Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío

La berenjena (Solanum melongena L.) es una hortaliza de alto valor nutricional y potencial industrial, ampliamente cultivada en regiones tropicales y subtropicales. Este estudio tuvo como objetivo determinar los parámetros cinéticos de transferencia de masa, cambio de color y fuerza de fractura en r...

Full description

Autores:
González Peña, Víctor Javier
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/9502
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/9502
https://repositorio.unicordoba.edu.co/
Palabra clave:
Parámetros cinéticos
Fritura al vacío
Humedad
Absorción de aceite
Color
Fuerza de fractura
Berenjena
Kinetic parameters
Vacuum frying
Moisture
Oil absorption
Color
Fracture force
Eggplant
Rights
embargoedAccess
License
Copyright Universidad de Córdoba, 2025
id UCORDOBA2_1eb0a0ad71f47e628317a84f13c368aa
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/9502
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
title Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
spellingShingle Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
Parámetros cinéticos
Fritura al vacío
Humedad
Absorción de aceite
Color
Fuerza de fractura
Berenjena
Kinetic parameters
Vacuum frying
Moisture
Oil absorption
Color
Fracture force
Eggplant
title_short Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
title_full Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
title_fullStr Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
title_full_unstemmed Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
title_sort Evaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacío
dc.creator.fl_str_mv González Peña, Víctor Javier
dc.contributor.advisor.none.fl_str_mv Ortega Quintana, Fabián Alberto
Pérez Sierra, Omar Andrés
dc.contributor.author.none.fl_str_mv González Peña, Víctor Javier
dc.contributor.jury.none.fl_str_mv Vélez Hernández, Gabriel Ignacio
Díaz Ávila, William Yesid
dc.subject.proposal.spa.fl_str_mv Parámetros cinéticos
Fritura al vacío
Humedad
Absorción de aceite
Color
Fuerza de fractura
Berenjena
topic Parámetros cinéticos
Fritura al vacío
Humedad
Absorción de aceite
Color
Fuerza de fractura
Berenjena
Kinetic parameters
Vacuum frying
Moisture
Oil absorption
Color
Fracture force
Eggplant
dc.subject.keywords.eng.fl_str_mv Kinetic parameters
Vacuum frying
Moisture
Oil absorption
Color
Fracture force
Eggplant
description La berenjena (Solanum melongena L.) es una hortaliza de alto valor nutricional y potencial industrial, ampliamente cultivada en regiones tropicales y subtropicales. Este estudio tuvo como objetivo determinar los parámetros cinéticos de transferencia de masa, cambio de color y fuerza de fractura en rodajas de berenjena sometidas a distintos pretratamientos durante el freído por inmersión al vacío. Se evaluaron tres pretratamientos: control (sin pretratamiento), escaldado y osmodeshidratación en solución de sacarosa con NaCl (relación: 7.5:1). Las rodajas (diámetro: 3.5 ± 0.001 cm, espesor: 2.4 ± 0.2 mm) se frieron al vacío (180 mm Hg) en aceite vegetal (soya:palma), a distintas temperaturas y tiempos, con una relación rodajas:Litro aceite de 7:1. Se analizaron la perdida de humedad, absorción de aceite, parámetros de color (L*, a*, b*, ΔE*), fuerza de fractura y se realizó una prueba sensorial con 101 catadores no entrenados. Los resultados mostraron que la osmodeshidratación redujo significativamente la absorción de aceite (hasta un 91 %) y mejoró la textura, mientras que el escaldado presentó la mayor retención de color, con un valor promedio del 23.71 % respecto al control (ΔE* promedio: 19.41). La cinética de absorción de aceite se ajustó adecuadamente a los modelos de Moyano y Pedreschi y primer orden. En la evaluación sensorial, las muestras osmodeshidratadas obtuvieron la mayor preferencia (91 %) e intención de compra (81 %). En conclusión, la aplicación de pretratamientos, especialmente la osmodeshidratación, mejora significativamente la calidad fisicoquímica y sensorial de la berenjena frita al vacío, siendo una alternativa prometedora para su industrialización.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-28T23:14:29Z
dc.date.available.none.fl_str_mv 2025-07-28T23:14:29Z
2027-07-28
dc.date.issued.none.fl_str_mv 2025-07-28
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/9502
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co/
url https://repositorio.unicordoba.edu.co/handle/ucordoba/9502
https://repositorio.unicordoba.edu.co/
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Acevedo C., D., Montero, P. M., Meza, J. R., Sandrith Sampayo, R., & Martelo, R. J. (2022). Evaluation of the Thermophysical, Sensory, and Microstructural Properties of Colombian Coastal Carimañola Obtained by Atmospheric and Vacuum Frying. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7251584
Afshari, F., Seraj, H., Sadat Hashemi, Z., Timajchi, M., Ensiyeh, O., Ladan, G., Asadi, M., Elyasi, Z., & Ganjibakhsh, M. (2018). The Cytotoxic Effects of Eggplant Peel Extract on Human Gastric Adenocarcinoma Cells and Normal Cells. Modern Medical Laboratory Journal, 1(2), 77–83. https://doi.org/10.30699/mmlj17.1.2.77
Agronet. (2023). Área, producción y rendimiento nacional de berenjena. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Al Faruq, A., Zhang, M., & Adhikari, B. (2019). A novel vacuum frying technology of apple slices combined with ultrasound and microwave. Ultrasonics Sonochemistry, 52, 522–529. https://doi.org/10.1016/j.ultsonch.2018.12.033
Al-Khusaibi, M. K., & Niranjan, K. (2012). The Impact of Blanching and High-Pressure Pretreatments on Oil Uptake of Fried Potato Slices. Food and Bioprocess Technology, 5(6), 2392–2400. https://doi.org/10.1007/S11947-011-0562-2
Amiryousefi, M. R., Mohebbi, M., & Khodaiyan, F. (2014). Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes. Meat Science, 96(1), 172–178. https://doi.org/10.1016/J.MEATSCI.2013.06.018
Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46. https://doi.org/10.1016/J.LWT.2016.03.019
AOAC International. (1995). Official Methods of Analysis of AOAC International. In AOAC International (925.10; 16th ed.).
AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.).
Arias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la Transferencia de Masa en la Deshidratación Osmótica de Mango (Mangifera indica L.) var. Tommy Atkins en Función de la Temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006
Astráin-Redín, L., Raso, J., Álvarez, I., Kirkhus, B., Meisland, A., Borge, G. I. A., & Cebrián, G. (2023). New pulsed electric fields approach to improve the blanching of carrots. LWT, 189, 115468. https://doi.org/10.1016/J.LWT.2023.115468
Ayustaningwarno, F., Fogliano, V., Verkerk, R., & Dekker, M. (2021). Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Research International, 143, 110230. https://doi.org/10.1016/J.FOODRES.2021.110230
Ayustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020a). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7, 544038. https://doi.org/10.3389/FNUT.2020.00095/BIBTEX
Ayustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020b). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00095
Bassama, J., Brat, P., Boulanger, R., Günata, Z., & Bohuon, P. (2012). Modeling deep-fat frying for control of acrylamide reaction in plantain. Journal of Food Engineering, 113(1), 156–166. https://doi.org/10.1016/J.JFOODENG.2012.04.004
Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018a). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062
Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018b). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062
Bouchon, P., & Pyle, D. L. (2004). Studying Oil Absorption in Restructured Potato Chips. In JOURNAL OF FOOD SCIENCE (Vol. 69). www.ift.org
Bourne, M. (2002). Food Texture and Viscosity: Concept and Measurement. Google Libros. https://books.google.es/books?hl=es&lr=&id=S2HNnvSOuf8C&oi=fnd&pg=PP2&dq=Texture+and+viscosity+of+foods:+concept+and+measurement&ots=u-LTuq_Tzo&sig=l7MRrobp9WiJUMEUX06QIkEM7Xk#v=onepage&q&f=false
Bravo, J., Sanjuán, N., Ruales, J., & Mulet, A. (2009). Modeling the Dehydration of Apple Slices by Deep Fat Frying. Drying Technology, 27(6), 782–786. https://doi.org/10.1080/07373930902828187
Cabrera-Valle, D. I., & Casillas, M. I. (2023). Diseño del proceso de deshidratación osmótica para Cidrayota (Sechium edule) de la variedad virens levis. Ciencias Técnicas y Aplicadas, 8, 1822–1849. https://doi.org/10.23857/pc.v8i12.6791
Cadena-Torres, J., Perez-Cantero, S. P., Romero-Ferrer, J. L., & Perez-Cantero, K. L. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141–152. https://doi.org/10.21897/RTA.V25I2.2357
Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. In Food Research International (Vol. 52, Issue 1, pp. 243–261). https://doi.org/10.1016/j.foodres.2013.02.033
Chuquillanqui Antialón, M. (2014). Influencia de la temperatura y pre-tratamiento osmótico en el tiempo de secado y coeficientes de transferencia de masa y calor en el deshidratado de pera (Pyrus cummunis). [Universidad Nacional del Centro del Perú]. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/2650/Chuquillanqui%20Antialon.pdf?sequence=1&isAllowed=y
Dadmohammadi, Y., & Datta, A. K. (2022). Food as porous media: a review of the dynamics of porous properties during processing. In Food Reviews International (Vol. 38, Issue 5, pp. 953–985). Taylor and Francis Ltd. https://doi.org/10.1080/87559129.2020.1761376
Daunay, M.-C., & Jnick, J. (2007). History and Iconography of Eggplant. Chronica Horticulturae, 47, 16–22.
de Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., Resende, N. S., & de Barros Vilas Boas, E. V. (2017). Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science & Emerging Technologies, 41, 10–18. https://doi.org/10.1016/J.IFSET.2017.01.006
Dehghannya, J., & Ngadi, M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116, 786–801. https://doi.org/10.1016/J.TIFS.2021.03.033
Della Rocca, P., & Mascheroni, R. H. (2010). Modelado matemático del proceso de deshidratación osmótica utilizado como pretratamiento en el secado de papas. Proyecciones, 8, 25–32. https://www.researchgate.net/publication/328580875
Devi, S., Zhang, M., & Law, C. L. (2018). Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience, 25, 111–117. https://doi.org/10.1016/J.FBIO.2018.08.004
Devseren, E., Okut, D., Koç, M., Ocak, Ö. Ö., Karataş, H., & Kaymak-Ertekin, F. (2021). Effect of vacuum frying conditions on quality of french fries and frying oil. Acta Chimica Slovenica, 68(1), 25–36. https://doi.org/10.17344/acsi.2020.5886
DigiRoads Research. (2024). Informe del mercado mundial de snacks | Tamaño del mercado, análisis de la industria, oportunidades de crecimiento y pronóstico (2025-2030). Mercado Mundial de Snacks . https://digiroadsresearch.com/es/report/snack-food-market/?srsltid=AfmBOopUWgMgdS-zJ08JkTwW94f43D7OyOYm911xaj3-Af6YYIZ1ylhz&utm_source=chatgpt.com
Dueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149. https://doi.org/10.1016/j.foodchem.2009.08.027
Erdoǧdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering, 68(2), 233–238. https://doi.org/10.1016/J.JFOODENG.2004.05.038
Espinosa Carvajal, M., Correa Alvarez, E., Cantero Rivero, J., Bolaños Benavides, M., Corzo Estepa, J., León Pacheco, R., & Luna Castellanos, L. (2020). Interacción caballoneo y nutrición sobre fenología y rendimiento de la berenjena en el Valle del Sinú, Colombia. Avances en Investigación Agropecuaria, 57–70. https://repository.agrosavia.co/bitstream/handle/20.500.12324/40157/Ver_Documento_40157.pdf?sequence=1&isAllowed=y
Fan, L. P., Zhang, M., & Mujumdar, A. S. (2005). Vacuum frying of carrot chips. Drying Technology, 23(3), 645–656. https://doi.org/10.1081/DRT-200054159
FAOSTAT. (2023, November 28). Cultivos y productos de ganadería. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. https://www.fao.org/faostat/es/#data/QCL
Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/10.1016/0260-8774(95)00072-0
Faruq, A. Al, Zhang, M., & Fan, D. (2019). Modeling the dehydration and analysis of dielectric properties of ultrasound and microwave combined vacuum frying apple slices. Drying Technology, 37(3), 409–423. https://doi.org/10.1080/07373937.2018.1465433
Fiorentini, C., Demarchi, S. M., Quintero Ruiz, N. A., Torrez Irigoyen, R. M., & Giner, S. A. (2015). Arrhenius activation energy for water diffusion during drying of tomato leathers: The concept of characteristic product temperature. Biosystems Engineering, 132, 39–46. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.02.004
García, E., Hernández, E., De Paula, C., & Aramendiz, H. (2003). BROMATOLOGICAL CHARACTERIZATION OF EGGPLANT (Solanum melongena L.) IN THE STATE OF CORDOBA. Temas Agrarios, 8(1), 27–32.
García-Segovia, P., Urbano-Ramos, A. M., Fiszman, S., & Martínez-Monzó, J. (2016a). Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology, 69, 515–521. https://doi.org/10.1016/J.LWT.2016.02.014
Goñi, S. M., & Salvadori, V. O. (2015). MEDICIÓN DE COLOR DE ALIMENTOS EN EL ESPACIO CIELAB A PARTIR DE IMÁGENES. UNLP, 526–531.
Guevara-Betancourth, C., Arango, O., Suárez-Montenegro, Z. J., Tirado, D. F., & Osorio, O. (2025). Comparison of Vacuum and Atmospheric Deep-Fat Frying of Osmo-Dehydrated Goldenberries. Processes, 13(1). https://doi.org/10.3390/pr13010050
Heras, I., Alvis, A., & Arrazola, G. (2013). Optimización del Proceso de Extracción de Antocianinas y Evaluación de la Capacidad Antioxidante de Berenjena (Solana melonera L.). Información Tecnológica, 24(5), 93–102. https://doi.org/10.4067/S0718-07642013000500011
Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/10.1016/J.LWT.2014.02.038
ICONTEC. (1996). NTC 3884. Análisis sensorial. Guía general para el diseño de cuartos de prueba. In ICONTEC (NTC 3884). NTC 3884. https://es.scribd.com/doc/127542666/NTC3884-pdf
Iglesias-Carres, L., Racine, K. C., Chadwick, S., Nunn, C., Kalambur, S. B., Neilson, A. P., & Ferruzzi, M. G. (2023). Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. LWT, 179, 114682. https://doi.org/10.1016/J.LWT.2023.114682
Im, K., Lee, J. Y., Byeon, H., Hwang, K. W., Kang, W., Whang, W. K., & Min, H. (2016). In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food and Agricultural Immunology, 27(6), 758–771. https://doi.org/10.1080/09540105.2016.1150427
Islam, M., Zhang, M., & Fan, D. (2019). Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes. Drying Technology, 37(16), 2087–2104. https://doi.org/10.1080/07373937.2018.1558234
Junqueira, J. R., Corrêa Gomes, J. L., de Mendonça, K. S., de Mello Junior, R. E., & Souza, A. U. (2020). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439–448. https://doi.org/10.1590/FST.02420
Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E., & de Souza, A. U. (2018). Pulsed Vacuum Osmotic Dehydration of Beetroot, Carrot and Eggplant Slices: Effect of Vacuum Pressure on the Quality Parameters. Food and Bioprocess Technology, 11(10), 1863–1875. https://doi.org/10.1007/S11947-018-2147-9/METRICS
Kaur, H., Rai, K. N., & Upadhyay, S. (2022). A numerical study of moving boundary problem involving dual phase lag model of heat mass transfer during immersion frying. Mathematics and Computers in Simulation, 202, 79–100. https://doi.org/10.1016/J.MATCOM.2022.05.025
Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44(1), 39–46. https://doi.org/10.1016/S0260-8774(99)00163-6
Liberty, J. T., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050
Liu, C., Lv, M., Du, H., Deng, H., Zhou, L., Li, P., Li, X., & Li, B. (2023). Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods, 12(11), 2147. https://doi.org/10.3390/FOODS12112147
Liu, S., Dong, H., Ji, W., Zhang, M., Duan, W., & Wang, X. (2023). Change in physicochemical properties, aroma components, and potentially beneficial compounds during the stir-frying of Massa Medicata Fermentata. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100340
Maity, T., Bawa, A. S., & Raju, P. S. (2014). Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science, 2014. https://doi.org/10.1155/2014/752047
Martínez Reina, A. M., Tordecilla Zumaqué, L., Grandett Martínez, L. M., & Rodríguez Pinto, M. del V. (2021). Eficiencia técnica del cultivo de berenjena (Solanum melongena L.) en zona productoras del caribe colombiano. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(3), 66–76. https://doi.org/10.53287/mvqd3972pu29t
Meyer, R. S., Bamshad, M., Fuller, D. Q., & Litt, A. (2014). Comparing Medicinal Uses of Eggplant and Related Solanaceae in China, India, and the Philippines Suggests the Independent Development of Uses, Cultural Diffusion, and Recent Species Substitutions. Economic Botany, 68(2), 137–152. https://doi.org/10.1007/S12231-014-9267-6/METRICS
Mohammadalinejhad, S., & Dehghannya, J. (2018). Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innovative Food Science & Emerging Technologies, 47, 493–503. https://doi.org/10.1016/J.IFSET.2018.05.001
Mojaharul Islam, M., Zhang, M., Bhandari, B., & Guo, Z. (2019). A hybrid vacuum frying process assisted by ultrasound and microwave to enhance the kinetics of moisture loss and quality of fried edamame. Food and Bioproducts Processing, 118, 326–335. https://doi.org/10.1016/j.fbp.2019.10.004
