Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici
La presente investigación tiene como objetivo analizar los beneficios funcionales y tecnológicos de las bacterias Limosilactobacillus fermentum y Pediococcus acidilactici en la mejora de la calidad de los alimentos. A través de una metodología bibliográfica basada en una revisión sistemática de la l...
- Autores:
-
Simanca Therán, Jose Andrés
Torres Rodríguez, Belkys Paola
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/31167
- Acceso en línea:
- https://hdl.handle.net/10901/31167
- Palabra clave:
- Metabolitos
Beneficios funcionales
Propiedades organolépticas
Limosilactobacillus fermentum
Pediococcus acidilactici
Mejora de alimentos
Metabolites
Functional benefits
Organoleptic properties
Food improvement
Limosilactobacillus fermentum
Pediococcus acidilactici
Alimentos -- Biotecnología
Metabolitos
Alimentos funcionales
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_d6cc1b30d82201b66c4ee33cc2a2b64a |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/31167 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
dc.title.alternative.spa.fl_str_mv |
Contributions to functional and technological quality in foodstuffs by Limosilactobacillus fermentum and Pediococcus acidilactici |
title |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
spellingShingle |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici Metabolitos Beneficios funcionales Propiedades organolépticas Limosilactobacillus fermentum Pediococcus acidilactici Mejora de alimentos Metabolites Functional benefits Organoleptic properties Food improvement Limosilactobacillus fermentum Pediococcus acidilactici Alimentos -- Biotecnología Metabolitos Alimentos funcionales |
title_short |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
title_full |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
title_fullStr |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
title_full_unstemmed |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
title_sort |
Aportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilactici |
dc.creator.fl_str_mv |
Simanca Therán, Jose Andrés Torres Rodríguez, Belkys Paola |
dc.contributor.advisor.none.fl_str_mv |
Gutiérrez Castañeda, Clara Gilma |
dc.contributor.author.none.fl_str_mv |
Simanca Therán, Jose Andrés Torres Rodríguez, Belkys Paola |
dc.subject.spa.fl_str_mv |
Metabolitos Beneficios funcionales Propiedades organolépticas Limosilactobacillus fermentum Pediococcus acidilactici Mejora de alimentos |
topic |
Metabolitos Beneficios funcionales Propiedades organolépticas Limosilactobacillus fermentum Pediococcus acidilactici Mejora de alimentos Metabolites Functional benefits Organoleptic properties Food improvement Limosilactobacillus fermentum Pediococcus acidilactici Alimentos -- Biotecnología Metabolitos Alimentos funcionales |
dc.subject.subjectenglish.spa.fl_str_mv |
Metabolites Functional benefits Organoleptic properties Food improvement Limosilactobacillus fermentum Pediococcus acidilactici |
dc.subject.lemb.spa.fl_str_mv |
Alimentos -- Biotecnología Metabolitos Alimentos funcionales |
description |
La presente investigación tiene como objetivo analizar los beneficios funcionales y tecnológicos de las bacterias Limosilactobacillus fermentum y Pediococcus acidilactici en la mejora de la calidad de los alimentos. A través de una metodología bibliográfica basada en una revisión sistemática de la literatura, se recopilaron y analizaron artículos científicos publicados entre 2013 y 2023 en las bases de datos Scopus y ScienceDirect. Se utilizaron algoritmos de búsqueda para identificar documentos relevantes, de los cuales, tras aplicar los criterios de inclusión, se seleccionaron 63 artículos para el análisis en profundidad, de acuerdo con la metodología PRISMA. Los resultados revelaron que los metabolitos con propiedades funcionales y organolépticas más documentados son los ácidos orgánicos, fitoestrógenos y aminoácidos, destacándose el ácido láctico, ácido acético y el ácido gamma-aminobutírico (GABA), los cuales presentan aplicaciones significativas en la salud gastrointestinal y en la mejora de las propiedades de los alimentos. La investigación subraya la importancia de L. fermentum y P. acidilactici como cultivos iniciadores en diversas industrias alimentarias, particularmente en productos lácteos, cárnicos y bebidas alcohólicas, debido a su capacidad para mejorar las características sensoriales y aportar beneficios funcionales. Asimismo, se discutió el impacto de estas bacterias en la percepción del consumidor y la competitividad en el mercado alimentario, con un notable aumento en las patentes y publicaciones científicas sobre este tema desde el año 2000. Este trabajo proporciona una visión integral de los mecanismos biológicos y tecnológicos involucrados, consolidando información clave para su aplicación práctica en la industria alimentaria. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-21T16:17:38Z |
dc.date.available.none.fl_str_mv |
2025-05-21T16:17:38Z |
dc.date.created.none.fl_str_mv |
2025-05-20 |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/31167 |
url |
https://hdl.handle.net/10901/31167 |
dc.relation.references.spa.fl_str_mv |
Adikari, A. M. M. U., Priyashantha, H., Disanayaka, J. N. K., Jayatileka, D. V., Kodithuwakku, S. P., Jayatilake, J. A. M. S., & Vidanarachchi, J. K. (2021). Isolation, identification and characterization of Lactobacillus species diversity from Meekiri: traditional fermented buffalo milk gels in Sri Lanka. Heliyon, 7(10). Aguilera, C. M., Barberá, J., Díaz, E., Duarte, A., Gálvez, J., Gil, A., … & Zarzuelo, A. (2007). Alimentos funcionales: Aproximación a una nueva alimentación. Coordinadores: Barberá JM, Marcos A. Ed: Dirección General de Salud Pública y Alimentación. Agyirifo, D. S., Wamalwa, M., Otwe, E. P., Galyuon, I., Runo, S., Takrama, J., & Ngeranwa, J. (2019). Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon, 5(7). Ahued, M. G. (2014). Análisis sensorial de alimentos. PÄDI Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 2(3). Ajibola, O. O., Thomas, R., & Bakare, B. F. (2023). Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health. Food Science and Human Wellness, 12(5), 1493-1509. Akamine, TI, Mansoldo, FRP y Vermelho, AB (2023). Probióticos en la Fermentación de Pan de Masa Madre: Estado Actual. Fermentación, 9 (2), 90. MDPI AG. Obtenido de http://dx.doi.org/10.3390/fermentation9020090 Akanksha Tyagi, Xiuqin Chen, Lingyue Shan, Pianpian Yan, Ramachandran Chelliah, Deog-Hwan Oh, Análisis del genoma completo del psicobiótico Limosilactobacillus reuteri productor de ácido gamma-aminobutírico con su metabolómica no dirigida usando UHPLC-Q-Tof MS/MS, Gene,volumen 858,2023,147195,ISSN 0378-1119, obtenido de https://www.sciencedirect.com/science/article/pii/S0378111923000367. https://doi.org/10.1016/j.gene.2023.147195 Al-Emran, H. M., Moon, J. F., Miah, M. L., Meghla, N. S., Reuben, R. C., Uddin, M. J., Ibnat, H., Sarkar, S. L., Roy, P. C., Rahman, M. S., Alam, A. S. M. R. U., Islam, O. K., & Jahid, I. K. (2022). Genomic analysis and in vivo efficacy of Pediococcus acidilactici as a potential probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections. Scientific Reports, 12(1). doi: 10.1038/s41598-022-24791-5 Araújo-Rodrigues, H., Martins, APL, Tavaria, FK, Días, J., Santos, MT, Alvarenga, N., & Pintado, ME (2023). Impacto de las LAB de queso Serpa DOP en modelos de queso: hacia el desarrollo de un cultivo iniciador autóctono. Alimentos, 12 (4), 701. MDPI AG. Obtenido de http://dx.doi.org/10.3390/foods12040701 Arteaga, V. G., Leffler, S., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2021). Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Current research in food science, 4, 1-10. Averianova Liudmila A., Balabanova Larissa A., Son Oksana M., Podvolotskaya Anna B., Tekutyeva Liudmila A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview Frontiers in Bioengineering and Biotechnology. Vol. 8 2020. Balmori, V. L., Dizon, E. I., Barrion, A. S. A., & Elegado, F. B. (2019). Effect of adjunct inoculation of lactobacillus plantarum BS and Pediococcus acidilactici 3G3 on the microbiological, physicochemical and sensory properties of fermented carabeef (Pindang damulag). Food Research, 3(1), 70–78. https://doi.org/10.26656/fr.2017.3(1).221 Bansal, P., Kumar, R., & Dhanda, S. (2022). Characterization of starter cultures and nutritional properties of Pediococcus acidilactici NCDC 252: A potential probiotic of dairy origin. Journal of Food Processing and Preservation, 46(10), e16817. Barcenilla, C., Ducic, M., López, M., Prieto, M., & Álvarez-Ordóñez, A. (2022). Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 183, 108661. Bedada, T. L., Feto, T. K., Awoke, K. S., Garedew, A. D., Yifat, F. T., & Birri, D. J. (2020). Probiotics for cancer alternative prevention and treatment. Biomedicine & pharmacotherapy, 129, 110409. Beltrán, M. R. (2016). de Heredia. Alimentos funcionales. Blanco, I. R., Pizauro, L. J. L., dos Anjos Almeida, J. V., Mendonça, C. M. N., de Mello Varani, A., & de Souza Oliveira, R. P. (2022). Pan-genomic and comparative analysis of Pediococcus pentosaceus focused on the in silico assessment of pediocin-like bacteriocins. Computational and Structural Biotechnology Journal, 20, 5595-5606. Chavarrías, M. (2011). Color en los alimentos e inocuidad. Consumer |; Eroski Consumer. https://www.consumer.es/seguridad-alimentaria/color-en-los-alimentos-e-inocuidad.html Chelliah, R., Saravanakumar, K., Daliri, E. B. M., Kim, J. H., Lee, J. K., Jo, H. Y., ... & Oh, D. H. (2020). An effective datasets describing antimicrobial peptide produced from Pediococcus acidilactici-purification and mode of action determined by molecular docking. Data in Brief, 31, 105745. Cheng, X., & Ning, Z. (2023). Research progress on bird eggshell quality defects: a review. Poultry Science, 102(1), 102283. Chourasia, R., Chiring Phukon, L., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2023). Bioactive peptides in fermented foods and their application: A critical review. Systems Microbiology and Biomanufacturing, 3(1), 88-109. doi:10.1007/s43393-022-00125-4 CODEX STAN 192. (1995). Norma General del Codex para los Aditivos Alimentarios. http://www.codexalimentarius.net/gsfaonline/docs/CXS_192s.pdf de la Bastida, A. R., Peirotén, Á., Langa, S., Arqués, J. L., & Landete, J. M. (2021). Heterologous production of equol by lactic acid bacteria strains in culture medium and food. International journal of food microbiology, 360, 109328. De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153-177. Delgado-Ospina, J., Puerta-Polanco, L. F., Grande-Tovar, C. D., Cuervo, R. A., Navia-Porras, D. P., Poveda-Perdomo, L. G., ... & Chaves-López, C. (2022). Exploring the Core Microbiota of Four Different Traditional Fermented Beverages from the Colombian Andes. Fermentation, 8(12), 733. Denkova, R., Ilieva, S., Denkova, Z., Georgieva, L., & Krastanov, A. (2014). Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters. Biotechnology & Biotechnological Equipment, 28(3), 487-494. Díaz Ortega, J. L. (2020). Propiedades Nutricionales y Funcionales de los alimentos. Dyshlyuk, L. S., Milentyeva, I. S., Asyakina, L. K., Ostroumov, L. A., Osintsev, A. M., & Pozdnyakova, A. V. (2024). Using bifidobacterium and propionibacterium strains in probiotic consortia to normalize the gastrointestinal tract. [O uso de cepas de bifidobacterium e propionibacterium em consórcios probióticos para normalizar o trato gastrointestinal] Brazilian Journal of Biology, 84 doi:10.1590/1519-6984.256945 Ebrahimi, M., Noori, S. M. A., Sadeghi, A., emir Coban, O., Zanganeh, J., Ghodsmofidi, S. M., ... & Raeisi, M. (2022). Application of cereal-bran sourdoughs to enhance technological functionality of white wheat bread supplemented with pumpkin (Cucurbita pepo) puree. LWT, 158, 113079. Él, W. y Bertram, HC (2022). Metabolómica basada en RMN para descifrar los mecanismos moleculares en la acción de los alimentos moduladores intestinales. Alimentos, 11 (17), 2707. MDPI AG. Elisabeth Eugster, Pascal Fuchsmann, Hedwig Schlichtherle-Cerny, Ueli Bütikofer, Stefan Irmler, Formation of alanine, α-aminobutyrate, acetate, and 2-butanol during cheese ripening by Pediococcus acidilactici FAM18098, International Dairy Journal, Volume 96, 2019, Pages 21-28, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2019.04.001 Gandhi, N. N., Cobra, P. F., Steele, J. L., Markley, J. L., & Rankin, S. A. (2018). Lactobacillus demonstrate thiol-independent metabolism of methylglyoxal: Implications toward browning prevention in Parmesan cheese. Journal of dairy science, 101(2), 968-978. Gänzle, M.G., Li, M., Schwab, C. Roles of lactobacilli and bifidobacteria in cereal and pseudocereal fermentations for making gluten-free bread. International Journal of Food Microbiology 367, 109547 (2022). Gutiérrez, J. B. (2012). Calidad de vida, alimentos y salud humana: fundamentos científicos. Ediciones Díaz de Santos. Hasan, M., Arpitha, S. R., Das, C., Laishram, R., Sasi, M., Kumar, S., ... & Dahuja, A. (2023). Research trends and approaches for the nutritional and bio-functionality enhancement of fermented soymilk. Journal of Functional Foods, 107, 105698. Hernández Sampieri, R., Fernández-Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). Colina McGraw. Hu, T., Chen, R., Qian, Y., Ye, K., Long, X., Park, K. Y., & Zhao, X. (2022). Antioxidant effect of Lactobacillus fermentum HFY02-fermented soy milk on D-galactose-induced aging mouse model. Food Science and Human Wellness, 11(5), 1362-1372. Huan Xiang, Dongxiao Sun-Waterhouse, Geoffrey I.N. Waterhouse, Chun Cui, Zheng Ruan, Fermentation-enabled wellness foods: A fresh perspective, Food Science and Human Wellness, Volume 8, Issue 3, 2019. James, A., Yao, T., Ke, H., & Wang, Y. (2023). Microbiota for production of wine with enhanced functional components. Food Science and Human Wellness, 12(5), 1481-1492. Javed, G. A., Arshad, N., Munir, A., Khan, S. Y., Rasheed, S., & Hussain, I. (2022). Signature probiotic and pharmacological attributes of lactic acid bacteria isolated from human breast milk. International Dairy Journal, 127, 105297. Jeske, S., Zannini, E., Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International 110, 42-51 (2018). Kaur, S., Thukral, S. K., Kaur, P., & Samota, M. K. (2021). Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 4, 100043. Khan, F., Jain, S., & Oloketuyi, S. F. (2018). Bacteria and bacterial products: Foe and friends to Caenorhabditis elegans. Microbiological research, 215, 102-113. Kıvanç M, Yılmaz MT. Pediococcus spp.: An overview on their taxonomy, physiology, and industrial applications. Crit Rev Food Sci Nutr. 2020;60(10):1604-1622. doi: 10.1080/10408398.2019.1608224 Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. Ksiezarek M, Grosso F, Ribeiro TG, Peixe L. Genomic diversity of genus Limosilactobacillus. Microb Genom. 2022;8(7). La Anh, N. (2015). Health-promoting microbes in traditional Vietnamese fermented foods: A review. Food Science and Human Wellness, 4(4), 147-161. Landete, J. M. (2022). Development of soy beverages enriched in O-desmethylangolesin and 6-hydroxy-O-desmethylangolesin by engineered lactic acid bacteria. LWT, 163, 113526. Langa, S., Peirotén, Á., Curiel, J. A., de la Bastida, A. R., & Landete, J. M. (2023). Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods (Basel, Switzerland), 12(6), 1293. Lee, Y. R., Bang, W. Y., Baek, K. R., Kim, G. H., Kang, M. J., Yang, J., & Seo, S. O. (2022). Safety Evaluation by Phenotypic and Genomic Characterization of Four Lactobacilli Strains with Probiotic Properties. Microorganisms, 10(11). Doi: 10.3390/microorganisms10112218 Li, C., Wang, S., Chen, S., Wang, X., Deng, X., Liu, G., ... & Cai, H. (2023). Screening and characterization of Pediococcus acidilactici LC-9-1 toward selection as a potential probiotic for poultry with antibacterial and antioxidative properties. Antioxidants, 12(2), 215. Li, L., Zhang, L., Zhang, T., Liu, Y., Lü, X., Kuipers, O. P., & Yi, Y. (2023). (Meta) genomics-assisted screening of novel antibacterial lactic acid bacteria strains from traditional fermented milk from Western China and their bioprotective effects on cheese. LWT, 175, 114507. Li, N., Fu, J., Zhang, G., Liu, J., Li, Z., Luo, R., & Li, L. (2023). Investigating the mechanism of the flavor formation in Sichuan sun vinegar based on flavor-orientation and metagenomics. Current Research in Food Science, 6, 100460. Liu, G., Wu, M., Li, Y., Qayyum, N., Li, X., Zhang, J., & Wang, C. (2023). The effect of different pretreatment methods on jujube juice and lactic acid bacteria-fermented jujube juice. LWT, 181, 114692. Luo, J., Jiang, C., Zhao, L., Zhang, M., Wang, F., Sun, E., & Ren, F. (2018). Keto acid decarboxylase and keto acid dehydrogenase activity detected during the biosynthesis of flavor compound 3-methylbutanal by the nondairy adjunct culture Lactococcus lactis ssp. lactis F9. Journal of dairy science, 101(11), 9725-9735. Lv J, Ye Y, Zhong Y, Liu W, Chen M, Guo A, et al. Microbial diversity and functional genes of red vinasse acid based on metagenome analysis. Front Microbiol. el 13 de octubre de 2022;13. Lv, T., Huang, X., Zhang, C., Chen, D., Gu, R., Wa, Y., ... & Chen, X. (2021). Enhancement of the antibacterial properties of kefir by adding lactobacillus fermentum grx08. Journal of Food Protection, 84(8), 1463-1471. Ma, Q., Chai, Y., Yang, Z., & Huang, A. (2022). Deciphering the mechanisms of Limosilactobacillus fermentum L1 involved in conjugated linoleic acid regulated by luxS/AI-2 quorum sensing. LWT, 154, 112736. Manoj, P. M., Mohan, J. R., Khasherao, B. Y., Shams, R., & Dash, K. K. (2023). Fruit based probiotic functional beverages: A review. Journal of Agriculture and Food Research, 100729. Mansour, N. M., Elkalla, W. S., Ragab, Y. M., & Ramadan, M. A. (2021). Inhibition of acetic acid-induced colitis in rats by new pediococcus acidilactici strains, vitamin producers recovered from human gut microbiota. PLoS ONE, 16(7 July) doi:10.1371/journal.pone.0255092 Moussaid, S., El Alaoui, MA, Ounine, K. et al. Evaluación in vitro del potencial probiótico y el perfil de fermentación de cepas de Pediococcus y Enterococcus aisladas de leche de camella marroquí. Arco Microbiol 205, 144 (2023). https://doi.org/10.1007/s00203-023-03489-w Mulero Cánovas, J., Zafrilla Rentero, P., Martínez-Cachá Martínez, A., Leal Hernández, M., & Abellán Alemán, J. (2011). Péptidos bioactivos. Clínica e investigación en arteriosclerosis, 23(5), 219-227. NCBI. (s/f). Genome Limosilactobacillus fermentum. National Library of Medicine. Recuperado el 25 de mayo de 2023, de https://www.ncbi.nlm.nih.gov/genome/?term=Limosilactobacillus+fermentum NCBI. (s/f). Genome Pediococcus acidilactici. National Library of Medicine. Recuperado el 25 de mayo de 2023, de https://www.ncbi.nlm.nih.gov/genome/?term=pediococcus+acidilactici Neyra, L. C. (2007). Alimentos funcionales. Biotempo, 7, 46-54. Ng, K. S., Bambace, M. F., & Schwab, C. (2023). Microbially-produced short chain carboxylic acids are ancient food biopreservatives with complex mode of action. Current Opinion in Food Science, 101066. Nissen, L., Demircan, B., Taneyo-Saa, D. L., & Gianotti, A. (2019). Shift of aromatic profile in probiotic hemp drink formulations: a metabolomic approach. Microorganisms, 7(11), 509. Ogunremi, O. R., Leischtfeld, S. F., Mischler, S., & Schwenninger, S. M. (2022). Antifungal activity of lactic acid bacteria isolated from kunu-zaki, a cereal-based Nigerian fermented beverage. Food Bioscience, 49, 101648. Ojeda, N. (2018). ¿Qué son las características organolépticas de los alimentos. Planeta Formación y Universidades. Okeke, E. S., Ita, R. E., Egong, E. J., Udofia, L. E., Mgbechidinma, C. L., & Akan, O. D. (2021). Metaproteomics insights into fermented fish and vegetable products and associated microbes. Food Chemistry: Molecular Sciences, 3, 100045. Oladejo, T. C., Olaniyi, O. O., Ayodeji, A. O., & Akinyele, B. J. (2020). Protease produced by Lactobacillus brevis enhanced nutritional values of African yam beans and demonstrated improvement in the growth and blood indices of albino rats. Heliyon, 6(10). Olajugbagbe, T. E., Elugbadebo, O. E., & Omafuvbe, B. O. (2020). Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon, 6(9). Olmedilla-Alonso, B., & Jiménez-Colmenero, F. (2014). Alimentos cárnicos funcionales: desarrollo y evaluación de sus propiedades saludables. Nutrición Hospitalaria, 29(6), 1197-1209. Owusu-Kwarteng, J., Tano-Debrah, K., Akabanda, F., & Jespersen, L. (2015). Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC microbiology, 15(1), 1-10. Păcularu-Burada, B., Ceoromila, A. M., Vasile, M. A., & Bahrim, G. E. (2022). Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. LWT, 165, 113670. Pakdeeto, A., Phuengjayaem, S., Arayakarn, T., Phitchayaphon, C., Tungkajiwangkoon, S., & Tanasupawat, S. (2022). Identification of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from plant-based Thai fermented foods and genome analysis of Lactobacillus brevis GPB7-4. ScienceAsia, 48(3), 254–262. Pan, X., Zhang, S., Xu, X., Lao, F., & Wu, J. (2022). Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. Lwt, 154, 112772. Peng, C., Sun, Z., Sun, Y., Ma, T., Li, W., & Zhang, H. (2021). Characterization and association of bacterial communities and nonvolatile components in spontaneously fermented cow milk at different geographical distances. Journal of Dairy Science, 104(3), 2594-2605. Pérez Grana, R. (2013). Exactitud de las tablas de composición de alimentos en la determinación de nutrientes. Sanidad Militar, 69(2), 102-111. Piazentin, ACM, Mendonça, CMN, Vallejo, M., Mussatto, SI, & de Souza Oliveira, RP (2022). Producción de sustancias inhibidoras de tipo bacteriocina por Enterococcus faecium 135 en cocultivo con Ligilactobacillus salivarius y Limosilactobacillus reuteri. Revista Brasileña de Microbiología , 1-11. Prieto, M., Mouwen, J. M., López Puente, S., & Cerdeño Sánchez, A. (2008). Concepto de calidad en la industria Agroalimentaria. Interciencia, 33(4), 258-264. Qian Lin, Dongni Li, Huizhen Qin, Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2, Electronic Journal of Biotechnology, Volume 27, 2017. Qiao, Y., Qiu, Z., Tian, F., Yu, L., Zhao, J., Zhang, H., ... & Chen, W. (2022). Effect of bacteriocin-producing Pediococcus acidilactici strains on the immune system and intestinal flora of normal mice. Food Science and Human Wellness, 11(2), 238-246. Rodríguez-Sojo, MJ, Ruiz-Malagón, AJ, Rodríguez-Cabezas, ME, Gálvez, J., & Rodríguez-Nogales, A. (2021). Limosilactobacillus fermentum CECT5716: mecanismos y conocimientos terapéuticos. Nutrientes , 13 (3), 1016. Sampaio, K. B., do Nascimento, Y. M., Tavares, J. F., Cavalcanti, M. T., de Brito Alves, J. L., Garcia, E. F., & de Souza, E. L. (2021). Development and in vitro evaluation of novel nutraceutical formulations composed of Limosilactobacillus fermentum, quercetin and/or resveratrol. Food Chemistry, 342, 128264. Sánchez, M. T., Ruiz, M. A., & Morales, M. E. (2015). Microorganismos probióticos y salud. Ars pharmaceutica (internet), 56(1), 45-59. Sar, T., Harirchi, S., Ramezani, M., Bulkan, G., Akbas, M. Y., Pandey, A., & Taherzadeh, M. J. (2022). Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Science of The Total Environment, 810, 152253. Sedeño Monge, V., Fabre Palacios, E. A., López García, C., & Meza Jiménez, M. D. L. (2020). Nutrientes y alimentos en la esclerosis múltiple. Archivos Latinoamericanos de Nutrición, 70(1), 60-74. Shabbir, U., Tyagi, A., Ham, H. J., Elahi, F., & Oh, D. H. (2022). Effect of fermentation on the bioactive compounds of the black soybean and their anti-Alzheimer’s activity. Frontiers in Nutrition, 9, 880361 Shandilya, S., Kumar, S., Jha, N. K., Kesari, K. K., & Ruokolainen, J. (2022). Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. Journal of Advanced Research, 38, 223-244. Silva, D. R., Sardi, J. D. C. O., de Souza Pitangui, N., Roque, S. M., da Silva, A. C. B., & Rosalen, P. L. (2020). Probiotics as an alternative antimicrobial therapy: Current reality and future directions. Journal of Functional Foods, 73, 104080. Singh, A., Duche, RT, Wandhare, AG et al. Péptidos antimicrobianos derivados de la leche: descripción general, aplicaciones y perspectivas futuras. Probióticos y Antimicro. prot. 15, 44–62 (2023). https://doi.org/10.1007/s12602-022-10004-y Srinivash, M., Krishnamoorthi, R., Mahalingam, P. U., Malaikozhundan, B., & Keerthivasan, M. (2023). Probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from homemade fermented food products. Journal of Agriculture and Food Research, 11, 100517. Suhr, M. J., & Nielsen, S. S. (2003). Identification and characterization of Lactobacillus fermentum strains isolated from different ecological niches. Journal of Applied Microbilogy, 94(4), 617-625. https://doi.org/10.1046/j.1365-2672.2003.01859.x Sun, Y., Zuo, X., Luo, R., Dang, N., Shi, D., & Liu, W. (2023). Bacterial microbiota and metabolic characteristics of traditional Zhangjiajie Jiuqu aromatic ester vinegar in China. Food Bioscience, 53, 102693. Surachat, K., Kantachote, D., Deachamag, P., & Wonglapsuwan, M. (2021). Genomic insight into pediococcus acidilactici hn9, a potential probiotic strain isolated from the traditional thai-style fermented beef nhang. Microorganisms, 9(1), 1–23. Doi: 10.3390/microorganisms9010050 Tasdemir, S. S., & Sanlier, N. (2020). An insight into the anticancer effects of fermented foods: A review. Journal of Functional Foods, 75, 104281. Terán, V., Pizarro, P. L., Zacarías, M. F., Vinderola, G., Medina, R., & Van Nieuwenhove, C. (2015). Production of conjugated dienoic and trienoic fatty acids by lactic acid bacteria and bifidobacteria. Journal of Functional Foods, 19, 417-425. Todorov, S. D., Stojanovski, S., Iliev, I., Moncheva, P., Nero, L. A., & Ivanova, I. V. (2017). Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product" lukanka". brazilian journal of microbiology, 48, 576-586. Torres Courchoud, I., & Pérez Calvo, J. I. (2016, April). Biomarcadores y práctica clínica. In Anales del Sistema Sanitario de Navarra (Vol. 39, No. 1, pp. 5-8). Gobierno de Navarra. Departamento de Salud. Unal, M. A., Kaymaz, O., Altuntas, E. G., Juneja, V. K., & Elmali, A. (2023). Effect Of Disulfide Bonds On The Thermal Stability Of Pediocin: In Silico Screening Using Molecular Dynamics Simulation. Journal of Food Protection, 100107. Verce, M., De Vuyst, L., & Weckx, S. (2020). Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiology, 89(103448), 103448. Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P., & Bai, X. (2020). Comparative genomics analysis of Pediococcus pentosaceus reveals genes and pathways for adaptation to food environments. BMC Genomics, 21(1), 1-15. Waoo, A. A., Singh, S., Pandey, A., Kant, G., Choure, K., Amesho, K. T., & Srivastava, S. (2023). Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon, 9(8). Xie, Y.; Wang, Y.; Han, Y.; Zhang, J.; Wang, S.; Lu, S.; Wang, H.; Lu, F.; Jia, L. Complete Genome Sequence of a Novel Lactobacillus paracasei TK1501 and Its Application in the Biosynthesis of Isoflavone Aglycones. Foods 2022, 11, 2807. Xu, H., Feng, L., Deng, Y., Chen, L., Li, Y., Lin, L., ... & Sun, Z. (2023). Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process. LWT, 180, 114715. Yan, X. -., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., . . . Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: A promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1) doi:10.1186/s13765-022-00762-2 Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. Yu, Y., Xu, Y., Li, L., Chen, S., An, K., Yu, Y., & Xu, Z. L. (2023). Isolation of lactic acid bacteria from Chinese pickle and evaluation of fermentation characteristics. LWT, 180, 114627. Zhang, S., Jin, M., Ren, J., Sun, X., Zhang, Z., Luo, Y., & Sun, X. (2023). New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomedicine & Pharmacotherapy, 162, 114559. Zhao, Y., Zhang, C., Yu, L., Tian, F., Zhao, J., Zhang, H., Chen, W., & Zhai, Q. (2022). Phylogenetic and Comparative Genomic Analysis of Lactobacillus fermentum Strains and the Key Genes Related to their Intestinal Anti-Inflammatory Effects. Engineering, 17, 170–182. Doi: 10.1016/j.eng.2020.09.016 Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. Doi: 10.1099/ijsem.0.004107 Zheng, Y., Fei, Y., Yang, Y., Jin, Z., Yu, B., & Li, L. (2020). A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiology, 91. Doi: 10.1016/j.fm.2020.103540 Zhou, R. Y., Huang, X., Liu, Z., Chua, J. Y., & Liu, S. Q. (2022). Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Current Research in Food Science, 5, 1826-1836. |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Barranquilla |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/31167/6/SIMANCA.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31167/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/31167/1/AUTORIZACI%c3%93N%20.pdf http://repository.unilibre.edu.co/bitstream/10901/31167/2/SIMANCA.pdf |
