utterback, P. L., Parsons, C. M., de Godoy, M. R. C., & Swanson, K. S. (2020). Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. Journal of Animal Science, 98(1), skz363. https://doi.org/10.1093/jas/skz363.Dobermann, D., Swift, JA., y Field, LM. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), pp. 293-308. DOI:10.1111/nbu.12291.Dos Santos Aguilar, JG (2021). Una visión general de los lípidos de los insectos. Biocatálisis y Biotecnología Agrícola, 33, 101967.Dragojlović, D., Đuragić, O., Pezo, L., Popović, L., Rakita, S., Tomičić, Z., & Spasevski, N. (2022). Comparison of Nutritional Profiles of Super Worm (Zophobas morio) and Yellow Mealworm (Tenebrio molitor) as Alternative Feeds Used in Animal Husbandry: Is Super Worm Superior?. Animals, 12(10), 1277. https://doi.org/10.3390/ani12101277.Dudley, N., Alexander, S., 2017. Agriculture and biodiversity: a review. Biodiversity 18,pp. 45–49. DOI:10.1080/14888386.2017.1351892.Eberle, S., Schaden, L.-M., Tintner, J., Stauffer, C., & Schebeck, M. (2022) Effect of Temperature and Photoperiod on Development, Survival, and Growth Rate of Mealworms, Tenebrio molitor. Insects, 13(4), 321. https://doi.org/10.3390/insects13040321.Finke, M.D. and Oonincx, D.G.A.B. (2017) Nutrient content of insects (eds. A. van Huis & J. K. Tomberlin). Insects as Food and Feed: From Production to Consumption. Wageningen Academic Publishers, Wageningen, the Netherlands.Fleta Zaragozano, J. (2018). Entomofagia: ¿una alternativa a nuestra dieta tradicional? Sanidad Militar, 74(1), 41-46. https://doi.org/10.4321/s1887-85712018000100008Florença, SG., Guine, RP., Goncalves, FJ., Barroca, MJ., Ferreira, M., Costa, CA., y Cunha, LM. (2022). The motivations for consumption of edible insects: A systematic review. Foods, 11(22), 3643. DOI:10.3390/foods11223643.Fombong, FT., Kinyuru ,J., Nanga, J., Ayieko, M., Tanga, CM., Vanden Broeck, J., Van Der Borght, M. (2021). Affordable Processing of Edible Orthopterans Provides a Highly Nutritive Source of Food Ingredients. Foods, 10(1),144. https://doi.org/10.3390/foods10010144.Food and Agriculture Organization (FAO) (2012). Assessing the Potential of Insects as Food and Feed in assuring Food Security. http:// www.fao.org/3/an233e/an233e00.pdf.Food and Agriculture Organization of the United Nations. (1985). Insectos que dañan granos productos almacenados. Oficina Regional de la FAO para América Latina y El Caribe. Santiago, Chile. 146 p. https://www.fao.org/4/x5053s/x5053s00.htmFood and Agriculture Organization of the United Nations. (2013). Edible insects: Future prospects for food and feed security. FAO, Roma, Italia. Recuperado de: http://www.fao.org/3/i3253e/i3253e.pdfFrancardi, V., Cito, A., Fusi, S., Botta, M., & Dreassi, E. (2017). Linseed to increase n-3 fatty acids in Tenebrio molitor (Coleoptera Tenebrionidae). Redia, 100, 73-76. https://doi.org/10.19263/REDIA-100.17.08-.Gahukar, R. (2011). Entomophagy and human food security. International Journal of Tropical Insect Science. 31, pp. 129 - 144. DOI:10.1017/S1742758411000257. Garino, C., Zagon, J., Braeuning, A. (2019). Insects in food and feed–allergenicity risk assessment and analytical detection. EFSA Journal. 17(S2). DOI:10.2903/j.efsa.2019.e170907.Gaua, E. (2012). Guía sobre la cría de grillos (Acheta domesticus L.). México D.F Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Part, ¨ T., Bretagnolle, V., Plantegenest, M., Clement, L.W., Dennis, C., Palmer, C., Onate, ˜ J.J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hanke, ¨ S., Fischer, C., Goedhart, P.W., Inchausti, P., (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105. DOI:10.1016/j.baae.2009.12.001. Georgescu, B., Boaru, A. M., Muntean, L., Sima, N., Struți, D. I., Păpuc, T. A., & Georgescu, C. (2022). Modulating the fatty acid profiles of Hermetia illucens larvae fats by dietary enrichment with different oilseeds: A sustainable way for future use in feed and food. Insects, 13(9), 801. https://doi.org/10.3390/insects13090801 Ghaly, A. E., & Alkoaik, F. N. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Sciences, 4(4), 319-331. https://doi.org/10.3844/ajabssp.2009.319.331Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/j.tifs.2021.11.024.Gobbi, FP. (2012). Biología reproductiva y caracterización morfológica de los estadios larvarios de Hermetia illucens (L., 1758) (Diptera: Stratiomyidae). Bases para su producción masiva en Europa. [ Tesis de doctorado], Universidad de Alicante, Alicante, España.Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends Food Science Technology. 91(1), pp. 436-445. DOI:10.1016/j.tifs.2019.07.032.Ha, N.I., Mun, S.K., Im, S.B., Jang, H.Y., Jeong, H.G., Kang, K.Y., Park, K.W., Seo, K.S., Ban, S.E., Kim, K.J., Yee, S.T. (2022). Changes in Functionality of Tenebrio molitor Larvae Fermented by Cordyceps militaris Mycelia. Foods. 17;11(16):2477. DOI: 10.3390/foods11162477.Hameed, A., Majeed, W., Naveed, M., Ramzan, U., Bordiga, M., Hameed, M., ... y Rana, N. (2022). Éxito de la industria de la acuicultura con nuevos conocimientos sobre el uso de insectos como alimento: una revisión. Fishes , 7 (6), 395. https://doi.org/10.3390/fishes7060395.Hardouin, J., y Mahoux, G. (2003). Zootechnie d’insectes – Elevage et utilisation au bénéfice de l’homme et de certains animaux. In: Bureau pour l’Echange et la Distribution de l’Information sur le Mini-élevage (BEDIM). Tropicultura. 22(2) 164 p.Hawkey, KJ., Lopez-Viso, C., Brameld, JM., Parr, T., y Salter, AM. (2020). Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annual Review of Animal Biosciences. 9(1). DOI:10.1146/annurev-animal-021419-083930.Henry, M., Gasco, L., Piccolo, G., y Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology, 203, pp.1–22. DOI:10.1016/j.anifeedsci.2015.03.001.Hermans, W. J., Senden, J. M., Churchward-Venne, T. A., Paulussen, K. J., Fuchs, C. J., Smeets, J. S., & van Loon, L. J. (2021). Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. The American journal of clinical nutrition, 114(3), 934-944. DOI: 10.1093/ajcn/nqab115Heussler, CD., Walter, A., Oberkofler, H., Insam, H., Arthofer, W., Schlick-Steiner, BC., y Steiner, FM. (2018). Influence of three artificial light sources on oviposition and half-life of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae): improving small-scale indoor rearing. PLoS ONE 13. DOI:10.1371/journal.pone.0197896.Heuzé V., Tran G., (2015). Housefly maggot meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Last updated on October 21, 2015, 11:30. Recuperado de https://www.feedipedia.org/node/671.Honan, M., Feng, X., Tricarico, J. M., & Kebreab, E. (2022). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Animal Production Science, 62, 1303-1317. https://doi.org/10.1071/AN20295Hong, J., Han, T., y Kim, YY. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals. 10(11), 2068. DOI:10.3390/ani10112068.Horcajo, IP. (2018). Caracterización de la harina de grillo común (Acheta domesticus) y el estudio de las propiedades nutricionales, fisicoquímicas y sensoriales al introducirlas en una crema de cacao soluble. [Trabajo Fin de Grado]. Universidad Miguel Hernández, España. https://doi.org/10.1111/1744-7917.12669Hua, K. A. (2021). Meta-Analysis of the Effects of Replacing Fish Meals with Insect Meals on Growth Performance of Fish. Aquaculture, 530, 735732. https://doi.org/10.1016/j.aquaculture.2020.735732Hussein .M, Pillai V. V, Goddard J. M, Park H. G, Kothapalli S, Ross D. A, Ketterings Q .M, Brenna J.T, Milstein M.B, Marquis H, Johnson P.A, Nyrop J.P y Selvaraj V. (2017). Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS ONE 12(2):1–19. https://doi.org/10.1371/journal.pone.0171708.Ido, A., Iwai, T., Ito, K., Ohta, T., Mizushige, T., Kishida, T y Miura, T. (2015). Dietary effects of housefly (Musca domestica). (Diptera: Muscidae) pupae on the growth performance and there sresistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Applied Entomology and Zoology, 50(2), pp. 213–221. DOI:10.1007/s13355-015-0325-z.Irungu, F. G., Mutungi, C. M., Faraj, A. K., Affognon, H., Tanga, C., Ekesi, S., Nakimbugwe, D., & Fiaboe, K.K.M (2018). Minerals content of extruded fish feeds containing cricket (Acheta domesticus) and black soldier fly larvae (Hermetia illucens) fractions. International Aquatic Research, 10, 101-113. https://doi.org/10.1007/s40071-018-0191-8.Janssen, R. H., Vincken, J.-P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471.Jin, X. H., Heo, PS., Hong, JS., Kim, NJ., y Kim, YY. (2016). Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs. Asian-Australasian Journal of Animal Sciences, 29(7), pp. 979–986. DOI:10.5713/ajas.15.0535.Jonas-Levi, A., y Martinez, JJ. (2017). The high level of protein content reported in insects for food and feed is overestimated. Journal Food Composition Analysis. 