Morakabati, N., Shahidi, S. A., Roozbeh Nasiraie, L., Ghorbani-HasanSaraei, A., & Naghizadeh Raeisi, S. (2024). Vacuum frying of parsnip slices: Optimization by taguchi and response surface methodology and modeling the kinetics of water loss. Alexandria Engineering Journal, 100, 312–321. https://doi.org/10.1016/j.aej.2024.05.052
Moreira, R. G., Sun, X., & Chen, Y. (1997). Factors affecting oil uptake in tortilla chips in deep-fat frying. Journal of Food Engineering, 31(4), 485–498. https://doi.org/10.1016/S0260-8774(96)00088-X
Moreno, M. C., & Bouchon, P. (2008). A different perspective to study the effect of freeze, air, and osmotic drying on oil absorption during potato frying. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00669.x
Mosquera-Vivas, E. S., Ayala-Aponte, A. A., & Serna-Cock, L. (2019). Ultrasound and Osmotic Dehydration as Pre-treatments to Melon (Cucumis melo L.) Drying by Freeze-drying. Informacion Tecnologica, 30(3), 179–188. https://doi.org/10.4067/S0718-07642019000300179
Mowafy, S., Guo, J., Lei, D., & Liu, Y. (2024). Application of novel blanching and drying technologies improves the potato drying kinetics and maintains its physicochemical attributes and flour functional properties. Innovative Food Science & Emerging Technologies, 94, 103648. https://doi.org/10.1016/J.IFSET.2024.103648
Moyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: Effect of solute impregnation. Drying Technology, 20(7), 1303–1318. https://doi.org/10.1081/DRT-120005854
Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices:: Effect of pre-treatments. LWT - Food Science and Technology, 39(3), 285–291. https://doi.org/10.1016/J.LWT.2005.01.010
Nguyen, T. H., & Phan, H. T. (2022). Solutions for effective prevention of after-cooking discoloration in deep-fried eggplant (Solanum melongena L.). Agriculture and Natural Resources, 56(6), 1153–1162. https://doi.org/10.34044/j.anres.2022.56.6.09
Niño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. South African Journal of Botany, 111, 161–169. https://doi.org/10.1016/J.SAJB.2017.03.016
Oke, E. K., Idowu, M. A., Sobukola, O. P., Adeyeye, S. A. O., & Akinsola, A. O. (2018). Frying of Food: A Critical Review. Journal of Culinary Science & Technology, 16(2), 107–127. https://doi.org/10.1080/15428052.2017.1333936
Ortega, F. A., & Montes, E. J. (2014). Parámetros cinéticos de transferencia de masa durante el freído por inmersión de rodajas de yuca (Manihot esculenta Crantz). INGENIERÍA Y COMPETITIVIDAD, 16(2), 247–255. https://doi.org/10.25100/iyc.v16i2.3699
Ortega-Quintana, F. A., Montes-Montes, E. J., Pérez-Sierra, O. A., & Vélez-Hernández, G. I. (2019). Effect of osmotic dehydration and temperature on color and fracture maximum force of yucca root slices in deep-fat frying. Informacion Tecnologica, 30(1), 311–320. https://doi.org/10.4067/S0718-07642019000100311
Pankaj, S. K., & Keener, K. M. (2017). A review and research trends in alternate frying technologies. Current Opinion in Food Science, 16, 74–79. https://doi.org/10.1016/J.COFS.2017.09.001
Patra, A., Prasath, V. A., Sutar, P. P., Pandian, N. K. S., & Pandiselvam, R. (2022a). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162, 112074. https://doi.org/10.1016/J.FOODRES.2022.112074
Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001
Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599–604. https://doi.org/10.1016/J.LWT.2004.08.008
Perez-Tinoco, M. R., Perez, A., Salgado-Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945–953. https://doi.org/10.1002/JSFA.3171
Piyalungka, P., Sadiq, M. B., Assavarachan, R., & Nguyen, L. T. (2019). Effects of osmotic pretreatment and frying conditions on quality and storage stability of vacuum-fried pumpkin chips. International Journal of Food Science and Technology, 54(10), 2963–2972. https://doi.org/10.1111/ijfs.14209
Pooja, B. M. (2018). DEVELOPMENT AND EVALUATION OF PROCESS PROTOCOL FOR VACUUM FRIED BITTER GOURD CHIPS (Momordica charantia) [DEPARTMENT OF PROCESSING AND FOOD ENGINEERING KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY]. http://14.139.181.140:8080/xmlui/bitstream/handle/123456789/410/T430.pdf?sequence=1&isAllowed=y
Praveena, N., Surya, R., Fairoosa, K., Rajesh, G. K., George, A. K., & Tasneem, S. A. F. (2024). Development and Quality Evaluation of Vacuum Fried Jackfruit (Artocarpus heterophyllus) Chips. Asian Journal of Dairy and Food Research, 43(1), 116–123. https://doi.org/10.18805/ajdfr.DR-1549
Priyadarshini, A., Rayaguru, K., Biswal, A. K., Panda, P. K., Lenka, C., & Misra, P. K. (2023). Impact of conventional and ohmic blanching on color, phytochemical, structural, and sensory properties of mango (Mangifera indica L.) cubes: A comparative analysis. Food Chemistry Advances, 2, 100308. https://doi.org/10.1016/J.FOCHA.2023.100308
Puente, L., Lastreto, S., José Mosqueda, M., & Saavedra, J. (2010). Influencia de un pre-tratamiento osmótico sobre la deshidratación por aire caliente de manzana Granny Smith. Dyna, 77, 274–283. https://www.redalyc.org/articulo.oa?id=49620414027
Ramesh, M. N., Wolf, W., Tevini, D., & Bognár, A. (2002). Microwave Blanching of Vegetables. Journal of Food Science, 67(1), 390–398. https://doi.org/10.1111/J.1365-2621.2002.TB11416.X
Ramya, V., & Jain, N. K. (2017). A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40(3), e12440. https://doi.org/10.1111/JFPE.12440
Ran, X., Lin, D., Zheng, L., Li, Y., & Yang, H. (2023). Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. Journal of Food Engineering, 350, 111457. https://doi.org/10.1016/J.JFOODENG.2023.111457
Ren, A., Pan, S., Li, W., Chen, G., & Duan, X. (2018). Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/4510126
Salehi, F. (2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. International Journal of Food Properties, 22(1), 511–519. https://doi.org/10.1080/10942912.2019.1593616
Salhuana, J., Siche, R., Abanto, L., Vásquez, V., Salhuana, J., Siche, R., Abanto, L., & Vásquez, V. (2022). Determinación del cambio de color en fritura de cuatro variedades de papa (Solanum tuberosum) utilizando visión computacional. Manglar, 19(1), 45–52. https://doi.org/10.17268/MANGLAR.2022.006
Sharma, P., Venugopal, A. P., & Sutar, P. P. (2024). Development of steam-impinged microwave-vacuum assisted blanching of ready-to-cook vegan patties. Innovative Food Science & Emerging Technologies, 92, 103595. https://doi.org/10.1016/J.IFSET.2024.103595
Soto, M., Pérez, M. M., Servent, A., Vaillant, F., & Achir, N. (2021). Monitoring and modelling of physicochemical properties of papaya chips during vacuum frying to control their sensory attributes and nutritional value. Journal of Food Engineering, 299. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021.110514
Su, Y., Zhang, M., Adhikari, B., Mujumdar, A. S., & Zhang, W. (2018). Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science and Emerging Technologies, 50, 148–159. https://doi.org/10.1016/j.ifset.2018.10.011
Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2020). Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2020.104958
Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2021a). Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Bioscience, 39, 100825. https://doi.org/10.1016/J.FBIO.2020.100825
Thongcharoenpipat, C., & Yamsaengsung, R. (2022). Improving the drying kinetics and microstructure of vacuum-fried ripened durian chips. International Journal of Food Science and Technology, 57(5), 2862–2871. https://doi.org/10.1111/ijfs.15547
Tizhe, J., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050
Torres, J. D., Alvis, A., Acevedo, D., Montero, P. M., & Tirado, D. F. (2017). Optimización de las condiciones de fritura al vacío de rodajas de berenjena (Solanum melongena L.) utilizando la metodología de superficie de respuesta. Interciencia, 42(10), 683–691.
Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT, 42(6), 1164–1173. https://doi.org/10.1016/j.lwt.2009.01.008
Vallejos Maureira, R. (2024). EFECTO DE LA DESHIDRATACIÓN DE LA PULPA DE CEREZA POR VENTANA DE REFRACTANCIA Y COMPARACIÓN ENTRE LA APLICACIÓN DE PRESIONES REDUCIDAS Y PRETRATAMIENTO POR ULTRASONIDO. Universidad de Chile.
Varidi, M., Ahmadzadeh-Hashemi, S., & Nooshkam, M. (2023). Changes in fat uptake, color, texture, and sensory properties of Aloe vera gel-coated eggplant rings during deep-fat frying process. Food Science & Nutrition, 11(4), 2027–2035. https://doi.org/10.1002/FSN3.3238
Verma, V., Singh, V., Chauhan, O. P., & Yadav, N. (2023). Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Innovative Food Science & Emerging Technologies, 83, 103233. https://doi.org/10.1016/J.IFSET.2022.103233
Wang, Y., Zhang, H., Cui, J., Gao, S., Bai, S., You, L., Ji, C., & Wang, S. (2024). Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Research International, 175, 113715. https://doi.org/10.1016/J.FOODRES.2023.113715
Xu, Z., Leong, S. Y., Farid, M., Silcock, P., Bremer, P., & Oey, I. (2020). Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods 2020, Vol. 9, Page 949, 9(7), 949. https://doi.org/10.3390/FOODS9070949
Yagua, C. V., & Moreira, R. G. (2011). Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 104(2), 272–283. https://doi.org/10.1016/J.JFOODENG.2010.12.018
Yamsaengsung, R., & Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part I: model development. Journal of Food Engineering, 53(1), 1–10. https://doi.org/10.1016/S0260-8774(01)00134-0
Yarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(4), 420. https://doi.org/10.22038/IJBMS.2021.50276.11452
Yildiz, A., Koray Palazoǧlu, T., & Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1), 11–17. https://doi.org/10.1016/J.JFOODENG.2006.01.021
Zhang, Y., Deng, Z., Li, H., Zheng, L., Liu, R., & Zhang, B. (2020). Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. Journal of Agricultural and Food Chemistry, 68(42), 11817–11828. https://doi.org/10.1021/ACS.JAFC.0C05224/ASSET/IMAGES/MEDIUM/JF0C05224_0008.GIF
Zhao, S., Wang, S., Lu, Q., & Liu, Y. (2024). Effect of calcium chloride blanching combined with acetic acid soaking pretreatment on oil absorption of fried potato chips. Food Chemistry, 460. https://doi.org/10.1016/j.foodchem.2024.140661
Zheng, T., & Moreira, R. G. (2020). Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon, 6(12). https://doi.org/10.1016/j.heliyon.2020.e05834
Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2025
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright Universidad de Córdoba, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Berástegui, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Agroalimentarias
publisher.none.fl_str_mv Universidad de Córdoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://dspace8-unicordoba.metabuscador.org/bitstreams/836bf1d1-ab77-4034-b0eb-d3c6e0c1d738/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/17a9db1c-9331-4d5d-b678-ac499a92f4d3/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/57b5879e-6cb3-45fa-ba9f-4a36d633ec8e/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/6721b587-dcba-438b-8304-21daf4b87eb0/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/1ce3802b-2043-455d-bec8-7284ce0f8ce9/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/705fc5a8-6066-4e1b-b36b-d9be601f09ef/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/efaae7af-c2d0-4f44-bee4-4381ff4d35ae/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/65f68b2f-3c65-47d8-b992-21d5f786984b/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/0ae88999-980f-4ac4-8f55-5f6416e3179e/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/38ed0884-a364-4ecc-9912-8111f7a6f9e4/download
https://dspace8-unicordoba.metabuscador.org/bitstreams/d274fd8b-b410-4959-a5d1-884db399239a/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
481abb419a7019474d92ca22596a9156
8d5ba9fb896134bdfe2319b2ed3dfb8d
5099543329edfd25d2cc76b577c8a106
3b0fcea897c29507cdb69a59f1bde500
5099543329edfd25d2cc76b577c8a106
3b0fcea897c29507cdb69a59f1bde500
dda6726748c45c3acd94d3cc9f5f6a4d
f0ebf45e0063baa48827d88a3de6c718
dda6726748c45c3acd94d3cc9f5f6a4d
f0ebf45e0063baa48827d88a3de6c718
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1849968211613712384
spelling Ortega Quintana, Fabián AlbertoPérez Sierra, Omar AndrésGonzález Peña, Víctor JavierVélez Hernández, Gabriel IgnacioDíaz Ávila, William Yesid2025-07-28T23:14:29Z2027-07-282025-07-28T23:14:29Z2025-07-28https://repositorio.unicordoba.edu.co/handle/ucordoba/9502Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.co/La berenjena (Solanum melongena L.) es una hortaliza de alto valor nutricional y potencial industrial, ampliamente cultivada en regiones tropicales y subtropicales. Este estudio tuvo como objetivo determinar los parámetros cinéticos de transferencia de masa, cambio de color y fuerza de fractura en rodajas de berenjena sometidas a distintos pretratamientos durante el freído por inmersión al vacío. Se evaluaron tres pretratamientos: control (sin pretratamiento), escaldado y osmodeshidratación en solución de sacarosa con NaCl (relación: 7.5:1). Las rodajas (diámetro: 3.5 ± 0.001 cm, espesor: 2.4 ± 0.2 mm) se frieron al vacío (180 mm Hg) en aceite vegetal (soya:palma), a distintas temperaturas y tiempos, con una relación rodajas:Litro aceite de 7:1. Se analizaron la perdida de humedad, absorción de aceite, parámetros de color (L*, a*, b*, ΔE*), fuerza de fractura y se realizó una prueba sensorial con 101 catadores no entrenados. Los resultados mostraron que la osmodeshidratación redujo significativamente la absorción de aceite (hasta un 91 %) y mejoró la textura, mientras que el escaldado presentó la mayor retención de color, con un valor promedio del 23.71 % respecto al control (ΔE* promedio: 19.41). La cinética de absorción de aceite se ajustó adecuadamente a los modelos de Moyano y Pedreschi y primer orden. En la evaluación sensorial, las muestras osmodeshidratadas obtuvieron la mayor preferencia (91 %) e intención de compra (81 %). En conclusión, la aplicación de pretratamientos, especialmente la osmodeshidratación, mejora significativamente la calidad fisicoquímica y sensorial de la berenjena frita al vacío, siendo una alternativa prometedora para su industrialización.Eggplant (Solanum melongena L.) is a vegetable of high nutritional value and industrial potential, widely cultivated in tropical and subtropical regions. This study aimet to determine the kinetic parameters of mass transfer, color change, and fracture force in eggplant slices subjected to different pretreatments during vacuum immersion frying. Three pretreatments were evaluated: control (no pretreatment), blanching, and osmotic dehydration in a sucrose - NaCl solution (ratio: 7.5:1). The slices (diameter: 3.5 ± 0.001 cm, thickness: 2.4 ± 0.2 mm) were fried under vacuum conditions (180 mm Hg) in vegetable oil (soybean: palm), at different temperatures and times, using a slince-to-oil ratio of 7:1 (slices per liter of oil). Moisture los, oil uptake, color parameters (L*, a*, b*, ΔE*), fracture force, and sensory preference were analyzed using 101 untrained panelists. Results showed that osmotic dehydration significantly reduced oil absorption (up to 91 %) and improved texture, while blanching provided the highest color retention, with an average value of 23.71 % compared to the control (ΔE* average: 19.41). The kinetics of oil absorption fitted well to both the Moyano and Pedreschi model and the first-order model. In the sensory evaluation, osmotic-dehydrated