A lightweight deep learning model for fault detection of PV modules using thermal images

Thermal imaging is an emerging and valuable tool in evaluating and inspecting photovoltaic modules, allowing the identification of anomalies invisible to the human eye, such as bypass diode failures, internal cell defects, and hot or cold spots. In this context, artificial intelligence and computer...

Full description

Autores:
Jiménez Restrepo, Keony
Cano Quintero, Juan Bernardo
Velilla Hernández, Esteban
Tipo de recurso:
Article of investigation
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48264
Acceso en línea:
https://hdl.handle.net/10495/48264
Palabra clave:
Imágenes infrarrojas
Infrared imaging
Visión por computadora
Computer vision
Aprendizaje profundo (aprendizaje automático)
Deep learning (Machine learning)
Termografía
Thermography
Sistemas de energía fotovoltaica
Photovoltaic power systems
Inteligencia artificial
Artificial intelligence
http://id.loc.gov/authorities/subjects/sh85066320
http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh2021006947
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/