62, pp. 184–188. DOI:10.1016/j.jfca.2017.06.004.Jongema, Y. List of Edible Insects of the World (2017); Wageningen UR: Wageningen, The Netherlands, 2017. Recuperado de: https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm.Keil, C., Grebenteuch, S., Kröncke, N., Kulow, F., Pfeif, S., Kanzler, C., Rohn, S., Boeck, G., Benning, R., & Haase, H. (2022). Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes. Insects, 13, 166. https://doi.org/10.3390/insects13020166.Kenis, M., Bouwassi, B., Boafo, H., Devic, E., Han, R., Koko, G., Koné, NG., Maciel-Vergara, G., Nacambo, S., Pomalegni, SCB., Roffeis, M., Wakefield, M., Zhu, F. y Fitches, E. (2018). Small-scale fly larvae production for animal feed. Edible insects in sustainable food systems. Springer International Publishing, pp. 239-261. DOI:10.1007/978-3-319-74011-9_15.Khan, S., Dong, Y., Nadir, S., Schaefer, DA., Mortimer, PE., Xu, J., y Sheng, J. (2021). Valorizar los residuos plásticos por el consumo de insectos. Sistemas Agrícolas Circulares. 1(1), pp. 1-9.Khatun, H., Claes, J., Smets, R., De Winne, A., Akhtaruzzaman, M., & Van Der Borght, M. (2021). Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. European Food Research and Technology, 247, 1291-1305. DOI:10.1007/s00217-021-03709-x.Kim, M. H., & Choi, M. K. (2013). Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biological Trace Element Research, 153(1-3), 69-75. https://doi.org/10.1007/s12011-013-9656-1.Kim, S. K., Weaver, C. M., & Choi, M. K. (2017). Proximate composition and mineral content of five edible insects consumed in Korea. CyTA-Journal of Food, 15(1), 143-146. https://doi.org/10.1080/19476337.2016.1223172Kim, T. K., Yong, H. I., Jeong, C. H., Han, S. G., Kim, Y. B., Paik, H. D., & Choi, Y. S. (2019). Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects. Food science of animal resources, 39(4), 643–654. https://doi.org/10.5851/kosfa.2019.e56Kinyuru, JN., GM. Kenji., SN. Muhoho., y M, Ayieko. (2010). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. Journal Agricultural, Science and Technology. 12, pp. 32–46.Koo, H., Kim, S., Oh, H., Kim, J., Choi, D., Kim, D., & Kim, I. (2013). Temperature-dependent development model of larvae of mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Korean Journal of Applied Entomology, 52, 387–394. DOI:10.5656/KSAE.2013.11.0.066Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S., Chotimanothum, B. (2019). Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals. 9:155. DOI:10.3390/ani9040155.Kowalski, S., Mikulec, A., Mickowska, B., Skotnicka, M., & Mazurek, A. (2022). Wheat bread supplementation with various edible insect flours. Influence of chemical composition on nutritional and technological aspects. LWT, 159, 113220. https://doi.org/10.1016/j.lwt.2022.113220.Kröncke, N., & Benning, R. (2022). Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects, 13(6), 560. https://doi.org/10.3390/insects13060560. https://doi.org/10.3390/insects13060560Krzyżaniak, M., Aljewicz, M., Bordiean, A., & Stolarski, M. J. (2022). Yellow mealworm composition after convective and freeze drying—Preliminary results. Agriculture, 12(2), 149. DOI: doi.org/10.3390/agriculture12020149Lawal, K.G., Kavle, R.R., Akanbi, T.O., Mirosa, M., y Agyei, D. (2021). Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods, 3, 100016. DOI:10.1016/j.fufo.2021.100016.Lehtovaara, VJ., Valtonen, A., Sorjonen, J., Hiltunen, M., Rutaro, K., Malinga, GM., y Roininen, H. (2017). El contenido de ácidos grasos del saltamontes comestible Ruspolia diferens puede manipularse mediante dietas artificiales. Revista de insectos como alimento y pienso. 3(4), pp. 253-262.Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., & Hernández-Mendoza, A. (2022). Insects as an alternative protein source. Annual Review of Food Science and Technology, 13(1), 19-34. https://doi.org/10.1146/annurev-food-052720-112443.Liland, N.S.; Araujo, P.; Xu, X.X.; Lock, E.J.; Radhakrishnan, G.; Prabhu, A.J.P.; Belghit, I. A. (2021). Meta-Analysis on the Nutritional Value of Insects in Aquafeeds. J. Insects Food Feed, 7, 743–759. DOI:10.3920/JIFF2020.0147Liu, X., Chen, X., Wang, H., Yang, Q., Rehman, K. U., Li, W., Cai, M., Li, Q., Mazza, L., Zhang, J., Yu, Z., & Zheng, L. (2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One, 12(8), e0182601. https://doi.org/10.1371/journal.pone.0182601.Losada Luna, O. F., Gutierrez Garaviz, J., & Angarita Maldonado, W. L. (2019). Grianza, microganadería sustentable: resultados proyecto de investigación. Sistema de Gestión Estratégica de la Investigación,Desarrollo Tecnológico e Innovación (SENNOVA).Lu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., ... & Paengkoum, P. (2022). Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects, 13(9), 831. https://doi.org/10.3390/insects13090831Makkar, HPS., Tran, G., Heuzé, V., y Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, pp. 1–33. DOI:10.1016/j.anifeedsci.2014.07.008.Mancini, S., Fratini, F., Provera, I., Dovicchi, J., Tuccinardi, T., Minieri, S., ... & Paci, G. (2022). Growth performances, chemical composition, and microbiological loads of mealworm reared with brewery spent grains and bread leftovers. Italian Journal of Animal Science, 21(1), 1419-1429. https://doi.org/10.1080/1828051X.2022.2120422.Mancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., ... & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. DOI: 10.3390/ani9080484.McDonald, P. (2011). Animal nutrition. Prentice Hall/Pearson.Melgar, L., Hernandez, A., y Salinas, C. (2019). Edible insects processing: traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety. 18(4), pp. 1166-1191. DOI:10.1111/1541-4337.12463.Méndez, A. D., Martínez, A. P., Pedroza, S. I. M., Montes, E. S., Panduro, A. P., Cerón, F. G., & Contreras, D. Z. (2024). Larva de mosca soldado negra (Hermetia illucens L.) en la nutrición animal: una innovación en la alimentación avícola. Agro divulgación, 4(2), 27-31. DOI: https://doi.org/10.54767/ad.v4i2.251Meza-Cureño, LT., Mendieta Sánchez, AM., Castillo, AM., Cabello Hernandez, C., Carmona, A., Alavez, V., y Cerritos, R. (2022). Matter flow through an animal model feed with grasshopper Sphenarium purpurascens: evidence of a sustainable and nutritious protein production system. Frontiers in Sustainable Food Systems, 6, 785048. DOI:10.3389/fsufs.2022.785048Mina, G., Peira, G., y Bonadonna, A. (2023). The potential future of insects in the European food system: A systematic review based on the consumer point of view. Foods. 12(3), 646. DOI:10.3390/foods12030646.Ministerio de Agricultura de Colombia (Minagricultura). (2021). Boletín de precios de alimento balanceado para animales. No 1 del 2021.Mlček, J., Adamek, M., Adámková, A., Borkovcová, M., Bednářová, M., & Skácel, J. (2017). Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravinarstvo Slovak Journal of Food Sciences. https://doi.org/10.5219/850Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M., & Knížková, I. (2019). Fat from Tenebrionidae bugs–sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journal of Food and Nutrition Sciences. https://doi.org/10.31883/pjfns/109666Moher, D., Cook, DJ., Eastwood, S., Olkin, I., Rennie, D., Stroup, DF., (1999). Improving the quality of reports of meta-analyses of randomised controlled trials: The QUOROM statement. Quality of Reporting of meta-analyses. Lancet. 354(9193), pp. 1896-1900. DOI:10.1016/s0140-6736(99)04149-5.Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., y PRISMA Group*, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Analysis of internal medicine. 151(4), pp. 264-269. DOI: 10.1371/journal.pmed.1000097.Morales, J. P. Z., Pizarro, W. J. Z., Macías, V. I. V., & Moreno, E. A. (2017). Los aminoácidos en el cuerpo humano. Revista Científica Mundo de la Investigación y el Conocimiento, 1(5), 379–391. https://doi.org/10.26820/recimundo/1.5.2017.379-391.Moreno, B., Muñoz, M., Cuellar, J., Domancic, S., y Villanueva, J. (2018). Revisiones Sistemáticas: definición y nociones básicas. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral. 11(3), pp- 184–186. DOI:10.4067/s0719-01072018000300184.Moreno, FL., Ton, AP., Rosa, CM., y Freitas, LW. (2021). Use of insects as an alternative in poultry nutrition: review. Research, Society and Development, 10(3), e25810313274. DOI:10.33448/rsd-v10i3.13274.Motte-Florac, ME., y Thomas, J. (2000). Les "insectes" dans la tradition orale / "Insects" in oral literature and traditions. 11 Peeters Publishers.Mozaffarian, D., & Wu, J. H. (2011). Omega-3 Fatty Acids and Cardiovascular Disease. Journal of the American College of Cardiology, 58(20), 2047–2067. https://doi.org/10.1016/j.jacc.2011.06.063.Mshayisa, V. V., Van Wyk, J., & Zozo, B. (2022). Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods, 11(5), 724. https://doi.org/10.3390/foods11050724.Muñoz-Seijas, N., Fernandes, H., López-Periago, J. E., Outeiriño, D., Morán-Aguilar, M. G., Domínguez, J. M., & Salgado, J. M. (2024). Characterization of all life stages of Tenebrio molitor: envisioning innovative applications for this edible insect. Future Foods, 100404. https://doi.org/10.1016/j.fufo.2024.100404Newton, GL., Sheppard, DC., Watson, DW., Burtle, GJ., Dove, CR., Tomberlin, JK., y Thelen, EE. (2005). The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In: Proceedings of the Symposium State of the Science, Animal Manure and Waste Management. 1, pp, 57.Nguyen, TT., Tomberlin, JK., y Vanlaerhoven, S. (2015). Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental Entomology. 44(2), pp. 406-410. DOI:10.1093/ee/nvv002.Nyangena, D.N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S., Nakimbugwe, D., Fiaboe, KKM. (2020). Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods. 9(5):574. DOI:10.3390/foods9050574.Ochieng, BO., Anyango, JO., Nduko, JM., Cheseto, X., Mudalungu, CM., Khamis, FM., y Tanga, CM. (2022). Dynamics in nutrients, sterols and total flavonoid content during processing of the edible Long-Horned grasshopper (Ruspolia differens Serville) for food. Food Chemistry, 383, 132397. DOI:10.1016/j.foodchem.2022.132397.Onsongo, VO., Osuga, IM., Gachuiri, CK., Wachira, AM., Miano, DM.,Tanga, CM., Ekesi, S., Nakimbugwe, D., y Fiaboe KKM. (2018). Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. Journal of Economic Entomology, 111(4), pp.1966-1973. DOI:10.1093/jee/toy118.Oonincx, D. G., Laurent, S., Veenenbos, M. E., & van Loon, J. J. (2020). Dietary enrichment of edible insects with omega 3 fatty acids. Insect science, 27(3), 500-509. https://doi.org/10.1111/1744-7917.12669Oonincx, DG., Van Itterbeeck, J., Heetkamp, MJ., Van Den Brand, H., Van Loon, JJ., y Van Huis, (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one. 5(12), e14445. https://doi.org/10.1371/journal.pone.0014445Oonincx, DGAB., Van Broekhoven, S., Van Huis, A., Van Loon, JJA. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE. 10, e0144601. https://doi.org/10.1371/journal.pone.0144601Opare, L. O., Holm, S., & Esperk, T. (2022). Temperature-modified density effects in the black soldier fly: low larval density leads to large size, short development time and high fat content. Journal of Insects as Food and Feed, 8(7), 783-802. DOI:10.3920/JIFF2021.0147Ortiz, JC., Ruiz, AT., Morales-Ramos, JA., Thomas, M., Rojas, MG., Tomberlin, JK., Yi, L., Han, R., Giroud, L., y Jullien, RL. (2016). Insect mass production technologies. Insects as sustainable food ingredients, pp. 153-201. London, England. Ed. Academic Press. DOI:10.1016/B978-0-12-802856-8.00006-5.Parra, A. (2023). Aplicaciones de Acheta Domesticus (grillo doméstico) en la industria alimentaria. [Trabajo de grado]. Universidad Rey Juan Carlos.Pasini, G., Cullere, M., Vegro, M., Simonato, B., & Dalle Zotte, A. (2022). Potentiality of protein fractions from the house cricket (Acheta domesticus) and yellow mealworm (Tenebrio molitor) for pasta formulation. LWT, 164, 113638. https://doi.org/10.1016/j.lwt.2022.113638Perez-Jimenez F, Alvarez de Cienfuegos G, Badimon L, Barja G, Battino M, Blanco A, Bonanome A, Colomer R, Corella-Piquer D, Covas I, Chamorro-Quiros J, Escrich E, Gaforio JJ, Garcia Luna PP, Hidalgo L, Kafatos A, Kris-Etherton PM, Lairon D, Lamuela-Raventos R, Lopez-Miranda J, Lopez-Segura F, Martinez-Gonzalez MA, Mata P, Mataix J, Ordovas J, Osada J, Pacheco-Reyes R, Perucho M, Pineda-Priego M, Quiles JL, Ramirez-Tortosa MC, Ruiz-Gutierrez V, Sanchez-Rovira P, Solfrizzi V, Soriguer-Escofet F, de la Torre-Fornell R, Trichopoulos A, Villalba-Montoro JM, Villar-Ortiz JR, Visioli F. International conference on the healthy effect of virgin olive oil. Eur J Clin Invest. 2005 Jul;35(7):421-4. doi: 10.1111/j.1365-2362.2005.01516.x. PMID: 16008542. DOI: 10.1111/j.1365-2362.2005.01516.xPizo, MA. (2019). Evaluación del desempeño productivo de parentales de gusano de seda Bombyx mori en el municipio de Popayán, departamento del Cauca [Investigación Trabajo de Grado]. Universidad del Cauca, Colombia.Poveda Arias, J. (2018). Nuevos abonos a partir de excrementos de insecto: el caso del gusano de la harina (Tenebrio molitor). Universidad Surcolombiana. DOI: https://doi.org/10.25054/22161325.184.Psarianos M., Fricke A., Ojha S., Baldermann S., Schreiner M., Schlüter OK. (2022). Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets. Foods. 11(21):3487. DOI:10.3390/foods11213487.Punzo, F., & Mutchmor, J. A. (1980). Effects of temperature, relative humidity and period of exposure on the survival capacity of Tenebrio molitor. Journal of Kansas Entomological Society, 53(2), 260–270.Purschke, B., Brüggen, H., Scheibelberger, R., y Jäger, H. (2018). Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research Technology. 244, pp. 269-280. DOI:10.1007/s00217-017-2953-8Ramos-Elorduy, J., Pino Moreno, JM., Escamilla Prado, E., Alvarado Perez, M., Lagunez Otero, J., Ladron de Guevara, O. (1997). Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition Analysys. 10(2), pp. 142–57. https://doi.org/10.1006/jfca.1997.0530Rao. KR., Pritchard, ETM., y Bekhit, AEDA. (2022). Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal Tropical Insects Science. 42, pp. 3335–3355. DOI:10.1007/s42690-022-00814-6.Ravagli, AC. (2021). Prospección de los insectos comestibles como fuente de proteína animal para el consumo humano. [Trabajo de grado]. Universidad Militar Nueva Granada, Colombia.Refael, G., Riess, H. T., Levi, C. S., Magzal, F., Tamir, S., Koren, O., & Lesmes, U. (2022). Responses of the human gut microbiota to physiologically digested insect powders or isolated chitin thereof. Future Foods, 6, 100197. https://doi.org/10.1016/j.fufo.2022.100197Reglamento de Ejecución (UE) 2021/882. (2021). Por el que se autoriza la comercialización de larvas de Tenebrio molitor desecadas como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión.Reglamento de Ejecución (UE) 2022/169. (2022). Por el que se autoriza la comercialización de las formas congelada, desecada y en polvo del gusano de la harina (larva de Tenebrio molitor) como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión.Reis, T.L., y Dias, A.C.C. (2020). Harina de insectos en piensos para no rumiantes, una alternativa alimentaria. ISSN Electrónico 2178-3764.Reyes-Herrera, A., Pérez-Carrillo, E., Amador-Espejo, G., Valdivia-Nájar, G., y Ibarra-Herrera, C. C. (2022). Changes in the chemical composition of edible grasshoppers (Sphenarium purpurascens) fed exclusively with soy sprouts or maize leaves. Insects, 13(6), 510. https://doi.org/10.3390/insects13060510Rodríguez, AM. (2020). Propuesta de alternativas de producción de proteína para alimentación animal a partir de insectos en Colombia. [Trabajo de grado]. UNAD, Colombia. https://repository.unad.edu.co/handle/10596/36259.Rodríguez, M., Barroso F.G., Fabrikov, D., Sánchez-Muros, M.J. (2022). In Vitro Crude Protein Digestibility of Insects: A Review. Insects; 13(8):682. https://doi.org/10.3390/insects13080682.Roig Cléries, P. (2019). Puesta en marcha de una granja experimental para la cría de insectos destinados a alimentación (Trabajo de grado). Facultad Veterinaria, Universidad de Zaragoza, España.Rumbos, C. I., Bliamplias, D., Gourgouta, M., Michail, V., & Athanassiou, C. G. (2021). Rearing Tenebrio molitor and Alphitobius diaperinus Larvae on Seed Cleaning Process Byproducts. Insects, 12(4), 293. https://doi.org/10.3390/insects12040293.Sánchez, MJ., Barroso, FG., y Manzano, F. (2014). Insect meal as renewable source of food for animal feeding: a review,.. Journal of Cleaner Production, 65, pp. 16-27. DOI:10.1016/j.jclepro.2013.11.068.Sayed, W. A., Alm-Eldin, M. M., Hassan, R. S., Sileem, T. M., & Rumpold, B. A. (2023). Recycling of Mediterranean fruit Fly rearing waste by black soldier Fly, Hermetia illucens. Waste and Biomass Valorization, 14(1), 93-104. Waste and Biomass Valorization (2023) 14:93–104. https://doi.org/10.1007/s12649-022-01847-1Schneider, JC. (2020). Effects of light intensity on mating of the black soldier fly (Hermetia illucens, Diptera: Stratiomyidae). Journal of Insects as Food and Feed. 6, pp. 111-119. DOI:10.3920/ JIFF2019.0003.Schreven, S. J., de Vries, H., Hermes, G. D., Zeni, G., Smidt, H., Dicke, M., & Van Loon, J. J. (2022). Black soldier fly larvae influence internal and substrate bacterial community composition depending on substrate type and larval density. Applied and Environmental Microbiology, 88(10), e00084-22. https://doi.org/10.1128/aem.00084-22Sedgh-Gooya, S., Torki, M., Darbemamieh, M., Khamisabadi, H., & Abdolmohamadi, A. (2022). Growth performance and intestinal morphometric features of broiler chickens fed on dietary inclusion of yellow mealworm (Tenebrio molitor) larvae powder. Veterinary Medicine and Science, 8(5), 2050-2058. https://doi.org/10.1002/vms3.881.Selaledi, L., & Mabelebele, M. (2021). The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects, 12(4), 333. https://doi.org/10.3390/insects12040333Selaledi, L., Mbajiorgu, C. y Mabelebele, M. (2019). The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets. Tropical Animal Health and Production. 