Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling
ABSTRACT: Background: Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffei...
- Autores:
-
Arroyave Ospina, Johanna Carolina
Buist Homan, Manon
Schmidt, Martina
Moshage, Han
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39596
- Acceso en línea:
- https://hdl.handle.net/10495/39596
- Palabra clave:
- Cafeína
Caffeine
Farmacología
Pharmacology
Hepatocitos
Hepatocytes
Palmitatos
Palmitates
Receptor de Adenosina A1
Receptor, Adenosine A1
Metabolismo
Metabolism
https://id.nlm.nih.gov/mesh/D002110
https://id.nlm.nih.gov/mesh/D010600
https://id.nlm.nih.gov/mesh/D022781
https://id.nlm.nih.gov/mesh/D010168
https://id.nlm.nih.gov/mesh/D043682
https://id.nlm.nih.gov/mesh/D008660
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_0b4ccae893d6ac162ed57f332c7768a3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/39596 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| title |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| spellingShingle |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling Cafeína Caffeine Farmacología Pharmacology Hepatocitos Hepatocytes Palmitatos Palmitates Receptor de Adenosina A1 Receptor, Adenosine A1 Metabolismo Metabolism https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D010600 https://id.nlm.nih.gov/mesh/D022781 https://id.nlm.nih.gov/mesh/D010168 https://id.nlm.nih.gov/mesh/D043682 https://id.nlm.nih.gov/mesh/D008660 |
| title_short |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| title_full |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| title_fullStr |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| title_full_unstemmed |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| title_sort |
Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling |
| dc.creator.fl_str_mv |
Arroyave Ospina, Johanna Carolina Buist Homan, Manon Schmidt, Martina Moshage, Han |
| dc.contributor.author.none.fl_str_mv |
Arroyave Ospina, Johanna Carolina Buist Homan, Manon Schmidt, Martina Moshage, Han |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Gastrohepatología |
| dc.subject.decs.none.fl_str_mv |
Cafeína Caffeine Farmacología Pharmacology Hepatocitos Hepatocytes Palmitatos Palmitates Receptor de Adenosina A1 Receptor, Adenosine A1 Metabolismo Metabolism |
| topic |
Cafeína Caffeine Farmacología Pharmacology Hepatocitos Hepatocytes Palmitatos Palmitates Receptor de Adenosina A1 Receptor, Adenosine A1 Metabolismo Metabolism https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D010600 https://id.nlm.nih.gov/mesh/D022781 https://id.nlm.nih.gov/mesh/D010168 https://id.nlm.nih.gov/mesh/D043682 https://id.nlm.nih.gov/mesh/D008660 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D002110 https://id.nlm.nih.gov/mesh/D010600 https://id.nlm.nih.gov/mesh/D022781 https://id.nlm.nih.gov/mesh/D010168 https://id.nlm.nih.gov/mesh/D043682 https://id.nlm.nih.gov/mesh/D008660 |
| description |
ABSTRACT: Background: Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. Methods: Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. Results: Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. Conclusions: The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD. Keywords: Adenosine receptor A1; Adenosine receptors; Caffeine; Lipotoxicity; MAFLD; PKA. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-06-03T19:42:32Z |
| dc.date.available.none.fl_str_mv |
2024-06-03T19:42:32Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Sept;165:114884. Epub 2023 Jul 7. doi: 10.1016/j.biopha.2023.114884 |
| dc.identifier.issn.none.fl_str_mv |
0753-3322 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/39596 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.biopha.2023.114884 |
| dc.identifier.eissn.none.fl_str_mv |
1950-6007 |
| identifier_str_mv |
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Sept;165:114884. Epub 2023 Jul 7. doi: 10.1016/j.biopha.2023.114884 0753-3322 10.1016/j.biopha.2023.114884 1950-6007 |
| url |
https://hdl.handle.net/10495/39596 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Biomed. Pharmacother. |
| dc.relation.citationendpage.spa.fl_str_mv |
16 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
165 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Biomedicine and Pharmacotherapy |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
16 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
París, Francia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/ab719cff-c9fb-4651-8fa8-2f24f20261e4/download https://bibliotecadigital.udea.edu.co/bitstreams/afd869af-a1b2-4430-8b9e-c93594bd8439/download https://bibliotecadigital.udea.edu.co/bitstreams/41380ff8-2d41-4324-9d6d-a83cf6f5205a/download https://bibliotecadigital.udea.edu.co/bitstreams/5143b9d0-9caf-44e9-ad21-32a0f12dbff7/download https://bibliotecadigital.udea.edu.co/bitstreams/05d2bdb3-3824-4254-98fb-ebd60755ecd2/download |
| bitstream.checksum.fl_str_mv |
c8197f3fdb59273d233c339ca363b882 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 7f9115331a2def35700c9a5897050f77 3ba39801e4ff32289dc8c8148605a6c1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052393818488832 |
| spelling |
Arroyave Ospina, Johanna CarolinaBuist Homan, ManonSchmidt, MartinaMoshage, HanGrupo de Gastrohepatología2024-06-03T19:42:32Z2024-06-03T19:42:32Z2023Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Sept;165:114884. Epub 2023 Jul 7. doi: 10.1016/j.biopha.2023.1148840753-3322https://hdl.handle.net/10495/3959610.1016/j.biopha.2023.1148841950-6007ABSTRACT: Background: Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. Methods: Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. Results: Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. Conclusions: The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD. Keywords: Adenosine receptor A1; Adenosine receptors; Caffeine; Lipotoxicity; MAFLD; PKA.Colombia. Ministerio de Ciencia, Tecnología e Innovación - MincienciasCOL002415916 páginasapplication/pdfengElsevierParís, Franciahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signalingArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCafeínaCaffeineFarmacologíaPharmacologyHepatocitosHepatocytesPalmitatosPalmitatesReceptor de Adenosina A1Receptor, Adenosine A1MetabolismoMetabolismhttps://id.nlm.nih.gov/mesh/D002110https://id.nlm.nih.gov/mesh/D010600https://id.nlm.nih.gov/mesh/D022781https://id.nlm.nih.gov/mesh/D010168https://id.nlm.nih.gov/mesh/D043682https://id.nlm.nih.gov/mesh/D008660Biomed. Pharmacother.161165Biomedicine and Pharmacotherapy783–2017RoR:03fd5ne08PublicationORIGINALArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdfArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdfArtículo de investigaciónapplication/pdf5874733https://bibliotecadigital.udea.edu.co/bitstreams/ab719cff-c9fb-4651-8fa8-2f24f20261e4/downloadc8197f3fdb59273d233c339ca363b882MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/afd869af-a1b2-4430-8b9e-c93594bd8439/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/41380ff8-2d41-4324-9d6d-a83cf6f5205a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdf.txtArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdf.txtExtracted texttext/plain85230https://bibliotecadigital.udea.edu.co/bitstreams/5143b9d0-9caf-44e9-ad21-32a0f12dbff7/download7f9115331a2def35700c9a5897050f77MD54falseAnonymousREADTHUMBNAILArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdf.jpgArroyaveJohanna_2023_Caffeine_hepatocytes_receptorA1.pdf.jpgGenerated Thumbnailimage/jpeg14856https://bibliotecadigital.udea.edu.co/bitstreams/05d2bdb3-3824-4254-98fb-ebd60755ecd2/download3ba39801e4ff32289dc8c8148605a6c1MD55falseAnonymousREAD10495/39596oai:bibliotecadigital.udea.edu.co:10495/395962025-03-26 21:36:26.029http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