samples received the highest preference (91 %) and purchase intention (81 %). In conclusion, the application of pretreatments, especially osmotic dehydration, significatly improves the physicochemical and sensory quality of vacuum-fried eggplant, positioning it as a promising alternative for industrial processing.LISTA DE TABLASLISTA DE FIGURASLISTA DE ANEXOSLISTA DE SÍMBOLOS Y ABREVIATURASRESUMENABSTRACT1. INTRODUCCIÓN2. REVISIÓN DE LITERATURA2.1 La berenjena2.2 Proceso de freído2.3 Freído al vacío2.4 Transferencia de calor durante el proceso de freído2.5 Transferencia de masa durante el proceso de freído2.5.1 Modelo matemático de pérdida de agua2.5.2 Modelos matemáticos de absorción de aceite2.6 El color durante el proceso de freído2.6.1 Modelamiento de los cambios de color2.7 Cambios de textura durante el proceso de freído2.7.1 Modelamiento de la fuerza de fractura durante el freído2.8 Osmodeshidratación2.9 Escaldado3. OBJETIVOS3.1 Objetivo General3.2 Objetivos Específicos3. MATERIALES Y MÉTODOS3.1 Tipo de investigación3.2 Universo de estudio3.3 Localización3.4 Variables3.4.1 Variables independientes3.4.2 Variables dependientes3.5 Métodos3.5.1 Preparación de la materia prima3.5.2 Pretratamientos3.5.3 Freído por inmersión al vacío3.5.4 Humedad3.5.5 Contenido de aceite3.5.6 Medición de color3.5.7 Fuerza máxima de fractura3.5.8 Prueba sensorial de preferencia por ordenamiento e intención de compra3.6 Diseño experimental y análisis estadístico4. RESULTADOS Y DISCUSIONES4.1 Cinética de pérdida de humedad durante el freído al vacío de rodajas de berenjena4.2 Cinética de absorción de aceite durante el freído al vacío de rodajas de berenjena4.3 Cinética de cambio de color durante el freído al vacío de rodajas de berenjena4.4 Cinética de cambio en la fuerza de fractura4.5 Evaluación sensorial5. CONCLUSIONES6. RECOMENDACIONES7. REFERENCIAS BIBLIOGRÁFICASANEXOSMaestríaMagíster en Ciencias AgroalimentariasTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de IngenieríaBerástegui, Córdoba, ColombiaMaestría en Ciencias AgroalimentariasCopyright Universidad de Córdoba, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEvaluación de los parámetros cinéticos de transferencia de masa, color y fuerza de fractura de rodajas de berenjena sometidas a freído por inmersión al vacíoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcevedo C., D., Montero, P. M., Meza, J. R., Sandrith Sampayo, R., & Martelo, R. J. (2022). Evaluation of the Thermophysical, Sensory, and Microstructural Properties of Colombian Coastal Carimañola Obtained by Atmospheric and Vacuum Frying. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/7251584Afshari, F., Seraj, H., Sadat Hashemi, Z., Timajchi, M., Ensiyeh, O., Ladan, G., Asadi, M., Elyasi, Z., & Ganjibakhsh, M. (2018). The Cytotoxic Effects of Eggplant Peel Extract on Human Gastric Adenocarcinoma Cells and Normal Cells. Modern Medical Laboratory Journal, 1(2), 77–83. https://doi.org/10.30699/mmlj17.1.2.77Agronet. (2023). Área, producción y rendimiento nacional de berenjena. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Al Faruq, A., Zhang, M., & Adhikari, B. (2019). A novel vacuum frying technology of apple slices combined with ultrasound and microwave. Ultrasonics Sonochemistry, 52, 522–529. https://doi.org/10.1016/j.ultsonch.2018.12.033Al-Khusaibi, M. K., & Niranjan, K. (2012). The Impact of Blanching and High-Pressure Pretreatments on Oil Uptake of Fried Potato Slices. Food and Bioprocess Technology, 5(6), 2392–2400. https://doi.org/10.1007/S11947-011-0562-2Amiryousefi, M. R., Mohebbi, M., & Khodaiyan, F. (2014). Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes. Meat Science, 96(1), 172–178. https://doi.org/10.1016/J.MEATSCI.2013.06.018Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46. https://doi.org/10.1016/J.LWT.2016.03.019AOAC International. (1995). Official Methods of Analysis of AOAC International. In AOAC International (925.10; 16th ed.).AOAC International. (2005). Official methods of analysis of AOAC International (18th ed.).Arias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la Transferencia de Masa en la Deshidratación Osmótica de Mango (Mangifera indica L.) var. Tommy Atkins en Función de la Temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006Astráin-Redín, L., Raso, J., Álvarez, I., Kirkhus, B., Meisland, A., Borge, G. I. A., & Cebrián, G. (2023). New pulsed electric fields approach to improve the blanching of carrots. LWT, 189, 115468. https://doi.org/10.1016/J.LWT.2023.115468Ayustaningwarno, F., Fogliano, V., Verkerk, R., & Dekker, M. (2021). Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Research International, 143, 110230. https://doi.org/10.1016/J.FOODRES.2021.110230Ayustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020a). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7, 544038. https://doi.org/10.3389/FNUT.2020.00095/BIBTEXAyustaningwarno, F., van Ginkel, E., Vitorino, J., Dekker, M., Fogliano, V., & Verkerk, R. (2020b). Nutritional and Physicochemical Quality of Vacuum-Fried Mango Chips Is Affected by Ripening Stage, Frying Temperature, and Time. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00095Bassama, J., Brat, P., Boulanger, R., Günata, Z., & Bohuon, P. (2012). Modeling deep-fat frying for control of acrylamide reaction in plantain. Journal of Food Engineering, 113(1), 156–166. https://doi.org/10.1016/J.JFOODENG.2012.04.004Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018a). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018b). Impact of vacuum frying on quality of potato crisps and frying oil. Food Chemistry, 241, 51–59. https://doi.org/10.1016/J.FOODCHEM.2017.08.062Bouchon, P., & Pyle, D. L. (2004). Studying Oil Absorption in Restructured Potato Chips. In JOURNAL OF FOOD SCIENCE (Vol. 69). www.ift.orgBourne, M. (2002). Food Texture and Viscosity: Concept and Measurement. Google Libros. https://books.google.es/books?hl=es&lr=&id=S2HNnvSOuf8C&oi=fnd&pg=PP2&dq=Texture+and+viscosity+of+foods:+concept+and+measurement&ots=u-LTuq_Tzo&sig=l7MRrobp9WiJUMEUX06QIkEM7Xk#v=onepage&q&f=falseBravo, J., Sanjuán, N., Ruales, J., & Mulet, A. (2009). Modeling the Dehydration of Apple Slices by Deep Fat Frying. Drying Technology, 27(6), 782–786. https://doi.org/10.1080/07373930902828187Cabrera-Valle, D. I., & Casillas, M. I. (2023). Diseño del proceso de deshidratación osmótica para Cidrayota (Sechium edule) de la variedad virens levis. Ciencias Técnicas y Aplicadas, 8, 1822–1849. https://doi.org/10.23857/pc.v8i12.6791Cadena-Torres, J., Perez-Cantero, S. P., Romero-Ferrer, J. L., & Perez-Cantero, K. L. (2020). Características de la comercialización de los frutos de berenjena en las principales ciudades de consumo en Colombia. Temas Agrarios, 25(2), 141–152. https://doi.org/10.21897/RTA.V25I2.2357Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. In Food Research International (Vol. 52, Issue 1, pp. 243–261). https://doi.org/10.1016/j.foodres.2013.02.033Chuquillanqui Antialón, M. (2014). Influencia de la temperatura y pre-tratamiento osmótico en el tiempo de secado y coeficientes de transferencia de masa y calor en el deshidratado de pera (Pyrus cummunis). [Universidad Nacional del Centro del Perú]. https://repositorio.uncp.edu.pe/bitstream/handle/20.500.12894/2650/Chuquillanqui%20Antialon.pdf?sequence=1&isAllowed=yDadmohammadi, Y., & Datta, A. K. (2022). Food as porous media: a review of the dynamics of porous properties during processing. In Food Reviews International (Vol. 38, Issue 5, pp. 953–985). Taylor and Francis Ltd. https://doi.org/10.1080/87559129.2020.1761376Daunay, M.