52(11), pp 7-16. DOI: 10.1007/s11250-019-02033-7Sen, S., Makkar, H., & Becker, K. (1998). Alfalfa saponins and their implication in animal nutrition. Journal of Agricultural and Food Chemistry, 46(1), 131–140. DOI: 10.1021/jf970389iSheppard, DC., Newton, GL., Thompson, SA., y Savage, SA. (1994). Value-added manure management-system using the black soldier fly. Bioresource Technology. 1994, 50(3), pp. 275–279. https://doi.org/10.1016/0960-8524(94)90102-3Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379. https://doi.org/10.1016/s0753-3322(02)00253-6.Siulapwa, N., A. Mwambungu, E., Lungu, y W. Sichilima. (2014). Nutritional value of four common edible insects in Zambia. International Journal of Science Research. 3, pp. 876–884.Sogari, G., Menozzi, D., y Mora, C. (2017). Exploring young foodies׳ knowledge and attitude regarding entomophagy: A qualitative study in Italy. International Journal of Gastronomy Food Science. 7, pp. 16–19. DOI:10.1016/j.ijgfs.2016.12.002.Son, Y.-J., Choi, S. Y., Hwang, I.-K., Nho, C. W., & Kim, S. H. (2020). Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods, 9(1), 40. https://doi.org/10.3390/foods9010040.Soulsby, EJL. (1987). Parasitología y enfermedades parasitarias en los animales domésticos. México D. F. Editorial Interamericana. 823 p.Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Advances in Nutrition, 3(1), 1-7. https://doi.org/10.3945/an.111.000893.Tomberlin, J.K., Sheppard, D.C. and Joyce, J.A. (2002). Selected lifehistory traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America, 95(3), pp.379-386. DOI:10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2Tran, H.Q.; Nguyen, T.T.; Prokešová, M.; Gebauer, T.; Van Doan, H.; Stejskal, V. (2022). Systematic Review and Meta-Analysis of Production Performance of Aquaculture Species Fed Dietary Insect Meals. Rev. Aquac. , 14, 1637–1655. https://doi.org/10.1111/raq.12666Truzzi, C., Illuminati, S., Girolametti, F., Antonucci, M., Scarponi, G., Ruschioni, S., ... & Annibaldi, A. (2019). Influence of feeding substrates on the presence of toxic metals (Cd, Pb, Ni, As, Hg) in larvae of Tenebrio molitor: risk assessment for human consumption. International journal of environmental research and public health, 16(23), 4815. https://doi.org/10.3390/ijerph16234815Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., Whitbread, A., 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59. https://doi. org/10.1016/j.biocon.2012.01.068Vaca, JG. (2022). Evaluación de dietas en la cría y reproducción de grillos (Acheta domesticus linnaeus) para la obtención de harina en la granja experimental la Pradera-Chaltura. [Trabajo de grado]. Universidad Técnica del Norte. México.Vaga, M., Berggren, Å., & Jansson, A. (2021). Growth, survival and development of house crickets (Acheta domesticus) fed flowering plants. Journal of insects as food and feed, 7(2), 151-161. DOI 10.3920/JIFF2020.0048Vaga, M., Berggren, Å., Pauly, T., & Jansson, A. (2020). Effect of red clover-only diets on house crickets (Acheta domesticus) growth and survival. Journal of Insects as Food and Feed, 6(2), 179-189. https://doi.org/10.3920/JIFF2019.0038.Valipour, M., Ziatabar, AM., y Raeini-sarjaz, M. (2015). Agricultural water management in the world during last half century. Archives of Agronomy and Soil Science. 61(5), pp. 657–678. DOI:10.1080/03650340.2014.944903.Van Huis A. (2016). Edible insects are the future? Proceedings of the Nutrition Society 75(3), pp. 294-305.Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology. 58, pp. 563-583. DOI:10.1146/annurev-ento-120811-153704.Van Huis, A., (2020). Los insectos como alimento y pienso, un nuevo sector agrícola emergente: una revisión. Revista de insectos como alimento y pienso. 6(1), pp. 27-44.Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., y Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations (FAO). Italy. 