Integration of Deep Learning Methods and Monte Carlo Techniques for Estimating Molecular Observables

In this thesis, we introduce ab-flowMC, an adaptive Markov chain Monte Carlo (MCMC) framework that enables the simultaneous training of one Normalizing Flow (NF) and one Machine Learning Potential (MLP) per state while sampling a Boltzmann weighted molecular ensemble. This approach allows for the ra...

Full description

Autores:
Molina Taborda, Ana Cristina
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46127
Acceso en línea:
https://hdl.handle.net/10495/46127
Palabra clave:
Deep learning (Machine learning)
Aprendizaje profundo (Aprendizaje automático)
Density functionals
Funcionales de densidad
Monte Carlo method
Método de Monte Carlo
Markov processes
Procesos de Markov
Molecular dynamics
Dinámica molecular
Quantum chemistry
Química cuántica
http://id.loc.gov/authorities/subjects/sh2021006947
http://id.loc.gov/authorities/subjects/sh85036851
http://id.loc.gov/authorities/subjects/sh85087032
http://id.loc.gov/authorities/subjects/sh85081369
http://id.loc.gov/authorities/subjects/sh85086583
http://id.loc.gov/authorities/subjects/sh85109456
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/