-C., & Jnick, J. (2007). History and Iconography of Eggplant. Chronica Horticulturae, 47, 16–22.de Jesus Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., Resende, N. S., & de Barros Vilas Boas, E. V. (2017). Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science & Emerging Technologies, 41, 10–18. https://doi.org/10.1016/J.IFSET.2017.01.006Dehghannya, J., & Ngadi, M. (2021). Recent advances in microstructure characterization of fried foods: Different frying techniques and process modeling. Trends in Food Science & Technology, 116, 786–801. https://doi.org/10.1016/J.TIFS.2021.03.033Della Rocca, P., & Mascheroni, R. H. (2010). Modelado matemático del proceso de deshidratación osmótica utilizado como pretratamiento en el secado de papas. Proyecciones, 8, 25–32. https://www.researchgate.net/publication/328580875Devi, S., Zhang, M., & Law, C. L. (2018). Effect of ultrasound and microwave assisted vacuum frying on mushroom (Agaricus bisporus) chips quality. Food Bioscience, 25, 111–117. https://doi.org/10.1016/J.FBIO.2018.08.004Devseren, E., Okut, D., Koç, M., Ocak, Ö. Ö., Karataş, H., & Kaymak-Ertekin, F. (2021). Effect of vacuum frying conditions on quality of french fries and frying oil. Acta Chimica Slovenica, 68(1), 25–36. https://doi.org/10.17344/acsi.2020.5886DigiRoads Research. (2024). Informe del mercado mundial de snacks | Tamaño del mercado, análisis de la industria, oportunidades de crecimiento y pronóstico (2025-2030). Mercado Mundial de Snacks . https://digiroadsresearch.com/es/report/snack-food-market/?srsltid=AfmBOopUWgMgdS-zJ08JkTwW94f43D7OyOYm911xaj3-Af6YYIZ1ylhz&utm_source=chatgpt.comDueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149. https://doi.org/10.1016/j.foodchem.2009.08.027Erdoǧdu, F. (2005). Mathematical approaches for use of analytical solutions in experimental determination of heat and mass transfer parameters. Journal of Food Engineering, 68(2), 233–238. https://doi.org/10.1016/J.JFOODENG.2004.05.038Espinosa Carvajal, M., Correa Alvarez, E., Cantero Rivero, J., Bolaños Benavides, M., Corzo Estepa, J., León Pacheco, R., & Luna Castellanos, L. (2020). Interacción caballoneo y nutrición sobre fenología y rendimiento de la berenjena en el Valle del Sinú, Colombia. Avances en Investigación Agropecuaria, 57–70. https://repository.agrosavia.co/bitstream/handle/20.500.12324/40157/Ver_Documento_40157.pdf?sequence=1&isAllowed=yFan, L. P., Zhang, M., & Mujumdar, A. S. (2005). Vacuum frying of carrot chips. Drying Technology, 23(3), 645–656. https://doi.org/10.1081/DRT-200054159FAOSTAT. (2023, November 28). Cultivos y productos de ganadería. Organización de Las Naciones Unidas Para La Alimentación y La Agricultura. https://www.fao.org/faostat/es/#data/QCLFarkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/10.1016/0260-8774(95)00072-0Faruq, A. Al, Zhang, M., & Fan, D. (2019). Modeling the dehydration and analysis of dielectric properties of ultrasound and microwave combined vacuum frying apple slices. Drying Technology, 37(3), 409–423. https://doi.org/10.1080/07373937.2018.1465433Fiorentini, C., Demarchi, S. M., Quintero Ruiz, N. A., Torrez Irigoyen, R. M., & Giner, S. A. (2015). Arrhenius activation energy for water diffusion during drying of tomato leathers: The concept of characteristic product temperature. Biosystems Engineering, 132, 39–46. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.02.004García, E., Hernández, E., De Paula, C., & Aramendiz, H. (2003). BROMATOLOGICAL CHARACTERIZATION OF EGGPLANT (Solanum melongena L.) IN THE STATE OF CORDOBA. Temas Agrarios, 8(1), 27–32.García-Segovia, P., Urbano-Ramos, A. M., Fiszman, S., & Martínez-Monzó, J. (2016a). Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT - Food Science and Technology, 69, 515–521. https://doi.org/10.1016/J.LWT.2016.02.014Goñi, S. M., & Salvadori, V. O. (2015). MEDICIÓN DE COLOR DE ALIMENTOS EN EL ESPACIO CIELAB A PARTIR DE IMÁGENES. UNLP, 526–531.Guevara-Betancourth, C., Arango, O., Suárez-Montenegro, Z. J., Tirado, D. F., & Osorio, O. (2025). Comparison of Vacuum and Atmospheric Deep-Fat Frying of Osmo-Dehydrated Goldenberries. Processes, 13(1). https://doi.org/10.3390/pr13010050Heras, I., Alvis, A., & Arrazola, G. (2013). Optimización del Proceso de Extracción de Antocianinas y Evaluación de la Capacidad Antioxidante de Berenjena (Solana melonera L.). Información Tecnológica, 24(5), 93–102. https://doi.org/10.4067/S0718-07642013000500011Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/10.1016/J.LWT.2014.02.038ICONTEC. (1996). NTC 3884. Análisis sensorial. Guía general para el diseño de cuartos de prueba. In ICONTEC (NTC 3884). NTC 3884. https://es.scribd.com/doc/127542666/NTC3884-pdfIglesias-Carres, L., Racine, K. C., Chadwick, S., Nunn, C., Kalambur, S. B., Neilson, A. P., & Ferruzzi, M. G. (2023). Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. LWT, 179, 114682. https://doi.org/10.1016/J.LWT.2023.114682Im, K., Lee, J. Y., Byeon, H., Hwang, K. W., Kang, W., Whang, W. K., & Min, H. (2016). In Vitro antioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena) stalks in macrophage RAW 264.7 cells. Food and Agricultural Immunology, 27(6), 758–771. https://doi.org/10.1080/09540105.2016.1150427Islam, M., Zhang, M., & Fan, D. (2019). Ultrasonically enhanced low-temperature microwave-assisted vacuum frying of edamame: Effects on dehydration kinetics and improved quality attributes. Drying Technology, 37(16), 2087–2104. https://doi.org/10.1080/07373937.2018.1558234Junqueira, J. R., Corrêa Gomes, J. L., de Mendonça, K. S., de Mello Junior, R. E., & Souza, A. U. (2020). Modeling mass transfer during osmotic dehydration of different vegetable structures under vacuum conditions. Food Science and Technology, 41(2), 439–448. https://doi.org/10.1590/FST.02420Junqueira, J. R., Corrêa, J. L. G., de Mendonça, K. S., de Mello Júnior, R. E., & de Souza, A. U. (2018). Pulsed Vacuum Osmotic Dehydration of Beetroot, Carrot and Eggplant Slices: Effect of Vacuum Pressure on the Quality Parameters. Food and Bioprocess Technology, 11(10), 1863–1875. https://doi.org/10.1007/S11947-018-2147-9/METRICSKaur, H., Rai, K. N., & Upadhyay, S. (2022). A numerical study of moving boundary problem involving dual phase lag model of heat mass transfer during immersion frying. Mathematics and Computers in Simulation, 202, 79–100. https://doi.org/10.1016/J.MATCOM.2022.05.025Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44(1), 39–46. https://doi.org/10.1016/S0260-8774(99)00163-6Liberty, J. T., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050Liu, C., Lv, M., Du, H., Deng, H., Zhou, L., Li, P., Li, X., & Li, B. (2023). Effect of Preliminary Treatment by Pulsed Electric Fields and Blanching on the Quality of Fried Sweet Potato Chips. Foods, 12(11), 2147. https://doi.org/10.3390/FOODS12112147Liu, S., Dong, H., Ji, W., Zhang, M., Duan, W., & Wang, X. (2023). Change in physicochemical properties, aroma components, and potentially beneficial compounds during the stir-frying of Massa Medicata Fermentata. Food Chemistry Advances, 3. https://doi.org/10.1016/j.focha.2023.100340Maity, T., Bawa, A. S., & Raju, P. S. (2014). Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science, 2014. https://doi.org/10.1155/2014/752047Martínez Reina, A. M., Tordecilla Zumaqué, L., Grandett Martínez, L. M., & Rodríguez Pinto, M. del V. (2021). Eficiencia técnica del cultivo de berenjena (Solanum melongena L.) en zona productoras del caribe colombiano. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(3), 66–76. https://doi.org/10.53287/mvqd3972pu29tMeyer, R. S., Bamshad, M., Fuller, D. Q., & Litt, A. (2014). Comparing Medicinal Uses of Eggplant and Related Solanaceae in China, India, and the Philippines Suggests the Independent Development of Uses, Cultural Diffusion, and Recent Species Substitutions. Economic Botany, 68(2), 137–152. https://doi.org/10.1007/S12231-014-9267-6/METRICSMohammadalinejhad, S., & Dehghannya, J. (2018). Effects of ultrasound frequency and application time prior to deep-fat frying on quality aspects of fried potato strips. Innovative Food Science & Emerging Technologies, 47, 493–503. https://doi.org/10.1016/J.IFSET.2018.05.001Mojaharul Islam, M., Zhang, M., Bhandari, B., & Guo, Z. (2019). A hybrid vacuum frying process assisted by ultrasound and microwave to enhance the kinetics of moisture loss and quality of fried edamame. Food and Bioproducts Processing, 118, 326–335. https://doi.org/10.1016/j.fbp.2019.10.004Morakabati, N., Shahidi, S. A., Roozbeh Nasiraie, L., Ghorbani-HasanSaraei, A., & Naghizadeh Raeisi, S. (2024). Vacuum frying of parsnip slices: Optimization by taguchi and response surface methodology and modeling the kinetics of water loss. Alexandria Engineering Journal, 100, 312–321. https://doi.org/10.1016/j.aej.2024.05.052Moreira, R. G., Sun, X., & Chen, Y. (1997). Factors affecting oil uptake in tortilla chips in deep-fat frying. Journal of Food Engineering, 31(4), 485–498. https://doi.org/10.1016/S0260-8774(96)00088-XMoreno, M. C., & Bouchon, P. (2008). A different perspective to study the effect of freeze, air, and osmotic drying on oil absorption during potato frying. Journal of Food Science, 73(3). https://doi.org/10.1111/j.1750-3841.2008.00669.xMosquera-Vivas, E. S., Ayala-Aponte, A. A., & Serna-Cock, L. (2019). Ultrasound and Osmotic Dehydration as Pre-treatments to Melon (Cucumis melo L.) Drying by Freeze-drying. Informacion Tecnologica, 30(3), 179–188. https://doi.org/10.4067/S0718-07642019000300179Mowafy, S., Guo, J., Lei, D., & Liu, Y. (2024). Application of novel blanching and drying technologies improves the potato drying kinetics and maintains its physicochemical attributes and flour functional properties. Innovative Food Science & Emerging Technologies, 94, 103648. https://doi.org/10.1016/J.IFSET.2024.103648Moyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: Effect of solute impregnation. Drying Technology, 20(7), 1303–1318. https://doi.org/10.1081/DRT-120005854Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices:: Effect of pre-treatments. LWT - Food Science and Technology, 39(3), 285–291. https://doi.org/10.1016/J.LWT.2005.01.010Nguyen, T. H., & Phan, H. T. (2022). Solutions for effective prevention of after-cooking discoloration in deep-fried eggplant (Solanum melongena L.). Agriculture and Natural Resources, 56(6), 1153–1162. https://doi.org/10.34044/j.anres.2022.56.6.09Niño-Medina, G., Urías-Orona, V., Muy-Rangel, M. D., & Heredia, J. B. (2017). Structure and content of phenolics in eggplant (Solanum melongena) - a review. South African Journal of Botany, 111, 161–169. https://doi.org/10.1016/J.SAJB.2017.03.016Oke, E. K., Idowu, M. A., Sobukola, O. P., Adeyeye, S. A. O., & Akinsola, A. O. (2018). Frying of Food: A Critical Review. Journal of Culinary Science & Technology, 16(2), 107–127. https://doi.org/10.1080/15428052.2017.1333936Ortega, F. A., & Montes, E. J. (2014). Parámetros cinéticos de transferencia de masa durante el freído por inmersión de rodajas de yuca (Manihot esculenta Crantz). INGENIERÍA Y COMPETITIVIDAD, 16(2), 247–255. https://doi.org/10.25100/iyc.v16i2.3699Ortega-Quintana, F. A., Montes-Montes, E. J., Pérez-Sierra, O. A., & Vélez-Hernández, G. I. (2019). Effect of osmotic dehydration and temperature on color and fracture maximum force of yucca root slices in deep-fat frying. Informacion Tecnologica, 30(1), 311–320. https://doi.org/10.4067/S0718-07642019000100311Pankaj, S. K., & Keener, K. M. (2017). A review and research trends in alternate frying technologies. Current Opinion in Food Science, 16, 74–79. https://doi.org/10.1016/J.COFS.2017.09.001Patra, A., Prasath, V. A., Sutar, P. P., Pandian, N. K. S., & Pandiselvam, R. (2022a). Evaluation of effect of vacuum frying on textural properties of food products. Food Research International, 162, 112074. https://doi.org/10.1016/J.FOODRES.2022.112074Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT - Food Science and Technology, 38(6), 599–604. https://doi.org/10.1016/J.LWT.2004.08.008Perez-Tinoco, M. R., Perez, A., Salgado-Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945–953. https://doi.org/10.1002/JSFA.3171Piyalungka, P., Sadiq, M. B., Assavarachan, R., & Nguyen, L. T. (2019). Effects of osmotic pretreatment and frying conditions on quality and storage stability of vacuum-fried pumpkin chips. International Journal of Food Science and Technology, 54(10), 2963–2972. https://doi.org/10.1111/ijfs.14209Pooja, B. M. (2018). DEVELOPMENT AND EVALUATION OF PROCESS PROTOCOL FOR VACUUM FRIED BITTER GOURD CHIPS (Momordica charantia) [DEPARTMENT OF PROCESSING AND FOOD ENGINEERING KELAPPAJI COLLEGE OF AGRICULTURAL ENGINEERING AND TECHNOLOGY]. http://14.139.181.140:8080/xmlui/bitstream/handle/123456789/410/T430.pdf?sequence=1&isAllowed=yPraveena, N., Surya, R., Fairoosa, K., Rajesh, G. K., George, A. K., & Tasneem, S. A. F. (2024). Development and Quality Evaluation of Vacuum Fried Jackfruit (Artocarpus heterophyllus) Chips. Asian Journal of Dairy and Food Research, 43(1), 116–123. https://doi.org/10.18805/ajdfr.DR-1549Priyadarshini, A., Rayaguru, K., Biswal, A. K., Panda, P. K., Lenka, C., & Misra, P. K. (2023). Impact of conventional and ohmic blanching on color, phytochemical, structural, and sensory properties of mango (Mangifera indica L.) cubes: A comparative analysis. Food Chemistry Advances, 2, 100308. https://doi.org/10.1016/J.FOCHA.2023.100308Puente, L., Lastreto, S., José Mosqueda, M., & Saavedra, J. (2010). Influencia de un pre-tratamiento osmótico sobre la deshidratación por aire caliente de manzana Granny Smith. Dyna, 77, 274–283. https://www.redalyc.org/articulo.oa?id=49620414027Ramesh, M. N., Wolf, W., Tevini, D., & Bognár, A. (2002). Microwave Blanching of Vegetables. Journal of Food Science, 67(1), 390–398. https://doi.org/10.1111/J.1365-2621.2002.TB11416.XRamya, V., & Jain, N. K. (2017). A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40(3), e12440. https://doi.org/10.1111/JFPE.12440Ran, X., Lin, D., Zheng, L., Li, Y., & Yang, H. (2023). Kinetic modelling of the mass and heat transfer of a plant-based fishball alternative during deep-fat frying and air frying and the changes in physicochemical properties. Journal of Food Engineering, 350, 111457. https://doi.org/10.1016/J.JFOODENG.2023.111457Ren, A., Pan, S., Li, W., Chen, G., & Duan, X. (2018). Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/4510126Salehi, F. (2019). Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. International Journal of Food Properties, 22(1), 511–519. https://doi.org/10.1080/10942912.2019.1593616Salhuana, J., Siche, R., Abanto, L., Vásquez, V., Salhuana, J., Siche, R., Abanto, L., & Vásquez, V. (2022). Determinación del cambio de color en fritura de cuatro variedades de papa (Solanum tuberosum) utilizando visión computacional. Manglar, 19(1), 45–52. https://doi.org/10.17268/MANGLAR.2022.006Sharma, P., Venugopal, A. P., & Sutar, P. P. (2024). Development of steam-impinged microwave-vacuum assisted blanching of ready-to-cook vegan patties. Innovative Food Science & Emerging Technologies, 92, 103595. https://doi.org/10.1016/J.IFSET.2024.103595Soto, M., Pérez, M. M., Servent, A., Vaillant, F., & Achir, N. (2021). Monitoring and modelling of physicochemical properties of papaya chips during vacuum frying to control their sensory attributes and nutritional value. Journal of Food Engineering, 299. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2021.110514Su, Y., Zhang, M., Adhikari, B., Mujumdar, A. S., & Zhang, W. (2018). Improving the energy efficiency and the quality of fried products using a novel vacuum frying assisted by combined ultrasound and microwave technology. Innovative Food Science and Emerging Technologies, 50, 148–159. https://doi.org/10.1016/j.ifset.2018.10.011Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2020). Effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips. Ultrasonics Sonochemistry, 63. https://doi.org/10.1016/j.ultsonch.2020.104958Su, Y., Zhang, M., Chitrakar, B., & Zhang, W. (2021a). Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Bioscience, 39, 100825. https://doi.org/10.1016/J.FBIO.2020.100825Thongcharoenpipat, C., & Yamsaengsung, R. (2022). Improving the drying kinetics and microstructure of vacuum-fried ripened durian chips. International Journal of Food Science and Technology, 57(5), 2862–2871. https://doi.org/10.1111/ijfs.15547Tizhe, J., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology, 92, 172–183. https://doi.org/10.1016/J.TIFS.2019.07.050Torres, J. D., Alvis, A., Acevedo, D., Montero, P. M., & Tirado, D. F. (2017). Optimización de las condiciones de fritura al vacío de rodajas de berenjena (Solanum melongena L.) utilizando la metodología de superficie de respuesta. Interciencia, 42(10), 683–691.Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT, 42(6), 1164–1173. https://doi.org/10.1016/j.lwt.2009.01.008Vallejos Maureira, R. (2024). EFECTO DE LA DESHIDRATACIÓN DE LA PULPA DE CEREZA POR VENTANA DE REFRACTANCIA Y COMPARACIÓN ENTRE LA APLICACIÓN DE PRESIONES REDUCIDAS Y PRETRATAMIENTO POR ULTRASONIDO. Universidad de Chile.Varidi, M., Ahmadzadeh-Hashemi, S., & Nooshkam, M. (2023). Changes in fat uptake, color, texture, and sensory properties of Aloe vera gel-coated eggplant rings during deep-fat frying process. Food Science & Nutrition, 11(4), 2027–2035. https://doi.org/10.1002/FSN3.3238Verma, V., Singh, V., Chauhan, O. P., & Yadav, N. (2023). Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Innovative Food Science & Emerging Technologies, 83, 103233. https://doi.org/10.1016/J.IFSET.2022.103233Wang, Y., Zhang, H., Cui, J., Gao, S., Bai, S., You, L., Ji, C., & Wang, S. (2024). Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Research International, 175, 113715. https://doi.org/10.1016/J.FOODRES.2023.113715Xu, Z., Leong, S. Y., Farid, M., Silcock, P., Bremer, P., & Oey, I. (2020). Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods 2020, Vol. 9, Page 949, 9(7), 949. https://doi.org/10.3390/FOODS9070949Yagua, C. V., & Moreira, R. G. (2011). Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 104(2), 272–283. https://doi.org/10.1016/J.JFOODENG.2010.12.018Yamsaengsung, R., & Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part I: model development. Journal of Food Engineering, 53(1), 1–10. https://doi.org/10.1016/S0260-8774(01)00134-0Yarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences, 24(4), 420. https://doi.org/10.22038/IJBMS.2021.50276.11452Yildiz, A., Koray Palazoǧlu, T., & Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1), 11–17. https://doi.org/10.1016/J.JFOODENG.2006.01.021Zhang, Y., Deng, Z., Li, H., Zheng, L., Liu, R., & Zhang, B. (2020). Degradation Kinetics of Anthocyanins from Purple Eggplant in a Fortified Food Model System during Microwave and Frying Treatments. Journal of Agricultural and Food Chemistry, 68(42), 11817–11828. https://doi.org/10.1021/ACS.JAFC.0C05224/ASSET/IMAGES/MEDIUM/JF0C05224_0008.GIFZhao, S., Wang, S., Lu, Q., & Liu, Y. (2024). Effect of calcium chloride blanching combined with acetic acid soaking pretreatment on oil absorption of fried potato chips. Food Chemistry, 460. https://doi.org/10.1016/j.foodchem.2024.140661Zheng, T., & Moreira, R. G. (2020). Magnesium ion impregnation in potato slices to improve cell integrity and reduce oil absorption in potato chips during frying. Heliyon, 6(12). https://doi.org/10.1016/j.heliyon.2020.e05834Ziaiifar, A. M., Achir, N., Courtois, F., Trezzani, I., & Trystram, G. (2008). Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. International Journal of Food Science and Technology, 43(8), 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.xParámetros cinéticosFritura al vacíoHumedadAbsorción de aceiteColorFuerza de fracturaBerenjenaKinetic parametersVacuum fryingMoistureOil absorptionColorFracture forceEggplantPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://dspace8-unicordoba.metabuscador.org/bitstreams/836bf1d1-ab77-4034-b0eb-d3c6e0c1d738/download73a5432e0b76442b22b026844140d683MD51falseAnonymousREADORIGINALGonzálezPeñaVíctorJavier.pdfGonzálezPeñaVíctorJavier.pdfapplication/pdf2828058https://dspace8-unicordoba.metabuscador.org/bitstreams/17a9db1c-9331-4d5d-b678-ac499a92f4d3/download481abb419a7019474d92ca22596a9156MD52trueAnonymousREAD2027-07-27Formato de autorización.pdfFormato de autorización.pdfapplication/pdf368810https://dspace8-unicordoba.metabuscador.org/bitstreams/57b5879e-6cb3-45fa-ba9f-4a36d633ec8e/download8d5ba9fb896134bdfe2319b2ed3dfb8dMD53falseTEXTInforme Final Trabajo de Grado MCA_Victor_Gonzalez.pdf.txtInforme Final Trabajo de Grado MCA_Victor_Gonzalez.pdf.txtExtracted texttext/plain102326https://dspace8-unicordoba.metabuscador.org/bitstreams/6721b587-dcba-438b-8304-21daf4b87eb0/download5099543329edfd25d2cc76b577c8a106MD54falseAnonymousREAD2027-07-27Carta de autorización.pdf.txtCarta de autorización.pdf.txtExtracted texttext/plain4630https://dspace8-unicordoba.metabuscador.org/bitstreams/1ce3802b-2043-455d-bec8-7284ce0f8ce9/download3b0fcea897c29507cdb69a59f1bde500MD56falseGonzálezPeñaVíctorJavier.pdf.txtGonzálezPeñaVíctorJavier.pdf.txtExtracted texttext/plain102326https://dspace8-unicordoba.metabuscador.org/bitstreams/705fc5a8-6066-4e1b-b36b-d9be601f09ef/download5099543329edfd25d2cc76b577c8a106MD58falseAnonymousREAD2027-07-27Formato de autorización.pdf.txtFormato de autorización.pdf.txtExtracted texttext/plain4630https://dspace8-unicordoba.metabuscador.org/bitstreams/efaae7af-c2d0-4f44-bee4-4381ff4d35ae/download3b0fcea897c29507cdb69a59f1bde500MD510falseTHUMBNAILInforme Final Trabajo de Grado MCA_Victor_Gonzalez.pdf.jpgInforme Final Trabajo de Grado MCA_Victor_Gonzalez.pdf.jpgGenerated Thumbnailimage/jpeg9686https://dspace8-unicordoba.metabuscador.org/bitstreams/65f68b2f-3c65-47d8-b992-21d5f786984b/downloaddda6726748c45c3acd94d3cc9f5f6a4dMD55falseAnonymousREAD2027-07-27Carta de autorización.pdf.jpgCarta de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14643https://dspace8-unicordoba.metabuscador.org/bitstreams/0ae88999-980f-4ac4-8f55-5f6416e3179e/downloadf0ebf45e0063baa48827d88a3de6c718MD57falseGonzálezPeñaVíctorJavier.pdf.jpgGonzálezPeñaVíctorJavier.pdf.jpgGenerated Thumbnailimage/jpeg9686https://dspace8-unicordoba.metabuscador.org/bitstreams/38ed0884-a364-4ecc-9912-8111f7a6f9e4/downloaddda6726748c45c3acd94d3cc9f5f6a4dMD59falseAnonymousREAD2027-07-27Formato de autorización.pdf.jpgFormato de autorización.pdf.jpgGenerated Thumbnailimage/jpeg14643https://dspace8-unicordoba.metabuscador.org/bitstreams/d274fd8b-b410-4959-a5d1-884db399239a/downloadf0ebf45e0063baa48827d88a3de6c718MD511falseucordoba/9502oai:dspace8-unicordoba.metabuscador.org:ucordoba/95022025-09-09 00:45:27.136https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2025embargo2027-07-27https://dspace8-unicordoba.metabuscador.orgRepositorio institucional Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K