191 p.Van Huis, A., y Tomberlin, J. (2017). The potential of insects as food and feed. In: Van Huis, A. and Tomberlin, J.K. (eds.) Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 25-58. DOI:10.3920/978-90-8686-849-0.Veldkamp, T., Van Duinkerker, G., Van Huis, A., Iakemond, CMM., Ottevanger, E., Bosch, G., y Van Boekel, MAJS. (2012). Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets – a feasibility Study. Wageningen UR Livestock Research. 48 pp.Verspoor, R. L., Soglo, M., Adeoti, R., Djouaka, R., Edwards, S., Fristedt, R., ... & Landberg, R. (2020). Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Scientific Reports, 10(1), 6146. https://doi.org/10.1038/s41598-020-63157-7 1Vlahova-Vangelova, D., Balev, D., Dinkova, R., Kolev, N., & Stankov, S. (2022). Technological and Sensory Properties of Sponge Cakes Containing Cricket Flour (Acheta Domesticus). Carpathian Journal of Food Science and Technology, 14(1), 89-97. https://doi.org/10.31219/osf.io/yazpd.Walker, T. (2007). Featured Creatures. University of Florida/IFAS. House cricket, Acheta domesticus L.Wendin, K., Mårtensson, L., Djerf, H., & Langton, M. (2020). Product quality during the storage of foods with insects as an ingredient: Impact of particle size, antioxidant, oil content and salt content. Foods, 9(6), 791. https://doi.org/10.3390/foods9060791Wina, E., Muetzel, S., & Becker, K. (2005). The impact of saponins or saponin-containing plant materials on ruminant production. Journal of Agricultural and Food Chemistry, 53(21), 8093–8105. doi: 10.1021/jf048053d.Withers, P.J.A., Neal, C., Jarvie, H.P., Doody, D.G., 2014. Agriculture and eutrophication: where do we go from here? Sustain 6, 5853–5875. https://doi.org/ 10.3390/su6095853.Xie, X., Yuan, Z., Fu, K., An, J., & Deng, L. (2022). Effect of Partial Substitution of Flour with Mealworm (Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods (Basel, Switzerland), 11(14), 2156. https://doi.org/10.3390/foods11142156.Zhang, F., Xu, Y., Kong, B., Chen, Q., Sun, F., Zhang, H., & Liu, Q. (2022). Comparative study of two types of pre-extraction treatment (drying or non-drying) on physicochemical, structural and functional properties of extracted insect proteins from Tenebrio molitor larvae. Current Research in Food Science, 5, 1570-1580. https://doi.org/10.1016/j.crfs.2022.09.004Zhang, T., Wang, T., Liu, R., Chang, M., Jin, Q., & Wang, X. (2020). Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics. LWT, 118, 108725. https://doi.org/10.1016/j.lwt.2019.108725.Zielińska E. (2022). Evaluating the Functional Characteristics of Certain Insect Flours (Non-Defatted/Defatted Flour) and Their Protein Preparations. Molecules; 27(19):6339. DOI:10.3390/molecules27196339.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Proteínas de InsectosInsect ProteinsInsectos ComestiblesEdible InsectsAlimentación AnimalAnimal FeedValor NutritivoNutritive ValueSeguridad AlimentariaFood SecurityEntomofagiaEntomophagyhttp://aims.fao.org/aos/agrovoc/c_1387360333011https://id.nlm.nih.gov/mesh/D019476https://id.nlm.nih.gov/mesh/D000080702https://id.nlm.nih.gov/mesh/D000821https://id.nlm.nih.gov/mesh/D009753https://id.nlm.nih.gov/mesh/D000082302ODS 2: Hambre cero. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenibleColombiaPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/fa0f79cf-689a-41ca-9416-7b8d929129ab/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADORIGINALToroMariana_2025_InsectoAlimentacionRevision.pdfToroMariana_2025_InsectoAlimentacionRevision.pdfTesis de maestríaapplication/pdf1604319https://bibliotecadigital.udea.edu.co/bitstreams/2da29b35-0a21-4d70-8d7b-0cda52279e6e/downloadf210d08f2e9a292a7ca4a2654dc464a6MD53trueAnonymousREADTEXTToroMariana_2025_InsectoAlimentacionRevision.pdf.txtToroMariana_2025_InsectoAlimentacionRevision.pdf.txtExtracted texttext/plain101560https://bibliotecadigital.udea.edu.co/bitstreams/a83a8e37-53c1-4b18-8eef-2c2c88ddeb4e/downloadd76885dcca8b995d6e5c053a20a0c83fMD54falseAnonymousREADTHUMBNAILToroMariana_2025_InsectoAlimentacionRevision.pdf.jpgToroMariana_2025_InsectoAlimentacionRevision.pdf.jpgGenerated Thumbnailimage/jpeg6825https://bibliotecadigital.udea.edu.co/bitstreams/2247240f-ddeb-4c46-a6f5-fc885c61d57a/download854c412b10d5aeaf4750617fbbb4760bMD55falseAnonymousREAD10495/45839oai:bibliotecadigital.udea.edu.co:10495/458392025-05-09 04:01:17.292open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=