bitstream.checksum.fl_str_mv |
80588e4ce818dcf71b64e446726cced6 8a4605be74aa9ea9d79846c1fba20a33 598f825df41608571507bf9572ca4702 a1df358a85119a015192db9fa5f1ccda |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1834111921260855296 |
spelling |
Gutiérrez Castañeda, Clara GilmaSimanca Therán, Jose AndrésTorres Rodríguez, Belkys PaolaBarranquilla2025-05-21T16:17:38Z2025-05-21T16:17:38Z2025-05-20https://hdl.handle.net/10901/31167La presente investigación tiene como objetivo analizar los beneficios funcionales y tecnológicos de las bacterias Limosilactobacillus fermentum y Pediococcus acidilactici en la mejora de la calidad de los alimentos. A través de una metodología bibliográfica basada en una revisión sistemática de la literatura, se recopilaron y analizaron artículos científicos publicados entre 2013 y 2023 en las bases de datos Scopus y ScienceDirect. Se utilizaron algoritmos de búsqueda para identificar documentos relevantes, de los cuales, tras aplicar los criterios de inclusión, se seleccionaron 63 artículos para el análisis en profundidad, de acuerdo con la metodología PRISMA. Los resultados revelaron que los metabolitos con propiedades funcionales y organolépticas más documentados son los ácidos orgánicos, fitoestrógenos y aminoácidos, destacándose el ácido láctico, ácido acético y el ácido gamma-aminobutírico (GABA), los cuales presentan aplicaciones significativas en la salud gastrointestinal y en la mejora de las propiedades de los alimentos. La investigación subraya la importancia de L. fermentum y P. acidilactici como cultivos iniciadores en diversas industrias alimentarias, particularmente en productos lácteos, cárnicos y bebidas alcohólicas, debido a su capacidad para mejorar las características sensoriales y aportar beneficios funcionales. Asimismo, se discutió el impacto de estas bacterias en la percepción del consumidor y la competitividad en el mercado alimentario, con un notable aumento en las patentes y publicaciones científicas sobre este tema desde el año 2000. Este trabajo proporciona una visión integral de los mecanismos biológicos y tecnológicos involucrados, consolidando información clave para su aplicación práctica en la industria alimentaria.Universidad Libre Seccional Barranquilla -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Programa de MicrobiologíaThe present research aims to analyze the functional and technological benefits of the bacteria Limosilactobacillus fermentum and Pediococcus acidilactici in the improvement of food quality. Through a bibliographic methodology based on a systematic literature review, scientific articles published between 2013 and 2023 in the Scopus and ScienceDirect databases were collected and analyzed. Search algorithms were used to identify relevant papers, from which, after applying the inclusion criteria, 63 articles were selected for in-depth analysis, according to PRISMA methodology. The results revealed that the most documented metabolites with functional and organoleptic properties are organic acids, phytoestrogens and amino acids, highlighting lactic acid, acetic acid and gamma-aminobutyric acid (GABA), which have significant applications in gastrointestinal health and in the improvement of food properties. The research highlights the importance of L. fermentum and P. acidilactici as starter cultures in various food industries, particularly in dairy, meat and alcoholic beverages, due to their ability to improve sensory characteristics and provide functional benefits. The impact of these bacteria on consumer perception and competitiveness in the food market was also discussed, with a notable increase in patents and scientific publications on this subject since 2000. This work provides a comprehensive view of the biological and technological mechanisms involved, consolidating key information for practical application in the food industry.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MetabolitosBeneficios funcionalesPropiedades organolépticasLimosilactobacillus fermentumPediococcus acidilacticiMejora de alimentosMetabolitesFunctional benefitsOrganoleptic propertiesFood improvementLimosilactobacillus fermentumPediococcus acidilacticiAlimentos -- BiotecnologíaMetabolitosAlimentos funcionalesAportes a la calidad funcional y tecnológicas en alimentos por Limosilactobacillus fermentum y Pediococcus acidilacticiContributions to functional and technological quality in foodstuffs by Limosilactobacillus fermentum and Pediococcus acidilacticiTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAdikari, A. M. M. U., Priyashantha, H., Disanayaka, J. N. K., Jayatileka, D. V., Kodithuwakku, S. P., Jayatilake, J. A. M. S., & Vidanarachchi, J. K. (2021). Isolation, identification and characterization of Lactobacillus species diversity from Meekiri: traditional fermented buffalo milk gels in Sri Lanka. Heliyon, 7(10).Aguilera, C. M., Barberá, J., Díaz, E., Duarte, A., Gálvez, J., Gil, A., … & Zarzuelo, A. (2007). Alimentos funcionales: Aproximación a una nueva alimentación. Coordinadores: Barberá JM, Marcos A. Ed: Dirección General de Salud Pública y Alimentación.Agyirifo, D. S., Wamalwa, M., Otwe, E. P., Galyuon, I., Runo, S., Takrama, J., & Ngeranwa, J. (2019). Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon, 5(7).Ahued, M. G. (2014). Análisis sensorial de alimentos. PÄDI Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, 2(3).Ajibola, O. O., Thomas, R., & Bakare, B. F. (2023). Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health. Food Science and Human Wellness, 12(5), 1493-1509.Akamine, TI, Mansoldo, FRP y Vermelho, AB (2023). Probióticos en la Fermentación de Pan de Masa Madre: Estado Actual. Fermentación, 9 (2), 90. MDPI AG. Obtenido de http://dx.doi.org/10.3390/fermentation9020090Akanksha Tyagi, Xiuqin Chen, Lingyue Shan, Pianpian Yan, Ramachandran Chelliah, Deog-Hwan Oh, Análisis del genoma completo del psicobiótico Limosilactobacillus reuteri productor de ácido gamma-aminobutírico con su metabolómica no dirigida usando UHPLC-Q-Tof MS/MS, Gene,volumen 858,2023,147195,ISSN 0378-1119, obtenido de https://www.sciencedirect.com/science/article/pii/S0378111923000367. https://doi.org/10.1016/j.gene.2023.147195Al-Emran, H. M., Moon, J. F., Miah, M. L., Meghla, N. S., Reuben, R. C., Uddin, M. J., Ibnat, H., Sarkar, S. L., Roy, P. C., Rahman, M. S., Alam, A. S. M. R. U., Islam, O. K., & Jahid, I. K. (2022). Genomic analysis and in vivo efficacy of Pediococcus acidilactici as a potential probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections. Scientific Reports, 12(1). doi: 10.1038/s41598-022-24791-5Araújo-Rodrigues, H., Martins, APL, Tavaria, FK, Días, J., Santos, MT, Alvarenga, N., & Pintado, ME (2023). Impacto de las LAB de queso Serpa DOP en modelos de queso: hacia el desarrollo de un cultivo iniciador autóctono. Alimentos, 12 (4), 701. MDPI AG. Obtenido de http://dx.doi.org/10.3390/foods12040701Arteaga, V. G., Leffler, S., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2021). Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Current research in food science, 4, 1-10.Averianova Liudmila A., Balabanova Larissa A., Son Oksana M., Podvolotskaya Anna B., Tekutyeva Liudmila A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview Frontiers in Bioengineering and Biotechnology. Vol. 8 2020.Balmori, V. L., Dizon, E. I., Barrion, A. S. A., & Elegado, F. B. (2019). Effect of adjunct inoculation of lactobacillus plantarum BS and Pediococcus acidilactici 3G3 on the microbiological, physicochemical and sensory properties of fermented carabeef (Pindang damulag). Food Research, 3(1), 70–78. https://doi.org/10.26656/fr.2017.3(1).221Bansal, P., Kumar, R., & Dhanda, S. (2022). Characterization of starter cultures and nutritional properties of Pediococcus acidilactici NCDC 252: A potential probiotic of dairy origin. Journal of Food Processing and Preservation, 46(10), e16817.Barcenilla, C., Ducic, M., López, M., Prieto, M., & Álvarez-Ordóñez, A. (2022). Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Science, 183, 108661.Bedada, T. L., Feto, T. K., Awoke, K. S., Garedew, A. D., Yifat, F. T., & Birri, D. J. (2020). Probiotics for cancer alternative prevention and treatment. Biomedicine & pharmacotherapy, 129, 110409.Beltrán, M. R. (2016). de Heredia. Alimentos funcionales.Blanco, I. R., Pizauro, L. J. L., dos Anjos Almeida, J. V., Mendonça, C. M. N., de Mello Varani, A., & de Souza Oliveira, R. P. (2022). Pan-genomic and comparative analysis of Pediococcus pentosaceus focused on the in silico assessment of pediocin-like bacteriocins. Computational and Structural Biotechnology Journal, 20, 5595-5606.Chavarrías, M. (2011). Color en los alimentos e inocuidad. Consumer |; Eroski Consumer. https://www.consumer.es/seguridad-alimentaria/color-en-los-alimentos-e-inocuidad.htmlChelliah, R., Saravanakumar, K., Daliri, E. B. M., Kim, J. H., Lee, J. K., Jo, H. Y., ... & Oh, D. H. (2020). An effective datasets describing antimicrobial peptide produced from Pediococcus acidilactici-purification and mode of action determined by molecular docking. Data in Brief, 31, 105745.Cheng, X., & Ning, Z. (2023). Research progress on bird eggshell quality defects: a review. Poultry Science, 102(1), 102283.Chourasia, R., Chiring Phukon, L., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2023). Bioactive peptides in fermented foods and their application: A critical review. Systems Microbiology and Biomanufacturing, 3(1), 88-109. doi:10.1007/s43393-022-00125-4CODEX STAN 192. (1995). Norma General del Codex para los Aditivos Alimentarios. http://www.codexalimentarius.net/gsfaonline/docs/CXS_192s.pdfde la Bastida, A. R., Peirotén, Á., Langa, S., Arqués, J. L., & Landete, J. M. (2021). Heterologous production of equol by lactic acid bacteria strains in culture medium and food. International journal of food microbiology, 360, 109328.De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153-177.Delgado-Ospina, J., Puerta-Polanco, L. F., Grande-Tovar, C. D., Cuervo, R. A., Navia-Porras, D. P., Poveda-Perdomo, L. G., ... & Chaves-López, C. (2022). Exploring the Core Microbiota of Four Different Traditional Fermented Beverages from the Colombian Andes. Fermentation, 8(12), 733.Denkova, R., Ilieva, S., Denkova, Z., Georgieva, L., & Krastanov, A. (2014). Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters. Biotechnology & Biotechnological Equipment, 28(3), 487-494.Díaz Ortega, J. L. (2020). Propiedades Nutricionales y Funcionales de los alimentos.Dyshlyuk, L. S., Milentyeva, I. S., Asyakina, L. K., Ostroumov, L. A., Osintsev, A. M., & Pozdnyakova, A. V. (2024). Using bifidobacterium and propionibacterium strains in probiotic consortia to normalize the gastrointestinal tract. [O uso de cepas de bifidobacterium e propionibacterium em consórcios probióticos para normalizar o trato gastrointestinal] Brazilian Journal of Biology, 84 doi:10.1590/1519-6984.256945Ebrahimi, M., Noori, S. M. A., Sadeghi, A., emir Coban, O., Zanganeh, J., Ghodsmofidi, S. M., ... & Raeisi, M. (2022). Application of cereal-bran sourdoughs to enhance technological functionality of white wheat bread supplemented with pumpkin (Cucurbita pepo) puree. LWT, 158, 113079.Él, W. y Bertram, HC (2022). Metabolómica basada en RMN para descifrar los mecanismos moleculares en la acción de los alimentos moduladores intestinales. Alimentos, 11 (17), 2707. MDPI AG.Elisabeth Eugster, Pascal Fuchsmann, Hedwig Schlichtherle-Cerny, Ueli Bütikofer, Stefan Irmler, Formation of alanine, α-aminobutyrate, acetate, and 2-butanol during cheese ripening by Pediococcus acidilactici FAM18098, International Dairy Journal, Volume 96, 2019, Pages 21-28, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2019.04.001Gandhi, N. N., Cobra, P. F., Steele, J. L., Markley, J. L., & Rankin, S. A. (2018). Lactobacillus demonstrate thiol-independent metabolism of methylglyoxal: Implications toward browning prevention in Parmesan cheese. Journal of dairy science, 101(2), 968-978.Gänzle, M.G., Li, M., Schwab, C. Roles of lactobacilli and bifidobacteria in cereal and pseudocereal fermentations for making gluten-free bread. International Journal of Food Microbiology 367, 109547 (2022).Gutiérrez, J. B. (2012). Calidad de vida, alimentos y salud humana: fundamentos científicos. Ediciones Díaz de Santos.Hasan, M., Arpitha, S. R., Das, C., Laishram, R., Sasi, M., Kumar, S., ... & Dahuja, A. (2023). Research trends and approaches for the nutritional and bio-functionality enhancement of fermented soymilk. Journal of Functional Foods, 107, 105698.Hernández Sampieri, R., Fernández-Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). Colina McGraw.Hu, T., Chen, R., Qian, Y., Ye, K., Long, X., Park, K. Y., & Zhao, X. (2022). Antioxidant effect of Lactobacillus fermentum HFY02-fermented soy milk on D-galactose-induced aging mouse model. Food Science and Human Wellness, 11(5), 1362-1372.Huan Xiang, Dongxiao Sun-Waterhouse, Geoffrey I.N. Waterhouse, Chun Cui, Zheng Ruan, Fermentation-enabled wellness foods: A fresh perspective, Food Science and Human Wellness, Volume 8, Issue 3, 2019.James, A., Yao, T., Ke, H., & Wang, Y. (2023). Microbiota for production of wine with enhanced functional components. Food Science and Human Wellness, 12(5), 1481-1492.Javed, G. A., Arshad, N., Munir, A., Khan, S. Y., Rasheed, S., & Hussain, I. (2022). Signature probiotic and pharmacological attributes of lactic acid bacteria isolated from human breast milk. International Dairy Journal, 127, 105297.Jeske, S., Zannini, E., Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Research International 110, 42-51 (2018).Kaur, S., Thukral, S. K., Kaur, P., & Samota, M. K. (2021). Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 4, 100043.Khan, F., Jain, S., & Oloketuyi, S. F. (2018). Bacteria and bacterial products: Foe and friends to Caenorhabditis elegans. Microbiological research, 215, 102-113.Kıvanç M, Yılmaz MT. Pediococcus spp.: An overview on their taxonomy, physiology, and industrial applications. Crit Rev Food Sci Nutr. 2020;60(10):1604-1622. doi: 10.1080/10408398.2019.1608224Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384.Ksiezarek M, Grosso F, Ribeiro TG, Peixe L. Genomic diversity of genus Limosilactobacillus. Microb Genom. 