A lightweight deep learning model for fault detection of PV modules using thermal images
Thermal imaging is an emerging and valuable tool in evaluating and inspecting photovoltaic modules, allowing the identification of anomalies invisible to the human eye, such as bypass diode failures, internal cell defects, and hot or cold spots. In this context, artificial intelligence and computer...
- Autores:
-
Jiménez Restrepo, Keony
Cano Quintero, Juan Bernardo
Velilla Hernández, Esteban
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/48264
- Acceso en línea:
- https://hdl.handle.net/10495/48264
- Palabra clave:
- Imágenes infrarrojas
Infrared imaging
Visión por computadora
Computer vision
Aprendizaje profundo (aprendizaje automático)
Deep learning (Machine learning)
Termografía
Thermography
Sistemas de energía fotovoltaica
Photovoltaic power systems
Inteligencia artificial
Artificial intelligence
http://id.loc.gov/authorities/subjects/sh85066320
http://id.loc.gov/authorities/subjects/sh85029549
http://id.loc.gov/authorities/subjects/sh2021006947
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