2022;8(7).La Anh, N. (2015). Health-promoting microbes in traditional Vietnamese fermented foods: A review. Food Science and Human Wellness, 4(4), 147-161.Landete, J. M. (2022). Development of soy beverages enriched in O-desmethylangolesin and 6-hydroxy-O-desmethylangolesin by engineered lactic acid bacteria. LWT, 163, 113526.Langa, S., Peirotén, Á., Curiel, J. A., de la Bastida, A. R., & Landete, J. M. (2023). Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods (Basel, Switzerland), 12(6), 1293.Lee, Y. R., Bang, W. Y., Baek, K. R., Kim, G. H., Kang, M. J., Yang, J., & Seo, S. O. (2022). Safety Evaluation by Phenotypic and Genomic Characterization of Four Lactobacilli Strains with Probiotic Properties. Microorganisms, 10(11). Doi: 10.3390/microorganisms10112218Li, C., Wang, S., Chen, S., Wang, X., Deng, X., Liu, G., ... & Cai, H. (2023). Screening and characterization of Pediococcus acidilactici LC-9-1 toward selection as a potential probiotic for poultry with antibacterial and antioxidative properties. Antioxidants, 12(2), 215.Li, L., Zhang, L., Zhang, T., Liu, Y., Lü, X., Kuipers, O. P., & Yi, Y. (2023). (Meta) genomics-assisted screening of novel antibacterial lactic acid bacteria strains from traditional fermented milk from Western China and their bioprotective effects on cheese. LWT, 175, 114507.Li, N., Fu, J., Zhang, G., Liu, J., Li, Z., Luo, R., & Li, L. (2023). Investigating the mechanism of the flavor formation in Sichuan sun vinegar based on flavor-orientation and metagenomics. Current Research in Food Science, 6, 100460.Liu, G., Wu, M., Li, Y., Qayyum, N., Li, X., Zhang, J., & Wang, C. (2023). The effect of different pretreatment methods on jujube juice and lactic acid bacteria-fermented jujube juice. LWT, 181, 114692.Luo, J., Jiang, C., Zhao, L., Zhang, M., Wang, F., Sun, E., & Ren, F. (2018). Keto acid decarboxylase and keto acid dehydrogenase activity detected during the biosynthesis of flavor compound 3-methylbutanal by the nondairy adjunct culture Lactococcus lactis ssp. lactis F9. Journal of dairy science, 101(11), 9725-9735.Lv J, Ye Y, Zhong Y, Liu W, Chen M, Guo A, et al. Microbial diversity and functional genes of red vinasse acid based on metagenome analysis. Front Microbiol. el 13 de octubre de 2022;13.Lv, T., Huang, X., Zhang, C., Chen, D., Gu, R., Wa, Y., ... & Chen, X. (2021). Enhancement of the antibacterial properties of kefir by adding lactobacillus fermentum grx08. Journal of Food Protection, 84(8), 1463-1471.Ma, Q., Chai, Y., Yang, Z., & Huang, A. (2022). Deciphering the mechanisms of Limosilactobacillus fermentum L1 involved in conjugated linoleic acid regulated by luxS/AI-2 quorum sensing. LWT, 154, 112736.Manoj, P. M., Mohan, J. R., Khasherao, B. Y., Shams, R., & Dash, K. K. (2023). Fruit based probiotic functional beverages: A review. Journal of Agriculture and Food Research, 100729.Mansour, N. M., Elkalla, W. S., Ragab, Y. M., & Ramadan, M. A. (2021). Inhibition of acetic acid-induced colitis in rats by new pediococcus acidilactici strains, vitamin producers recovered from human gut microbiota. PLoS ONE, 16(7 July) doi:10.1371/journal.pone.0255092Moussaid, S., El Alaoui, MA, Ounine, K. et al. Evaluación in vitro del potencial probiótico y el perfil de fermentación de cepas de Pediococcus y Enterococcus aisladas de leche de camella marroquí. Arco Microbiol 205, 144 (2023). https://doi.org/10.1007/s00203-023-03489-wMulero Cánovas, J., Zafrilla Rentero, P., Martínez-Cachá Martínez, A., Leal Hernández, M., & Abellán Alemán, J. (2011). Péptidos bioactivos. Clínica e investigación en arteriosclerosis, 23(5), 219-227.NCBI. (s/f). Genome Limosilactobacillus fermentum. National Library of Medicine. Recuperado el 25 de mayo de 2023, de https://www.ncbi.nlm.nih.gov/genome/?term=Limosilactobacillus+fermentumNCBI. (s/f). Genome Pediococcus acidilactici. National Library of Medicine. Recuperado el 25 de mayo de 2023, de https://www.ncbi.nlm.nih.gov/genome/?term=pediococcus+acidilacticiNeyra, L. C. (2007). Alimentos funcionales. Biotempo, 7, 46-54.Ng, K. S., Bambace, M. F., & Schwab, C. (2023). Microbially-produced short chain carboxylic acids are ancient food biopreservatives with complex mode of action. Current Opinion in Food Science, 101066.Nissen, L., Demircan, B., Taneyo-Saa, D. L., & Gianotti, A. (2019). Shift of aromatic profile in probiotic hemp drink formulations: a metabolomic approach. Microorganisms, 7(11), 509.Ogunremi, O. R., Leischtfeld, S. F., Mischler, S., & Schwenninger, S. M. (2022). Antifungal activity of lactic acid bacteria isolated from kunu-zaki, a cereal-based Nigerian fermented beverage. Food Bioscience, 49, 101648.Ojeda, N. (2018). ¿Qué son las características organolépticas de los alimentos. Planeta Formación y Universidades.Okeke, E. S., Ita, R. E., Egong, E. J., Udofia, L. E., Mgbechidinma, C. L., & Akan, O. D. (2021). Metaproteomics insights into fermented fish and vegetable products and associated microbes. Food Chemistry: Molecular Sciences, 3, 100045.Oladejo, T. C., Olaniyi, O. O., Ayodeji, A. O., & Akinyele, B. J. (2020). Protease produced by Lactobacillus brevis enhanced nutritional values of African yam beans and demonstrated improvement in the growth and blood indices of albino rats. Heliyon, 6(10).Olajugbagbe, T. E., Elugbadebo, O. E., & Omafuvbe, B. O. (2020). Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon, 6(9).Olmedilla-Alonso, B., & Jiménez-Colmenero, F. (2014). Alimentos cárnicos funcionales: desarrollo y evaluación de sus propiedades saludables. Nutrición Hospitalaria, 29(6), 1197-1209.Owusu-Kwarteng, J., Tano-Debrah, K., Akabanda, F., & Jespersen, L. (2015). Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC microbiology, 15(1), 1-10.Păcularu-Burada, B., Ceoromila, A. M., Vasile, M. A., & Bahrim, G. E. (2022). Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. LWT, 165, 113670.Pakdeeto, A., Phuengjayaem, S., Arayakarn, T., Phitchayaphon, C., Tungkajiwangkoon, S., & Tanasupawat, S. (2022). Identification of gamma-aminobutyric acid (GABA)-producing lactic acid bacteria from plant-based Thai fermented foods and genome analysis of Lactobacillus brevis GPB7-4. ScienceAsia, 48(3), 254–262.Pan, X., Zhang, S., Xu, X., Lao, F., & Wu, J. (2022). Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. Lwt, 154, 112772.Peng, C., Sun, Z., Sun, Y., Ma, T., Li, W., & Zhang, H. (2021). Characterization and association of bacterial communities and nonvolatile components in spontaneously fermented cow milk at different geographical distances. Journal of Dairy Science, 104(3), 2594-2605.Pérez Grana, R. (2013). Exactitud de las tablas de composición de alimentos en la determinación de nutrientes. Sanidad Militar, 69(2), 102-111.Piazentin, ACM, Mendonça, CMN, Vallejo, M., Mussatto, SI, & de Souza Oliveira, RP (2022). Producción de sustancias inhibidoras de tipo bacteriocina por Enterococcus faecium 135 en cocultivo con Ligilactobacillus salivarius y Limosilactobacillus reuteri. Revista Brasileña de Microbiología , 1-11.Prieto, M., Mouwen, J. M., López Puente, S., & Cerdeño Sánchez, A. (2008). Concepto de calidad en la industria Agroalimentaria. Interciencia, 33(4), 258-264.Qian Lin, Dongni Li, Huizhen Qin, Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2, Electronic Journal of Biotechnology, Volume 27, 2017.Qiao, Y., Qiu, Z., Tian, F., Yu, L., Zhao, J., Zhang, H., ... & Chen, W. (2022). Effect of bacteriocin-producing Pediococcus acidilactici strains on the immune system and intestinal flora of normal mice. Food Science and Human Wellness, 11(2), 238-246.Rodríguez-Sojo, MJ, Ruiz-Malagón, AJ, Rodríguez-Cabezas, ME, Gálvez, J., & Rodríguez-Nogales, A. (2021). Limosilactobacillus fermentum CECT5716: mecanismos y conocimientos terapéuticos. Nutrientes , 13 (3), 1016.Sampaio, K. B., do Nascimento, Y. M., Tavares, J. F., Cavalcanti, M. T., de Brito Alves, J. L., Garcia, E. F., & de Souza, E. L. (2021). Development and in vitro evaluation of novel nutraceutical formulations composed of Limosilactobacillus fermentum, quercetin and/or resveratrol. Food Chemistry, 342, 128264.Sánchez, M. T., Ruiz, M. A., & Morales, M. E. (2015). Microorganismos probióticos y salud. Ars pharmaceutica (internet), 56(1), 45-59.Sar, T., Harirchi, S., Ramezani, M., Bulkan, G., Akbas, M. Y., Pandey, A., & Taherzadeh, M. J. (2022). Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Science of The Total Environment, 810, 152253.Sedeño Monge, V., Fabre Palacios, E. A., López García, C., & Meza Jiménez, M. D. L. (2020). Nutrientes y alimentos en la esclerosis múltiple. Archivos Latinoamericanos de Nutrición, 70(1), 60-74.Shabbir, U., Tyagi, A., Ham, H. J., Elahi, F., & Oh, D. H. (2022). Effect of fermentation on the bioactive compounds of the black soybean and their anti-Alzheimer’s activity. Frontiers in Nutrition, 9, 880361Shandilya, S., Kumar, S., Jha, N. K., Kesari, K. K., & Ruokolainen, J. (2022). Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. Journal of Advanced Research, 38, 223-244.Silva, D. R., Sardi, J. D. C. O., de Souza Pitangui, N., Roque, S. M., da Silva, A. C. B., & Rosalen, P. L. (2020). Probiotics as an alternative antimicrobial therapy: Current reality and future directions. Journal of Functional Foods, 73, 104080.Singh, A., Duche, RT, Wandhare, AG et al. Péptidos antimicrobianos derivados de la leche: descripción general, aplicaciones y perspectivas futuras. Probióticos y Antimicro. prot. 15, 44–62 (2023). https://doi.org/10.1007/s12602-022-10004-ySrinivash, M., Krishnamoorthi, R., Mahalingam, P. U., Malaikozhundan, B., & Keerthivasan, M. (2023). Probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from homemade fermented food products. Journal of Agriculture and Food Research, 11, 100517.Suhr, M. J., & Nielsen, S. S. (2003). Identification and characterization of Lactobacillus fermentum strains isolated from different ecological niches. Journal of Applied Microbilogy, 94(4), 617-625. https://doi.org/10.1046/j.1365-2672.2003.01859.xSun, Y., Zuo, X., Luo, R., Dang, N., Shi, D., & Liu, W. (2023). Bacterial microbiota and metabolic characteristics of traditional Zhangjiajie Jiuqu aromatic ester vinegar in China. Food Bioscience, 53, 102693.Surachat, K., Kantachote, D., Deachamag, P., & Wonglapsuwan, M. (2021). Genomic insight into pediococcus acidilactici hn9, a potential probiotic strain isolated from the traditional thai-style fermented beef nhang. Microorganisms, 9(1), 1–23. Doi: 10.3390/microorganisms9010050Tasdemir, S. S., & Sanlier, N. (2020). An insight into the anticancer effects of fermented foods: A review. Journal of Functional Foods, 75, 104281.Terán, V., Pizarro, P. L., Zacarías, M. F., Vinderola, G., Medina, R., & Van Nieuwenhove, C. (2015). Production of conjugated dienoic and trienoic fatty acids by lactic acid bacteria and bifidobacteria. Journal of Functional Foods, 19, 417-425.Todorov, S. D., Stojanovski, S., Iliev, I., Moncheva, P., Nero, L. A., & Ivanova, I. V. (2017). Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product" lukanka". brazilian journal of microbiology, 48, 576-586.Torres Courchoud, I., & Pérez Calvo, J. I. (2016, April). Biomarcadores y práctica clínica. In Anales del Sistema Sanitario de Navarra (Vol. 39, No. 1, pp. 5-8). Gobierno de Navarra. Departamento de Salud.Unal, M. A., Kaymaz, O., Altuntas, E. G., Juneja, V. K., & Elmali, A. (2023). Effect Of Disulfide Bonds On The Thermal Stability Of Pediocin: In Silico Screening Using Molecular Dynamics Simulation. Journal of Food Protection, 100107.Verce, M., De Vuyst, L., & Weckx, S. (2020). Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiology, 89(103448), 103448.Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P., & Bai, X. (2020). Comparative genomics analysis of Pediococcus pentosaceus reveals genes and pathways for adaptation to food environments. BMC Genomics, 21(1), 1-15.Waoo, A. A., Singh, S., Pandey, A., Kant, G., Choure, K., Amesho, K. T., & Srivastava, S. (2023). Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon, 9(8).Xie, Y.; Wang, Y.; Han, Y.; Zhang, J.; Wang, S.; Lu, S.; Wang, H.; Lu, F.; Jia, L. Complete Genome Sequence of a Novel Lactobacillus paracasei TK1501 and Its Application in the Biosynthesis of Isoflavone Aglycones. Foods 2022, 11, 2807.Xu, H., Feng, L., Deng, Y., Chen, L., Li, Y., Lin, L., ... & Sun, Z. (2023). Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process. LWT, 180, 114715.Yan, X. -., Zhang, Z., Wang, Y., Zhang, W., Zhang, L., Liu, Y., . . . Gu, R. (2023). Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: A promising method to improve antioxidant activity and flavor of plant functional beverage. Applied Biological Chemistry, 66(1) doi:10.1186/s13765-022-00762-2Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799.Yu, Y., Xu, Y., Li, L., Chen, S., An, K., Yu, Y., & Xu, Z. L. (2023). Isolation of lactic acid bacteria from Chinese pickle and evaluation of fermentation characteristics. LWT, 180, 114627.Zhang, S., Jin, M., Ren, J., Sun, X., Zhang, Z., Luo, Y., & Sun, X. (2023). New insight into gut microbiota and their metabolites in ischemic stroke: A promising therapeutic target. Biomedicine & Pharmacotherapy, 162, 114559.Zhao, Y., Zhang, C., Yu, L., Tian, F., Zhao, J., Zhang, H., Chen, W., & Zhai, Q. (2022). Phylogenetic and Comparative Genomic Analysis of Lactobacillus fermentum Strains and the Key Genes Related to their Intestinal Anti-Inflammatory Effects. Engineering, 17, 170–182. Doi: 10.1016/j.eng.2020.09.016Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. Doi: 10.1099/ijsem.0.004107Zheng, Y., Fei, Y., Yang, Y., Jin, Z., Yu, B., & Li, L. (2020). A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiology, 91. Doi: 10.1016/j.fm.2020.103540Zhou, R. Y., Huang, X., Liu, Z., Chua, J. Y., & Liu, S. Q. (2022). Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Current Research in Food Science, 5, 1826-1836.THUMBNAILSIMANCA.pdf.jpgSIMANCA.pdf.jpgimage/jpeg64304http://repository.unilibre.edu.co/bitstream/10901/31167/6/SIMANCA.pdf.jpg80588e4ce818dcf71b64e446726cced6MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/31167/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAUTORIZACIÓN .pdfAUTORIZACIÓN .pdfAutorización para la publicaciónapplication/pdf517959http://repository.unilibre.edu.co/bitstream/10901/31167/1/AUTORIZACI%c3%93N%20.pdf598f825df41608571507bf9572ca4702MD51SIMANCA.pdfSIMANCA.pdfArchivo del trabajo de gradoapplication/pdf1295927http://repository.unilibre.edu.co/bitstream/10901/31167/2/SIMANCA.pdfa1df358a85119a015192db9fa5f1ccdaMD5210901/31167oai:repository.unilibre.edu.co:10901/311672025-05-26 16:37:51.217Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |