Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental
Limosilactobacillus fermentum es un microorganismo probiótico con potencial uso en alimentación animal, el suministro de microorganismos de forma segura para la alimentación animal requiere de estudios de bioprospección microbiana, en donde una etapa clave comprende el secado para la comercializació...
- Autores:
-
Caro Martínez, Stephanie Sofía
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/31391
- Acceso en línea:
- https://hdl.handle.net/10901/31391
- Palabra clave:
- Liofilización
Limosilactobacillus sp
probiótico
Lyophilization
Limosilactobacillus sp
probiotic
Liofilización
Biotecnología microbiana
Probióticos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_9e4d213217d76cc818fe05b61ce3e896 |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/31391 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
title |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
spellingShingle |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental Liofilización Limosilactobacillus sp probiótico Lyophilization Limosilactobacillus sp probiotic Liofilización Biotecnología microbiana Probióticos |
title_short |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
title_full |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
title_fullStr |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
title_full_unstemmed |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
title_sort |
Factores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documental |
dc.creator.fl_str_mv |
Caro Martínez, Stephanie Sofía |
dc.contributor.advisor.none.fl_str_mv |
Gutiérrez Castañeda, Clara Gilma |
dc.contributor.author.none.fl_str_mv |
Caro Martínez, Stephanie Sofía |
dc.subject.spa.fl_str_mv |
Liofilización Limosilactobacillus sp probiótico |
topic |
Liofilización Limosilactobacillus sp probiótico Lyophilization Limosilactobacillus sp probiotic Liofilización Biotecnología microbiana Probióticos |
dc.subject.subjectenglish.spa.fl_str_mv |
Lyophilization Limosilactobacillus sp probiotic |
dc.subject.lemb.spa.fl_str_mv |
Liofilización Biotecnología microbiana Probióticos |
description |
Limosilactobacillus fermentum es un microorganismo probiótico con potencial uso en alimentación animal, el suministro de microorganismos de forma segura para la alimentación animal requiere de estudios de bioprospección microbiana, en donde una etapa clave comprende el secado para la comercialización del microorganismo, este estudio centró su objetivo en reconocer los factores claves para la liofilización de esta bacteria a través de revisión bibliográfica, en fuentes bibliográficas como Scopus, Science Direct y Pubmed, de esta revisión se encontraron un total de 81 artículos Se identificaron los factores críticos que influyen en el éxito de la viabilidad microbiana, entre estos la temperatura d congelación, el tiempo de sublimación, el usado crioprotectores, las presiones y la cepa usada, Como conclusión la optimización de la técnica depende de muchos factores del propio proceso e incluso antes de aplicarlo como el uso de marcadores biológico, y posterior, como el almacenamiento de los liofilizados, sin embargo al ser estudio de revisión no se aplican los resultados para corroborar lo encontrado pero da paso para futuras investigaciones y aplicación en protocolos. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-24T21:42:31Z |
dc.date.available.none.fl_str_mv |
2025-06-24T21:42:31Z |
dc.date.created.none.fl_str_mv |
2025 |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/31391 |
url |
https://hdl.handle.net/10901/31391 |
dc.relation.references.spa.fl_str_mv |
ADITHI, G., DIVYASHREE, S., SHRUTHI, B., DEEPA, N., & SREENIVASA, M. Y. (2024). EVALUATION OF LIMOSILACTOBACILLUS FERMENTUM MYSAGAM1 ISOLATED FROM HERBAL AMLA JUICE AS A PROBIOTIC CANDIDATE WITH ANTIFUNGAL CHARACTERISTICS AGAINST FUSARIUM EQUISETI. FOOD BIOSCIENCE (PRINT), 103843. HTTPS://DOI.ORG/10.1016/J.FBIO.2024.103843 ADOLFO, P. H. R. (2010). REVIEW. BACTERIAS ACIDO LÁCTICAS: PAPEL FUNCIONAL EN LOS ALIMENTOS.HTTP://WWW.SCIELO.ORG.CO/SCIELO.PHP?SCRIPT=SCI_ARTTEXT&PID=S1692-35612010000100012 ALFONSO, E., & EA, C. (2006). BACTERIAS ÁCIDO-LÁCTICAS (BAL): APLICACIONES COMO CULTIVOS ESTÁRTER PARA LA INDUSTRIA LÁCTEA Y CÁRNICA. RESEARCHGATE. HTTPS://DOI.ORG/10.13140/2.1.2241.2169 ALVA, D. H. G., GUZMAN, M. J. M., ANDRÉS, M., & DURAN, S. (2021). USO DE PROBIÓTICOS EN LA NUTRICIÓN DE BOVINOS ALVES, B. /. O. /. O.-. M. (N.D.). DECS. HTTPS://DECS.BVSALUD.ORG/ES/THS/RESOURCE/?ID=2498#CONCEPTS BAZÁN, J. V., & VARGAS, C. T. (2019). AISLAMIENTO DE LACTOBACILLUS NATIVOS DE PRODUCTOS DE FERMENTACIÓN EN LA CIUDAD DE TACNA. CIENCIA Y DESARROLLO, 11, 61–66. HTTPS://DOI.ORG/10.33326/26176033.2007.11.226 BOUCHIBANE, M., CHERIGUENE, A., FADELA, C., BOUOUDINA, M., KACED, A., DAHOU, A., BENBOUZIANE, B., & SAADA, D. A. (2023). TECHNOLOGICAL AND GENOTYPIC CHARACTERISTICS OF LACTIC ACID BACTERIA ISOLATED FROM ALGERIAN ARTISANAL DAIRY PRODUCTS. INTERNATIONAL DAIRY JOURNAL, 146, 105747. HTTPS://DOI.ORG/10.1016/J.IDAIRYJ.2023.105747 BRANDT, K., NETHERY, M. A., O’FLAHERTY, S., & BARRANGOU, R. (2020). GENOMIC CHARACTERIZATION OF LACTOBACILLUS FERMENTUM DSM 20052. BMC GENOMICS, 21(1). HTTPS://DOI.ORG/10.1186/S12864-020-6740-8 BUTORAC, K., NOVAK, J., BELLICH, B., TERÁN, L. C., BANIĆ, M., PAVUNC, A. L., ZJALIĆ, S., CESCUTTI, P., ŠUŠKOVIĆ, J., & KOS, B. (2021). LYOPHILIZED ALGINATE-BASED MICROSPHERES CONTAINING LACTOBACILLUS FERMENTUM D12, AN EXOPOLYSACCHARIDES PRODUCER, CONTRIBUTE TO THE STRAIN’S FUNCTIONALITY IN VITRO. MICROBIAL CELL FACTORIES, 20(1). HTTPS://DOI.ORG/10.1186/S12934-021-01575-6 CAVALCANTI, R. F. P., GADELHA, F. A. A. F., FERREIRA, L. K. D. P., FERREIRA, L. A. M. P., JÚNIOR, J. V. C., DE ARAÚJO BATISTA, R. S., MELO, T. B. L., DE SOUZA, F. S., ALVES, A. F., BATISTA, L. M., & PIUVEZAM, M. R. (2023). LIMOSILACTOBACILLUS FERMENTUM MODULATES THE GUT-AIRWAY AXIS BY IMPROVING THE IMMUNE RESPONSE THROUGH FOXP3 ACTIVATION ON COMBINED ALLERGIC RHINITIS AND ASTHMA SYNDROME (CARAS). IMMUNOBIOLOGY (1979), 228(5), 152721. HTTPS://DOI.ORG/10.1016/J.IMBIO.2023.152721 CHENG, Z., HE, X., WU, Z., & WENG, P. (2022). IMPROVING THE VIABILITY OF POWDERED LACTOBACILLUS FERMENTUM LF01 WITH COMPLEX LYOPROTECTANTS BY MAINTAINING CELL MEMBRANE INTEGRITY AND REGULATING RELATED GENES. JOURNAL OF FOOD BIOCHEMISTRY, 46(8). HTTPS://DOI.ORG/10.1111/JFBC.14181 CHENG, Z., XU, Y., WU, J., WENG, P., & WU, J. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. HTTPS://DOI.ORG/10.1016/J.CRYOBIOL.2022.01.003 CHOI, I. S., KO, S. H., KIM, H. M., YANG, J. E., JEONG, S.-G., CHANG, J. Y., LEE, K. H., QI, S.-B., XIN, Q., CUI, C.-B., MOON, J.-H., PARK, H. W. (2020). COFFEE RESIDUE AS A VALORIZATION BIO-AGENT FOR SHELF-LIFE EXTENSION OF LACTIC ACID BACTERIA UNDER CRYOPRESERVATION. WASTE MANAGEMENT (NEW YORK, N.Y.), 118, (585–590). HTTPS://DOI.ORG/10.1016/J.WASMAN.2020.09.025 D’AMBROSIO, S., VENTRONE, M., FUSCO, A., CASILLO, A., DABOUS, A., CAMMAROTA, M., CORSARO, M. M., DONNARUMMA, G., SCHIRALDI, C., & CIMINI, D. (2022). LIMOSILACTOBACILLUS FERMENTUM FROM BUFFALO MILK IS SUITABLE FOR POTENTIAL BIOTECHNOLOGICAL PROCESS DEVELOPMENT AND INHIBITS HELICOBACTER PYLORI IN A GASTRIC EPITHELIAL CELL MODEL. BIOTECHNOLOGY REPORTS, 34, E00732. HTTPS://DOI.ORG/10.1016/J.BTRE.2022.E00732 DABOUS, A., D’AMBROSIO, S., CIMINI, D., & SCHIRALDI, C. (2023). NOVEL HYDROXYECTOINES BASED FORMULATIONS ARE SUITABLE FOR PRESERVING VIABILITY OF LIMOSILACTOBACILLUS FERMENTUM, LEVILACTOBACILLUS BREVIS SP-48 AND BIFIDOBACTERIUM LACTIS HN019 DURING FREEZE-DRYING AND STORAGE, AND IN SIMULATED GASTROINTESTINAL FLUIDS. DRYING TECHNOLOGY, 41(12), 2062–2073. HTTPS://DOI.ORG/10.1080/07373937.2023.2217242 DE INVESTIGACIONES AGROPECUARIAS CENTRO REGIONAL DE INVESTIGACIÓN QUILAMAPU, I. (2020). CONFORMACIÓN DE COLECCIONES DE CULTIVOS MICROBIANOS. HTTPS://BIBLIOTECA.INIA.CL/HANDLE/20.500.14001/6945 FIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2009). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688-1694. FIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2010). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. HTTPS://DOI.ORG/10.1128/JB.01122-09 GAO, T., LU, L., WU, Q., & WANG, C. (2023). COMPLETE GENOME SEQUENCE OF LACTOBACILLUS FERMENTUM 9-4, A PURINE-DEGRADING LACTOBACILLUS PROBIOTIC ISOLATED FROM CHINESE FERMENTED RICE-FLOUR NOODLES. JOURNAL OF FUTURE FOODS, 3(2), 169–174. HTTPS://DOI.ORG/10.1016/J.JFUTFO.2022.12.008 GAWANDE, K., KOLHEKAR, M., KUMARI, M., KAPILA, S., SHARMA, P., ALI, S. A., & BEHARE, P. (2021). LACTIC ACID BACTERIA BASED PURIFIED EXOPOLYSACCHARIDE SHOWED VISCOFYING AND HYPERCHOLESTEROLEMIC CAPABILITES. FOOD HYDROCOLLOIDS FOR HEALTH, 1, 100042. HTTPS://DOI.ORG/10.1016/J.FHFH.2021.100042 GE, S., HAN, J., SUN, Q., ZHOU, Q., YE, Z., LI, P., & GU, Q. (2024). RESEARCH PROGRESS ON IMPROVING THE FREEZE-DRYING RESISTANCE OF PROBIOTICS: A REVIEW. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 104425. GORBEÑA, J. C. R., & SÁENZ, T. A. (2008). BACTERIAS ÁCIDO LÁCTICAS: BIOPRESERVANTE DE LOS ALIMENTOS. BIOTEMPO, 8, 54-64 JIANG, X., SHEKARFOROUSH, E., MUHAMMED, M. K., WHITEHEAD, K., SIMONSEN, A. C., ARNEBORG, N., & RISBO, J. (2021). EFFICIENT CHEMICAL HYDROPHOBIZATION OF LACTIC ACID BACTERIA - ONE-STEP FORMATION OF DOUBLE EMULSION. FOOD RESEARCH INTERNATIONAL (OTTAWA, ONT.), 147(110460), 110460. HTTPS://DOI.ORG/10.1016/J.FOODRES.2021.110460 KIM, W. S., PERL, L., PARK, J. H., TANDIANUS, J. E., & DUNN, N. W. (2001). ASSESSMENT OF STRESS RESPONSE OF THE PROBIOTIC LACTOBACILLUS ACIDOPHILUS. CURRENT MICROBIOLOGY, 43, 346-350. KURATSU, M., HAMANO, Y., & DAIRI, T. (2010). ANALYSIS OF THE LACTOBACILLUS METABOLIC PATHWAY. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 76(21), 7299–7301. HTTPS://DOI.ORG/10.1128/AEM.01514-10 LANDO, V., VALDUGA, N. Z., & MORONI, L. S. (2023). FUNCTIONAL CHARACTERIZATION OF LACTOBACILLI STRAINS WITH ANTIMICROBIAL ACTIVITY AGAINST SALMONELLA SPP. AND CELL VIABILITY IN FERMENTED DAIRY PRODUCT. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 47, 102605. HTTPS://DOI.ORG/10.1016/J.BCAB.2023.102605 LIU, D., ZHAO, F., LIU, L., ZHANG, J., WU, S., LÜ, X., ZHANG, H., & YI, Y. (2023). ENHANCING THE ANTIOXIDANT CAPACITY AND QUALITY ATTRIBUTES OF FERMENTED GOAT MILK THROUGH SYNERGISTIC ACTION OF LIMOSILACTOBACILLUS FERMENTUM WXZ 2-1 WITH STARTER CULTURE. JOURNAL OF DAIRY SCIENCE. HTTPS://DOI.ORG/10.3168/JDS.2023-24135 MATEOS LARDIÉS, A. M., & ÁLVAREZ CALATAYUD, G. (2018). GUÍA DE ACTUACIÓN Y DOCUMENTO DE CONSENSO SOBRE EL MANEJO DE PREPARADOS CON PROBIÓTICOS Y/O PREBIÓTICOS EN LA FARMACIA COMUNITARIA SEFAC Y SEPYP [CONJUNTO DE DATOS]. EN SEFAC. HTTPS://WWW.SEFAC.ORG/SITES/DEFAULT/FILES/2018-07/GUIA_PROBIOTICOS%20WEB.PDF MIKELSAAR, M., & ZILMER, M. (2009). LACTOBACILLUS FERMENTUMME-3 – AN ANTIMICROBIAL AND ANTIOXIDATIVE PROBIOTIC. MICROBIAL ECOLOGY IN HEALTH AND DISEASE, 21(1), 1–27. HTTPS://DOI.ORG/10.1080/08910600902815561 MOLINA-TIJERAS, J. A., DIEZ-ECHAVE, P., VEZZA, T., HIDALGO-GARCÍA, L., RUIZ-MALAGÓN, A. J., RODRÍGUEZ-SOJO, M. J., ROMERO, M., ROBLES-VERA, I., GARCÍA, F., PLAZA‐DÍAZ, J., OLIVARES, M., DUARTE, J., RODRÍGUEZ-CABEZAS, M. E., RODRÍGUEZ-NOGALES, A., & GÁLVEZ, J. (2021). LACTOBACILLUS FERMENTUM CECT5716 AMELIORATES HIGH FAT DIET-INDUCED OBESITY IN MICE THROUGH MODULATION OF GUT MICROBIOTA DYSBIOSIS. PHARMACOLOGICAL RESEARCH, 167, 105471. HTTPS://DOI.ORG/10.1016/J.PHRS.2021.105471 MOLINA, A. (2019). PROBIOTICS AND THEIR MECHANISM OF ACTION IN ANIMAL FEED. AGRONOMÍA MESOAMERICANA, 30(2), 601-611 MOZZI, F., RAYA, R. R., VIGNOLO, G. M., & LOVE, J. C. (2015). BIOTECHNOLOGY OF LACTIC ACID BACTERIA: NOVEL APPLICATIONS. 2. SINGAPORE: WILEY-BLACKWELL NAGHMOUCHI, K., BELGUESMIA, Y., BENDALI, F., SPANO, G., SEAL, B. S., & DRIDER, D. (2019). LACTOBACILLUS FERMENTUM: A BACTERIAL SPECIES WITH POTENTIAL FOR FOOD PRESERVATION AND BIOMEDICAL APPLICATIONS. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 60(20), 3387–3399. HTTPS://DOI.ORG/10.1080/10408398.2019.1688250 PATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE: ECAM, 2022, 4651194. HTTPS://DOI.ORG/10.1155/2022/4651194 RAMÍREZ‐LÓPEZ, C., & VÉLEZ‐RUIZ, J. F. (2016). AISLAMIENTO, CARACTERIZACIÓN Y SELECCIÓN DE BACTERIAS LÁCTICAS AUTÓCTONAS DE LECHE Y QUESO FRESCO ARTESANAL DE CABRA. INFORMACIÓN TECNOLÓGICA, 27(6), 115–128. HTTPS://DOI.ORG/10.4067/S0718-07642016000600012 REGUERO, M. T., ÁVILA-PORTILLO, L. M., MADERO, J. I., LÓPEZ, C., LEÓN, M. F., ACOSTA, L., GÓMEZ, C., DELGADO, L. G., GÓMEZ, C., & LOZANO, J. M. (2006). FUNDAMENTOS DE CRIOPRESERVACIÓN. REDALYC.ORG. HTTPS://WWW.REDALYC.ORG/ARTICULO.OA?ID=195214318008 REINHEIMER, J. A. (2020). EXOPOLISACÁRIDOS (EPS) DE LACTOBACILLUS FERMENTUM: NUEVOS INGREDIENTES ALIMENTARIOS CON DOBLE ROL TECNOLÓGICO Y FUNCIONAL PARA PRODUCTOS LÁCTEOS. HTTPS://RI.CONICET.GOV.AR/HANDLE/11336/138888 ROSSI, F., ZOTTA, T., IACUMIN, L., & REALE, A. (2016). THEORETICAL INSIGHT INTO THE HEAT SHOCK RESPONSE (HSR) REGULATION IN LACTOBACILLUS CASEI AND L. RHAMNOSUS. JOURNAL OF THEORETICAL BIOLOGY, 402, 21-37. SAMPAIO, K. B., ALVES, J. L., NASCIMENTO, Y. M. D., TAVARES, J. F., DA SILVA, M. S., NASCIMENTO, D. D. S., LIMA, M. D. S., DE ARAÚJO RODRIGUES, N. P., GARCIA, E. F., & DE SOUZA, E. L. (2022). NUTRACEUTICAL FORMULATIONS COMBINING LIMOSILACTOBACILLUS FERMENTUM, QUERCETIN, AND OR RESVERATROL WITH BENEFICIAL IMPACTS ON THE ABUNDANCE OF INTESTINAL BACTERIAL POPULATIONS, METABOLITE PRODUCTION, AND ANTIOXIDANT CAPACITY DURING COLONIC FERMENTATION. FOOD RESEARCH INTERNATIONAL, 161, 111800. HTTPS://DOI.ORG/10.1016/J.FOODRES.2022.111800 SERNA, D. Y. C., BARANDICA, L. A. R., CASTAÑEDA, L. P. T., SABOGAL, H. R. J., ALMARIO, C. G., ESTRADA-BONILLA, G. A., BUITRAGO, R. R. B., CAMPOS, P. J. C., MONCADA, U. A. P., URIBE-GUTIÉRREZ, L. A., RIAÑO, J. L. G., GÓMEZ, C. V. A., VILLAMIZAR, F. R., LEÓN, R. F. H., MÁSMELA, J. C. O., RUTE, L. M. B., IBÁÑEZ, M. C. R., DEL CARMEN JIMÉNEZ VELÁSQUEZ, S., HIGUERA, L. D. T., . . . ARDILA, D. E. L. (2021). CONSERVACIÓN Y MANEJO DE LA DIVERSIDAD MICROBIANA EN LOS BANCOS DE GERMOPLASMA PARA LA ALIMENTACIÓN Y LA AGRICULTURA EN COLOMBIA. IN CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA (AGROSAVIA) EBOOKS. HTTPS://DOI.ORG/10.21930/AGROSAVIA.ANALISIS.7404845 SMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153. TARANNUM, N., ALI, F., KHAN, M. S., ALHUMAIDAN, O. S., ZAWAD, A. S., & HOSSAIN, T. J. (2024). BIOACTIVE EXOPOLYSACCHARIDE FROM LIMOSILACTOBACILLUS FERMENTUM LAB-1: ANTIOXIDANT, ANTI-INFLAMMATORY, ANTIBACTERIAL AND ANTIBIOFILM PROPERTIES. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, 100409. HTTPS://DOI.ORG/10.1016/J.BCDF.2024.100409 WEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2023). LIMOSILACTOBACILLUS FERMENTUM NCU003089 AND LACTIPLANTIBACILLUS PLANTARUM NCU001261, TWO PROBIOTICS WITH INHIBITION OF ESCHERICHIA COLI AND CRONOBACTER SAKAZAKII TRANSLOCATION IN VITRO. MICROBIAL PATHOGENESIS, 181, 106216. HTTPS://DOI.ORG/10.1016/J.MICPATH.2023.106216 WEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2022). THREE LACTIC ACID BACTERIA WITH ANTI-OBESITY PROPERTIES: IN VITRO SCREENING AND PROBIOTIC ASSESSMENT. FOOD BIOSCIENCE, 47, 101724. HTTPS://DOI.ORG/10.1016/J.FBIO.2022.101724 ZHAO, S., FENG, P., HU, X., CAO, W., LIU, P., HAN, H., JIN, W., & LI, X. (2022). PROBIOTIC LIMOSILACTOBACILLUS FERMENTUM GR-3 AMELIORATES HUMAN HYPERURICEMIA VIA DEGRADING AND PROMOTING EXCRETION OF URIC ACID. ISCIENCE, 25(10), 105198. HTTPS://DOI.ORG/10.1016/J.ISCI.2022.105198 ZHAO, X., PENG, F., LIU, Z., PENG, Z., GUAN, Q., CAI, P., XIONG, S., YU, Q., XIE, M., & XIONG, T. (2023). LACTIC ACID BACTERIA WITH ANTI-HYPERURICEMIA ABILITY: SCREENING IN VITRO AND EVALUATING IN MICE. FOOD BIOSCIENCE, 52, 102411. https://doi.org/10.1016/j.fbio.2023.102411 ARAGÓN-ROJAS, S., RUIZ-PARDO, R. Y., HERNÁNDEZ-ÁLVAREZ, A. J., & QUINTANILLA-CARVAJAL, M. X. (2019). SUBLIMATION CONDITIONS AS CRITICAL FACTORS DURING FREEZE-DRIED PROBIOTIC POWDER PRODUCTION. DRYING TECHNOLOGY, 38(3), 333–349. https://doi.org/10.1080/07373937.2019.1570248 CUI, S., HU, M., SUN, Y., MAO, B., ZHANG, Q., ZHAO, J., TANG, X., & ZHANG, H. (2022). EFFECT OF TREHALOSE AND LACTOSE TREATMENTS ON THE FREEZE-DRYING RESISTANCE OF LACTIC ACID BACTERIA IN HIGH-DENSITY CULTURE. MICROORGANISMS, 11(1), 48. https://doi.org/10.3390/microorganisms11010048 PATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 1–9. https://doi.org/10.1155/2022/4651192 STEFANELLO, R. F., NABESHIMA, E. H., IAMANAKA, B. T., LUDWIG, A., FRIES, L. L. M., BERNARDI, A. O., & COPETTI, M. V. (2019). SURVIVAL AND STABILITY OF LACTOBACILLUS FERMENTUM AND WICKERHAMOMYCES ANOMALUS STRAINS UPON LYOPHILISATION WITH DIFFERENT CRYOPROTECTANT AGENTS. FOOD RESEARCH INTERNATIONAL, 115, 90–94. https://doi.org/10.1016/j.foodres.2018.07.044 CHENG, Z., YAN, X., WU, J., WENG, P., & WU, Z. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. https://doi.org/10.1016/j.cryobiol.2022.01.004 CHEN, M., & MUSTAPHA, A. (2011). SURVIVAL OF FREEZE-DRIED MICROCAPSULES OF Α-GALACTOSIDASE PRODUCING PROBIOTICS IN A SOY BAR MATRIX. FOOD MICROBIOLOGY, 30(1), 68–73. https://doi.org/10.1016/j.fm.2011.10.017 AMPATZOGLOU, A., SCHURR, B., DEEPIKA, G., BAIPONG, S., & CHARALAMPOPOULOS, D. (2010). INFLUENCE OF FERMENTATION ON THE ACID TOLERANCE AND FREEZE-DRYING SURVIVAL OF LACTOBACILLUS RHAMNOSUS GG. BIOCHEMICAL ENGINEERING JOURNAL, 52(1), 65–70. https://doi.org/10.1016/j.bej.2010.07.005 HEIDEBACH, T., FÖRST, P., & KULOZIK, U. (2010). INFLUENCE OF CASEIN-BASED MICROENCAPSULATION ON FREEZE-DRYING AND STORAGE OF PROBIOTIC CELLS. JOURNAL OF FOOD ENGINEERING, 98(3), 309–316. https://doi.org/10.1016/j.jfoodeng.2010.01.003 RATHNAYAKA, R. M. U. S. K. (2013). EFFECT OF FREEZE-DRYING ON VIABILITY AND PROBIOTIC PROPERTIES OF A MIXTURE OF PROBIOTIC BACTERIA. ARPN J. SCI. TECHNOL, 3, 1074-1078 CHOTIKO, A., & SATHIVEL, S. (2014). EFFECTS OF ENZYMATICALLY EXTRACTED PURPLE RICE BRAN FIBER AS A PROTECTANT OF L. PLANTARUM NRRL B-4496 DURING FREEZING, FREEZE DRYING, AND STORAGE. LWT, 59(1), 59–64. https://doi.org/10.1016/j.lwt.2014.05.056 KRASAEKOOPT, W. (2017). INFLUENCE OF NON-EQUILIBRIUM STATES AND GLASS TRANSITION ON THE SURVIVAL OF BACTERIA. IN ELSEVIER EBOOKS (PP. 405–446). https://doi.org/10.1016/b978-0-08-100309-1.00021-3 MIAO, S., MILLS, S., STANTON, C., FITZGERALD, G. F., ROOS, Y., & ROSS, R. P. (2008). EFFECT OF DISACCHARIDES ON SURVIVAL DURING STORAGE OF FREEZE-DRIED PROBIOTICS. DAIRY SCIENCE AND TECHNOLOGY, 88(1), 19–30. https://doi.org/10.1051/dst:2007003 TANG, H. W., ABBASILIASI, S., MURUGAN, P., TAM, Y. J., NG, H. S., & TAN, J. S. (2020). INFLUENCE OF FREEZE-DRYING AND SPRAY-DRYING PRESERVATION METHODS ON SURVIVABILITY RATE OF DIFFERENT TYPES OF PROTECTANTS ENCAPSULATED LACTOBACILLUS ACIDOPHILUS FTDC 3081. BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 84(9), 1913–1920. https://doi.org/10.1080/09168451.2020.1770572 WANG, G., PU, J., DONG, C., ZHENG, X., GUO, B., XIA, Y., & AI, L. (2021). EFFECT OF OLEIC ACID ON THE VIABILITY OF DIFFERENT FREEZE-DRIED LACTIPLANTIBACILLUS PLANTARUM STRAINS. JOURNAL OF DAIRY SCIENCE, 104(11), 11457–11465. https://doi.org/10.3168/jds.2020-20070 TYAGI, N., GIDLÖF, Z., OSANLÓO, D. T., COLLIER, E. S., KADEKAR, S., RINGSTAD, L., FUREBY, A. M., & ROOS, S. (2023). THE IMPACT OF FORMULATION AND FREEZE DRYING ON THE PROPERTIES AND PERFORMANCE OF FREEZE-DRIED LIMOSILACTOBACILLUS REUTERI R2LC. APPLIED MICROBIOLOGY, 3(4), 1370–1387. https://doi.org/10.3390/applmicrobiol3040092 BOVE, P., CAPOZZI, V., GAROFALO, C., RIEU, A., SPANO, G., & FIOCCO, D. (2011). INACTIVATION OF THE FTSH GENE OF LACTOBACILLUS PLANTARUM WCFS1: EFFECTS ON GROWTH, STRESS TOLERANCE, CELL SURFACE PROPERTIES AND BIOFILM FORMATION. MICROBIOLOGICAL RESEARCH, 167(4), 187–193. https://doi.org/10.1016/j.micres.2011.07.001 LANGKLOTZ, S., BAUMANN, U., & NARBERHAUS, F. (2011). STRUCTURE AND FUNCTION OF THE BACTERIAL AAA PROTEASE FTSH. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH, 1823(1), 40–48. https://doi.org/10.1016/j.bbamcr.2011.08.015 FIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2008). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688–1694. https://doi.org/10.1128/jb.01551-08 FIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2009). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. https://doi.org/10.1128/jb.01122-09 ELSHOLZ, A. K., GERTH, U., & HECKER, M. (2010). REGULATION OF CTSR ACTIVITY IN LOW GC, GRAM+ BACTERIA. ADVANCES IN MICROBIAL PHYSIOLOGY/ADVANCES IN MICROBIAL PHYSIOLOGY, 119–144. https://doi.org/10.1016/b978-0-12-381045-8.00003-5 SMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153. https://doi.org/10.1128/jb.180.23.6148-6153.1998 FOUCAUD-SCHEUNEMANN, C., & POQUET, I. (2003). HTRA IS A KEY FACTOR IN THE RESPONSE TO SPECIFIC STRESS CONDITIONS INLACTOCOCCUS LACTIS. FEMS MICROBIOLOGY LETTERS, 224(1), 53–59. https://doi.org/10.1016/s0378-1097(03)00419-1 TAXONOMY. (N.D.). NAVEGADOR DE TAXONOMÍA (LIMOSILACTOBACILLUS FERMENTUM). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=1613&lvl=3&lin=s&keep=1&srchmode=1&unlock&log_op=lineage_toggle KONG, L., HUANG, Y., ZENG, X., YE, C., WU, Z., GUO, Y., & PAN, D. (2022). EFFECTS OF GALACTOSYLTRANSFERASE ON EPS BIOSYNTHESIS AND FREEZE-DRYING RESISTANCE OF LACTOBACILLUS ACIDOPHILUS NCFM. FOOD CHEMISTRY MOLECULAR SCIENCES, 5, 100145. https://doi.org/10.1016/j.fochms.2022.100145 LIU, Z., ZHAO, X., & BANGASH, H. I. (2024). EXPRESSION OF STRESS RESPONSIVE GENES ENABLES LIMOSILACTOBACILLUS REUTERI TO CROSS-PROTECTION AGAINST ACID, BILE SALT, AND FREEZE-DRYING. FRONTIERS IN MICROBIOLOGY, 15. https://doi.org/10.3389/fmicb.2024.1437803 TORRES RODELO, M. D. R. (2018). EVALUACIÓN TECNOLÓGICA DEL PROCESO DE OBTENCIÓN DE BIOMASA DE MICROORGANISMOS PROBIÓTICOS EN MEDIO DE CULTIVO FORMULADO CON SUERO LÁCTEO SUPLEMENTADO (DOCTORAL DISSERTATION). |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Barranquilla |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/31391/4/CARO.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31391/5/AUTORIZACION%20CARO.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/31391/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/31391/1/CARO.pdf http://repository.unilibre.edu.co/bitstream/10901/31391/2/AUTORIZACION%20CARO.pdf |
bitstream.checksum.fl_str_mv |
1334ef502f6dc0836d09561f847151cf 40ff960ac9f99abf1a564acd31a78918 8a4605be74aa9ea9d79846c1fba20a33 2a075834ddcfad6f489fdf89a46a283a 23333acb342cf9b27d5bf1951b7346f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1837099483659239424 |
spelling |
Gutiérrez Castañeda, Clara GilmaCaro Martínez, Stephanie SofíaBarranquilla2025-06-24T21:42:31Z2025-06-24T21:42:31Z2025https://hdl.handle.net/10901/31391Limosilactobacillus fermentum es un microorganismo probiótico con potencial uso en alimentación animal, el suministro de microorganismos de forma segura para la alimentación animal requiere de estudios de bioprospección microbiana, en donde una etapa clave comprende el secado para la comercialización del microorganismo, este estudio centró su objetivo en reconocer los factores claves para la liofilización de esta bacteria a través de revisión bibliográfica, en fuentes bibliográficas como Scopus, Science Direct y Pubmed, de esta revisión se encontraron un total de 81 artículos Se identificaron los factores críticos que influyen en el éxito de la viabilidad microbiana, entre estos la temperatura d congelación, el tiempo de sublimación, el usado crioprotectores, las presiones y la cepa usada, Como conclusión la optimización de la técnica depende de muchos factores del propio proceso e incluso antes de aplicarlo como el uso de marcadores biológico, y posterior, como el almacenamiento de los liofilizados, sin embargo al ser estudio de revisión no se aplican los resultados para corroborar lo encontrado pero da paso para futuras investigaciones y aplicación en protocolos.Universidad Libre Seccional Barranquilla -- Facultad de Ciencias de la Salud, Exactas y Naturales -- Programa de MicrobiologíaLimosilactobacillus fermentum is a probiotic microorganism with potential use in animal feed, the supply of microorganisms safely for animal feed requires microbial bioprospecting studies, where a key stage involves drying for the commercialization of the microorganism, this study focused its objective in recognizing the key factors for the freeze drying of this bacterium through literature review, in bibliographic sources such as Scopus, Science Direct and Pubmed, A total of 81 articles were found from this review. products:factors that influence the success of microbial viability were identified, including freezing temperature, sublimation time, the use of cryoprotectants, pressures and the strain used, As a conclusion, the optimization of the technique depends on many factors of the process itself and even before applying it, such as the use of biological markers, and later, such as the storage of the lyophilized products; however, since it is a review study, the results are not applied to corroborate what was found, but it gives way for future research and application in protocols.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2LiofilizaciónLimosilactobacillus spprobióticoLyophilizationLimosilactobacillus spprobioticLiofilizaciónBiotecnología microbianaProbióticosFactores críticos en la sobrivencia a la liofilización en limosilactobacillus sp: Revisión documentalTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisADITHI, G., DIVYASHREE, S., SHRUTHI, B., DEEPA, N., & SREENIVASA, M. Y. (2024). EVALUATION OF LIMOSILACTOBACILLUS FERMENTUM MYSAGAM1 ISOLATED FROM HERBAL AMLA JUICE AS A PROBIOTIC CANDIDATE WITH ANTIFUNGAL CHARACTERISTICS AGAINST FUSARIUM EQUISETI. FOOD BIOSCIENCE (PRINT), 103843. HTTPS://DOI.ORG/10.1016/J.FBIO.2024.103843ADOLFO, P. H. R. (2010). REVIEW. BACTERIAS ACIDO LÁCTICAS: PAPEL FUNCIONAL EN LOS ALIMENTOS.HTTP://WWW.SCIELO.ORG.CO/SCIELO.PHP?SCRIPT=SCI_ARTTEXT&PID=S1692-35612010000100012ALFONSO, E., & EA, C. (2006). BACTERIAS ÁCIDO-LÁCTICAS (BAL): APLICACIONES COMO CULTIVOS ESTÁRTER PARA LA INDUSTRIA LÁCTEA Y CÁRNICA. RESEARCHGATE. HTTPS://DOI.ORG/10.13140/2.1.2241.2169ALVA, D. H. G., GUZMAN, M. J. M., ANDRÉS, M., & DURAN, S. (2021). USO DE PROBIÓTICOS EN LA NUTRICIÓN DE BOVINOSALVES, B. /. O. /. O.-. M. (N.D.). DECS. HTTPS://DECS.BVSALUD.ORG/ES/THS/RESOURCE/?ID=2498#CONCEPTSBAZÁN, J. V., & VARGAS, C. T. (2019). AISLAMIENTO DE LACTOBACILLUS NATIVOS DE PRODUCTOS DE FERMENTACIÓN EN LA CIUDAD DE TACNA. CIENCIA Y DESARROLLO, 11, 61–66. HTTPS://DOI.ORG/10.33326/26176033.2007.11.226BOUCHIBANE, M., CHERIGUENE, A., FADELA, C., BOUOUDINA, M., KACED, A., DAHOU, A., BENBOUZIANE, B., & SAADA, D. A. (2023). TECHNOLOGICAL AND GENOTYPIC CHARACTERISTICS OF LACTIC ACID BACTERIA ISOLATED FROM ALGERIAN ARTISANAL DAIRY PRODUCTS. INTERNATIONAL DAIRY JOURNAL, 146, 105747. HTTPS://DOI.ORG/10.1016/J.IDAIRYJ.2023.105747BRANDT, K., NETHERY, M. A., O’FLAHERTY, S., & BARRANGOU, R. (2020). GENOMIC CHARACTERIZATION OF LACTOBACILLUS FERMENTUM DSM 20052. BMC GENOMICS, 21(1). HTTPS://DOI.ORG/10.1186/S12864-020-6740-8BUTORAC, K., NOVAK, J., BELLICH, B., TERÁN, L. C., BANIĆ, M., PAVUNC, A. L., ZJALIĆ, S., CESCUTTI, P., ŠUŠKOVIĆ, J., & KOS, B. (2021). LYOPHILIZED ALGINATE-BASED MICROSPHERES CONTAINING LACTOBACILLUS FERMENTUM D12, AN EXOPOLYSACCHARIDES PRODUCER, CONTRIBUTE TO THE STRAIN’S FUNCTIONALITY IN VITRO. MICROBIAL CELL FACTORIES, 20(1). HTTPS://DOI.ORG/10.1186/S12934-021-01575-6CAVALCANTI, R. F. P., GADELHA, F. A. A. F., FERREIRA, L. K. D. P., FERREIRA, L. A. M. P., JÚNIOR, J. V. C., DE ARAÚJO BATISTA, R. S., MELO, T. B. L., DE SOUZA, F. S., ALVES, A. F., BATISTA, L. M., & PIUVEZAM, M. R. (2023). LIMOSILACTOBACILLUS FERMENTUM MODULATES THE GUT-AIRWAY AXIS BY IMPROVING THE IMMUNE RESPONSE THROUGH FOXP3 ACTIVATION ON COMBINED ALLERGIC RHINITIS AND ASTHMA SYNDROME (CARAS). IMMUNOBIOLOGY (1979), 228(5), 152721. HTTPS://DOI.ORG/10.1016/J.IMBIO.2023.152721CHENG, Z., HE, X., WU, Z., & WENG, P. (2022). IMPROVING THE VIABILITY OF POWDERED LACTOBACILLUS FERMENTUM LF01 WITH COMPLEX LYOPROTECTANTS BY MAINTAINING CELL MEMBRANE INTEGRITY AND REGULATING RELATED GENES. JOURNAL OF FOOD BIOCHEMISTRY, 46(8). HTTPS://DOI.ORG/10.1111/JFBC.14181CHENG, Z., XU, Y., WU, J., WENG, P., & WU, J. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. HTTPS://DOI.ORG/10.1016/J.CRYOBIOL.2022.01.003CHOI, I. S., KO, S. H., KIM, H. M., YANG, J. E., JEONG, S.-G., CHANG, J. Y., LEE, K. H., QI, S.-B., XIN, Q., CUI, C.-B., MOON, J.-H., PARK, H. W. (2020). COFFEE RESIDUE AS A VALORIZATION BIO-AGENT FOR SHELF-LIFE EXTENSION OF LACTIC ACID BACTERIA UNDER CRYOPRESERVATION. WASTE MANAGEMENT (NEW YORK, N.Y.), 118, (585–590). HTTPS://DOI.ORG/10.1016/J.WASMAN.2020.09.025D’AMBROSIO, S., VENTRONE, M., FUSCO, A., CASILLO, A., DABOUS, A., CAMMAROTA, M., CORSARO, M. M., DONNARUMMA, G., SCHIRALDI, C., & CIMINI, D. (2022). LIMOSILACTOBACILLUS FERMENTUM FROM BUFFALO MILK IS SUITABLE FOR POTENTIAL BIOTECHNOLOGICAL PROCESS DEVELOPMENT AND INHIBITS HELICOBACTER PYLORI IN A GASTRIC EPITHELIAL CELL MODEL. BIOTECHNOLOGY REPORTS, 34, E00732. HTTPS://DOI.ORG/10.1016/J.BTRE.2022.E00732DABOUS, A., D’AMBROSIO, S., CIMINI, D., & SCHIRALDI, C. (2023). NOVEL HYDROXYECTOINES BASED FORMULATIONS ARE SUITABLE FOR PRESERVING VIABILITY OF LIMOSILACTOBACILLUS FERMENTUM, LEVILACTOBACILLUS BREVIS SP-48 AND BIFIDOBACTERIUM LACTIS HN019 DURING FREEZE-DRYING AND STORAGE, AND IN SIMULATED GASTROINTESTINAL FLUIDS. DRYING TECHNOLOGY, 41(12), 2062–2073. HTTPS://DOI.ORG/10.1080/07373937.2023.2217242DE INVESTIGACIONES AGROPECUARIAS CENTRO REGIONAL DE INVESTIGACIÓN QUILAMAPU, I. (2020). CONFORMACIÓN DE COLECCIONES DE CULTIVOS MICROBIANOS. HTTPS://BIBLIOTECA.INIA.CL/HANDLE/20.500.14001/6945FIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2009). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688-1694.FIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2010). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. HTTPS://DOI.ORG/10.1128/JB.01122-09GAO, T., LU, L., WU, Q., & WANG, C. (2023). COMPLETE GENOME SEQUENCE OF LACTOBACILLUS FERMENTUM 9-4, A PURINE-DEGRADING LACTOBACILLUS PROBIOTIC ISOLATED FROM CHINESE FERMENTED RICE-FLOUR NOODLES. JOURNAL OF FUTURE FOODS, 3(2), 169–174. HTTPS://DOI.ORG/10.1016/J.JFUTFO.2022.12.008GAWANDE, K., KOLHEKAR, M., KUMARI, M., KAPILA, S., SHARMA, P., ALI, S. A., & BEHARE, P. (2021). LACTIC ACID BACTERIA BASED PURIFIED EXOPOLYSACCHARIDE SHOWED VISCOFYING AND HYPERCHOLESTEROLEMIC CAPABILITES. FOOD HYDROCOLLOIDS FOR HEALTH, 1, 100042. HTTPS://DOI.ORG/10.1016/J.FHFH.2021.100042GE, S., HAN, J., SUN, Q., ZHOU, Q., YE, Z., LI, P., & GU, Q. (2024). RESEARCH PROGRESS ON IMPROVING THE FREEZE-DRYING RESISTANCE OF PROBIOTICS: A REVIEW. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 104425.GORBEÑA, J. C. R., & SÁENZ, T. A. (2008). BACTERIAS ÁCIDO LÁCTICAS: BIOPRESERVANTE DE LOS ALIMENTOS. BIOTEMPO, 8, 54-64JIANG, X., SHEKARFOROUSH, E., MUHAMMED, M. K., WHITEHEAD, K., SIMONSEN, A. C., ARNEBORG, N., & RISBO, J. (2021). EFFICIENT CHEMICAL HYDROPHOBIZATION OF LACTIC ACID BACTERIA - ONE-STEP FORMATION OF DOUBLE EMULSION. FOOD RESEARCH INTERNATIONAL (OTTAWA, ONT.), 147(110460), 110460. HTTPS://DOI.ORG/10.1016/J.FOODRES.2021.110460KIM, W. S., PERL, L., PARK, J. H., TANDIANUS, J. E., & DUNN, N. W. (2001). ASSESSMENT OF STRESS RESPONSE OF THE PROBIOTIC LACTOBACILLUS ACIDOPHILUS. CURRENT MICROBIOLOGY, 43, 346-350.KURATSU, M., HAMANO, Y., & DAIRI, T. (2010). ANALYSIS OF THE LACTOBACILLUS METABOLIC PATHWAY. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 76(21), 7299–7301. HTTPS://DOI.ORG/10.1128/AEM.01514-10LANDO, V., VALDUGA, N. Z., & MORONI, L. S. (2023). FUNCTIONAL CHARACTERIZATION OF LACTOBACILLI STRAINS WITH ANTIMICROBIAL ACTIVITY AGAINST SALMONELLA SPP. AND CELL VIABILITY IN FERMENTED DAIRY PRODUCT. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 47, 102605. HTTPS://DOI.ORG/10.1016/J.BCAB.2023.102605LIU, D., ZHAO, F., LIU, L., ZHANG, J., WU, S., LÜ, X., ZHANG, H., & YI, Y. (2023). ENHANCING THE ANTIOXIDANT CAPACITY AND QUALITY ATTRIBUTES OF FERMENTED GOAT MILK THROUGH SYNERGISTIC ACTION OF LIMOSILACTOBACILLUS FERMENTUM WXZ 2-1 WITH STARTER CULTURE. JOURNAL OF DAIRY SCIENCE. HTTPS://DOI.ORG/10.3168/JDS.2023-24135MATEOS LARDIÉS, A. M., & ÁLVAREZ CALATAYUD, G. (2018). GUÍA DE ACTUACIÓN Y DOCUMENTO DE CONSENSO SOBRE EL MANEJO DE PREPARADOS CON PROBIÓTICOS Y/O PREBIÓTICOS EN LA FARMACIA COMUNITARIA SEFAC Y SEPYP [CONJUNTO DE DATOS]. EN SEFAC. HTTPS://WWW.SEFAC.ORG/SITES/DEFAULT/FILES/2018-07/GUIA_PROBIOTICOS%20WEB.PDFMIKELSAAR, M., & ZILMER, M. (2009). LACTOBACILLUS FERMENTUMME-3 – AN ANTIMICROBIAL AND ANTIOXIDATIVE PROBIOTIC. MICROBIAL ECOLOGY IN HEALTH AND DISEASE, 21(1), 1–27. HTTPS://DOI.ORG/10.1080/08910600902815561MOLINA-TIJERAS, J. A., DIEZ-ECHAVE, P., VEZZA, T., HIDALGO-GARCÍA, L., RUIZ-MALAGÓN, A. J., RODRÍGUEZ-SOJO, M. J., ROMERO, M., ROBLES-VERA, I., GARCÍA, F., PLAZA‐DÍAZ, J., OLIVARES, M., DUARTE, J., RODRÍGUEZ-CABEZAS, M. E., RODRÍGUEZ-NOGALES, A., & GÁLVEZ, J. (2021). LACTOBACILLUS FERMENTUM CECT5716 AMELIORATES HIGH FAT DIET-INDUCED OBESITY IN MICE THROUGH MODULATION OF GUT MICROBIOTA DYSBIOSIS. PHARMACOLOGICAL RESEARCH, 167, 105471. HTTPS://DOI.ORG/10.1016/J.PHRS.2021.105471MOLINA, A. (2019). PROBIOTICS AND THEIR MECHANISM OF ACTION IN ANIMAL FEED. AGRONOMÍA MESOAMERICANA, 30(2), 601-611MOZZI, F., RAYA, R. R., VIGNOLO, G. M., & LOVE, J. C. (2015). BIOTECHNOLOGY OF LACTIC ACID BACTERIA: NOVEL APPLICATIONS. 2. SINGAPORE: WILEY-BLACKWELLNAGHMOUCHI, K., BELGUESMIA, Y., BENDALI, F., SPANO, G., SEAL, B. S., & DRIDER, D. (2019). LACTOBACILLUS FERMENTUM: A BACTERIAL SPECIES WITH POTENTIAL FOR FOOD PRESERVATION AND BIOMEDICAL APPLICATIONS. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 60(20), 3387–3399. HTTPS://DOI.ORG/10.1080/10408398.2019.1688250PATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE: ECAM, 2022, 4651194. HTTPS://DOI.ORG/10.1155/2022/4651194RAMÍREZ‐LÓPEZ, C., & VÉLEZ‐RUIZ, J. F. (2016). AISLAMIENTO, CARACTERIZACIÓN Y SELECCIÓN DE BACTERIAS LÁCTICAS AUTÓCTONAS DE LECHE Y QUESO FRESCO ARTESANAL DE CABRA. INFORMACIÓN TECNOLÓGICA, 27(6), 115–128. HTTPS://DOI.ORG/10.4067/S0718-07642016000600012REGUERO, M. T., ÁVILA-PORTILLO, L. M., MADERO, J. I., LÓPEZ, C., LEÓN, M. F., ACOSTA, L., GÓMEZ, C., DELGADO, L. G., GÓMEZ, C., & LOZANO, J. M. (2006). FUNDAMENTOS DE CRIOPRESERVACIÓN. REDALYC.ORG. HTTPS://WWW.REDALYC.ORG/ARTICULO.OA?ID=195214318008REINHEIMER, J. A. (2020). EXOPOLISACÁRIDOS (EPS) DE LACTOBACILLUS FERMENTUM: NUEVOS INGREDIENTES ALIMENTARIOS CON DOBLE ROL TECNOLÓGICO Y FUNCIONAL PARA PRODUCTOS LÁCTEOS. HTTPS://RI.CONICET.GOV.AR/HANDLE/11336/138888ROSSI, F., ZOTTA, T., IACUMIN, L., & REALE, A. (2016). THEORETICAL INSIGHT INTO THE HEAT SHOCK RESPONSE (HSR) REGULATION IN LACTOBACILLUS CASEI AND L. RHAMNOSUS. JOURNAL OF THEORETICAL BIOLOGY, 402, 21-37.SAMPAIO, K. B., ALVES, J. L., NASCIMENTO, Y. M. D., TAVARES, J. F., DA SILVA, M. S., NASCIMENTO, D. D. S., LIMA, M. D. S., DE ARAÚJO RODRIGUES, N. P., GARCIA, E. F., & DE SOUZA, E. L. (2022). NUTRACEUTICAL FORMULATIONS COMBINING LIMOSILACTOBACILLUS FERMENTUM, QUERCETIN, AND OR RESVERATROL WITH BENEFICIAL IMPACTS ON THE ABUNDANCE OF INTESTINAL BACTERIAL POPULATIONS, METABOLITE PRODUCTION, AND ANTIOXIDANT CAPACITY DURING COLONIC FERMENTATION. FOOD RESEARCH INTERNATIONAL, 161, 111800. HTTPS://DOI.ORG/10.1016/J.FOODRES.2022.111800SERNA, D. Y. C., BARANDICA, L. A. R., CASTAÑEDA, L. P. T., SABOGAL, H. R. J., ALMARIO, C. G., ESTRADA-BONILLA, G. A., BUITRAGO, R. R. B., CAMPOS, P. J. C., MONCADA, U. A. P., URIBE-GUTIÉRREZ, L. A., RIAÑO, J. L. G., GÓMEZ, C. V. A., VILLAMIZAR, F. R., LEÓN, R. F. H., MÁSMELA, J. C. O., RUTE, L. M. B., IBÁÑEZ, M. C. R., DEL CARMEN JIMÉNEZ VELÁSQUEZ, S., HIGUERA, L. D. T., . . . ARDILA, D. E. L. (2021). CONSERVACIÓN Y MANEJO DE LA DIVERSIDAD MICROBIANA EN LOS BANCOS DE GERMOPLASMA PARA LA ALIMENTACIÓN Y LA AGRICULTURA EN COLOMBIA. IN CORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA (AGROSAVIA) EBOOKS. HTTPS://DOI.ORG/10.21930/AGROSAVIA.ANALISIS.7404845SMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153.TARANNUM, N., ALI, F., KHAN, M. S., ALHUMAIDAN, O. S., ZAWAD, A. S., & HOSSAIN, T. J. (2024). BIOACTIVE EXOPOLYSACCHARIDE FROM LIMOSILACTOBACILLUS FERMENTUM LAB-1: ANTIOXIDANT, ANTI-INFLAMMATORY, ANTIBACTERIAL AND ANTIBIOFILM PROPERTIES. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, 100409. HTTPS://DOI.ORG/10.1016/J.BCDF.2024.100409WEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2023). LIMOSILACTOBACILLUS FERMENTUM NCU003089 AND LACTIPLANTIBACILLUS PLANTARUM NCU001261, TWO PROBIOTICS WITH INHIBITION OF ESCHERICHIA COLI AND CRONOBACTER SAKAZAKII TRANSLOCATION IN VITRO. MICROBIAL PATHOGENESIS, 181, 106216. HTTPS://DOI.ORG/10.1016/J.MICPATH.2023.106216WEI, B., PENG, Z., XIAO, M., HUANG, T., ZHENG, W., XIE, M., & XIONG, T. (2022). THREE LACTIC ACID BACTERIA WITH ANTI-OBESITY PROPERTIES: IN VITRO SCREENING AND PROBIOTIC ASSESSMENT. FOOD BIOSCIENCE, 47, 101724. HTTPS://DOI.ORG/10.1016/J.FBIO.2022.101724ZHAO, S., FENG, P., HU, X., CAO, W., LIU, P., HAN, H., JIN, W., & LI, X. (2022). PROBIOTIC LIMOSILACTOBACILLUS FERMENTUM GR-3 AMELIORATES HUMAN HYPERURICEMIA VIA DEGRADING AND PROMOTING EXCRETION OF URIC ACID. ISCIENCE, 25(10), 105198. HTTPS://DOI.ORG/10.1016/J.ISCI.2022.105198ZHAO, X., PENG, F., LIU, Z., PENG, Z., GUAN, Q., CAI, P., XIONG, S., YU, Q., XIE, M., & XIONG, T. (2023). LACTIC ACID BACTERIA WITH ANTI-HYPERURICEMIA ABILITY: SCREENING IN VITRO AND EVALUATING IN MICE. FOOD BIOSCIENCE, 52, 102411. https://doi.org/10.1016/j.fbio.2023.102411ARAGÓN-ROJAS, S., RUIZ-PARDO, R. Y., HERNÁNDEZ-ÁLVAREZ, A. J., & QUINTANILLA-CARVAJAL, M. X. (2019). SUBLIMATION CONDITIONS AS CRITICAL FACTORS DURING FREEZE-DRIED PROBIOTIC POWDER PRODUCTION. DRYING TECHNOLOGY, 38(3), 333–349. https://doi.org/10.1080/07373937.2019.1570248CUI, S., HU, M., SUN, Y., MAO, B., ZHANG, Q., ZHAO, J., TANG, X., & ZHANG, H. (2022). EFFECT OF TREHALOSE AND LACTOSE TREATMENTS ON THE FREEZE-DRYING RESISTANCE OF LACTIC ACID BACTERIA IN HIGH-DENSITY CULTURE. MICROORGANISMS, 11(1), 48. https://doi.org/10.3390/microorganisms11010048PATIL, A., MUNOT, N., PATWEKAR, M., PATWEKAR, F., AHMAD, I., ALRAEY, Y., ALGHAMDI, S., KABRAH, A., DABLOOL, A. S., & ISLAM, F. (2022). ENCAPSULATION OF LACTIC ACID BACTERIA BY LYOPHILISATION WITH ITS EFFECTS ON VIABILITY AND ADHESION PROPERTIES. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 1–9. https://doi.org/10.1155/2022/4651192STEFANELLO, R. F., NABESHIMA, E. H., IAMANAKA, B. T., LUDWIG, A., FRIES, L. L. M., BERNARDI, A. O., & COPETTI, M. V. (2019). SURVIVAL AND STABILITY OF LACTOBACILLUS FERMENTUM AND WICKERHAMOMYCES ANOMALUS STRAINS UPON LYOPHILISATION WITH DIFFERENT CRYOPROTECTANT AGENTS. FOOD RESEARCH INTERNATIONAL, 115, 90–94. https://doi.org/10.1016/j.foodres.2018.07.044CHENG, Z., YAN, X., WU, J., WENG, P., & WU, Z. (2022). EFFECTS OF FREEZE DRYING IN COMPLEX LYOPROTECTANTS ON THE SURVIVAL, AND MEMBRANE FATTY ACID COMPOSITION OF LACTOBACILLUS PLANTARUM L1 AND LACTOBACILLUS FERMENTUM L2. CRYOBIOLOGY, 105, 1–9. https://doi.org/10.1016/j.cryobiol.2022.01.004CHEN, M., & MUSTAPHA, A. (2011). SURVIVAL OF FREEZE-DRIED MICROCAPSULES OF Α-GALACTOSIDASE PRODUCING PROBIOTICS IN A SOY BAR MATRIX. FOOD MICROBIOLOGY, 30(1), 68–73. https://doi.org/10.1016/j.fm.2011.10.017AMPATZOGLOU, A., SCHURR, B., DEEPIKA, G., BAIPONG, S., & CHARALAMPOPOULOS, D. (2010). INFLUENCE OF FERMENTATION ON THE ACID TOLERANCE AND FREEZE-DRYING SURVIVAL OF LACTOBACILLUS RHAMNOSUS GG. BIOCHEMICAL ENGINEERING JOURNAL, 52(1), 65–70. https://doi.org/10.1016/j.bej.2010.07.005HEIDEBACH, T., FÖRST, P., & KULOZIK, U. (2010). INFLUENCE OF CASEIN-BASED MICROENCAPSULATION ON FREEZE-DRYING AND STORAGE OF PROBIOTIC CELLS. JOURNAL OF FOOD ENGINEERING, 98(3), 309–316. https://doi.org/10.1016/j.jfoodeng.2010.01.003RATHNAYAKA, R. M. U. S. K. (2013). EFFECT OF FREEZE-DRYING ON VIABILITY AND PROBIOTIC PROPERTIES OF A MIXTURE OF PROBIOTIC BACTERIA. ARPN J. SCI. TECHNOL, 3, 1074-1078CHOTIKO, A., & SATHIVEL, S. (2014). EFFECTS OF ENZYMATICALLY EXTRACTED PURPLE RICE BRAN FIBER AS A PROTECTANT OF L. PLANTARUM NRRL B-4496 DURING FREEZING, FREEZE DRYING, AND STORAGE. LWT, 59(1), 59–64. https://doi.org/10.1016/j.lwt.2014.05.056KRASAEKOOPT, W. (2017). INFLUENCE OF NON-EQUILIBRIUM STATES AND GLASS TRANSITION ON THE SURVIVAL OF BACTERIA. IN ELSEVIER EBOOKS (PP. 405–446). https://doi.org/10.1016/b978-0-08-100309-1.00021-3MIAO, S., MILLS, S., STANTON, C., FITZGERALD, G. F., ROOS, Y., & ROSS, R. P. (2008). EFFECT OF DISACCHARIDES ON SURVIVAL DURING STORAGE OF FREEZE-DRIED PROBIOTICS. DAIRY SCIENCE AND TECHNOLOGY, 88(1), 19–30. https://doi.org/10.1051/dst:2007003TANG, H. W., ABBASILIASI, S., MURUGAN, P., TAM, Y. J., NG, H. S., & TAN, J. S. (2020). INFLUENCE OF FREEZE-DRYING AND SPRAY-DRYING PRESERVATION METHODS ON SURVIVABILITY RATE OF DIFFERENT TYPES OF PROTECTANTS ENCAPSULATED LACTOBACILLUS ACIDOPHILUS FTDC 3081. BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 84(9), 1913–1920. https://doi.org/10.1080/09168451.2020.1770572WANG, G., PU, J., DONG, C., ZHENG, X., GUO, B., XIA, Y., & AI, L. (2021). EFFECT OF OLEIC ACID ON THE VIABILITY OF DIFFERENT FREEZE-DRIED LACTIPLANTIBACILLUS PLANTARUM STRAINS. JOURNAL OF DAIRY SCIENCE, 104(11), 11457–11465. https://doi.org/10.3168/jds.2020-20070TYAGI, N., GIDLÖF, Z., OSANLÓO, D. T., COLLIER, E. S., KADEKAR, S., RINGSTAD, L., FUREBY, A. M., & ROOS, S. (2023). THE IMPACT OF FORMULATION AND FREEZE DRYING ON THE PROPERTIES AND PERFORMANCE OF FREEZE-DRIED LIMOSILACTOBACILLUS REUTERI R2LC. APPLIED MICROBIOLOGY, 3(4), 1370–1387. https://doi.org/10.3390/applmicrobiol3040092BOVE, P., CAPOZZI, V., GAROFALO, C., RIEU, A., SPANO, G., & FIOCCO, D. (2011). INACTIVATION OF THE FTSH GENE OF LACTOBACILLUS PLANTARUM WCFS1: EFFECTS ON GROWTH, STRESS TOLERANCE, CELL SURFACE PROPERTIES AND BIOFILM FORMATION. MICROBIOLOGICAL RESEARCH, 167(4), 187–193. https://doi.org/10.1016/j.micres.2011.07.001LANGKLOTZ, S., BAUMANN, U., & NARBERHAUS, F. (2011). STRUCTURE AND FUNCTION OF THE BACTERIAL AAA PROTEASE FTSH. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH, 1823(1), 40–48. https://doi.org/10.1016/j.bbamcr.2011.08.015FIOCCO, D., COLLINS, M., MUSCARIELLO, L., HOLS, P., KLEEREBEZEM, M., MSADEK, T., & SPANO, G. (2008). THE LACTOBACILLUS PLANTARUM FTSH GENE IS A NOVEL MEMBER OF THE CTSR STRESS RESPONSE REGULON. JOURNAL OF BACTERIOLOGY, 191(5), 1688–1694. https://doi.org/10.1128/jb.01551-08FIOCCO, D., CAPOZZI, V., COLLINS, M., GALLONE, A., HOLS, P., GUZZO, J., WEIDMANN, S., RIEU, A., MSADEK, T., & SPANO, G. (2009). CHARACTERIZATION OF THE CTSR STRESS RESPONSE REGULON IN LACTOBACILLUS PLANTARUM. JOURNAL OF BACTERIOLOGY, 192(3), 896–900. https://doi.org/10.1128/jb.01122-09ELSHOLZ, A. K., GERTH, U., & HECKER, M. (2010). REGULATION OF CTSR ACTIVITY IN LOW GC, GRAM+ BACTERIA. ADVANCES IN MICROBIAL PHYSIOLOGY/ADVANCES IN MICROBIAL PHYSIOLOGY, 119–144. https://doi.org/10.1016/b978-0-12-381045-8.00003-5SMEDS, A., VARMANEN, P., & PALVA, A. (1998). MOLECULAR CHARACTERIZATION OF A STRESS-INDUCIBLE GENE FROM LACTOBACILLUS HELVETICUS. JOURNAL OF BACTERIOLOGY, 180(23), 6148–6153. https://doi.org/10.1128/jb.180.23.6148-6153.1998FOUCAUD-SCHEUNEMANN, C., & POQUET, I. (2003). HTRA IS A KEY FACTOR IN THE RESPONSE TO SPECIFIC STRESS CONDITIONS INLACTOCOCCUS LACTIS. FEMS MICROBIOLOGY LETTERS, 224(1), 53–59. https://doi.org/10.1016/s0378-1097(03)00419-1TAXONOMY. (N.D.). NAVEGADOR DE TAXONOMÍA (LIMOSILACTOBACILLUS FERMENTUM). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=1613&lvl=3&lin=s&keep=1&srchmode=1&unlock&log_op=lineage_toggleKONG, L., HUANG, Y., ZENG, X., YE, C., WU, Z., GUO, Y., & PAN, D. (2022). EFFECTS OF GALACTOSYLTRANSFERASE ON EPS BIOSYNTHESIS AND FREEZE-DRYING RESISTANCE OF LACTOBACILLUS ACIDOPHILUS NCFM. FOOD CHEMISTRY MOLECULAR SCIENCES, 5, 100145. https://doi.org/10.1016/j.fochms.2022.100145LIU, Z., ZHAO, X., & BANGASH, H. I. (2024). EXPRESSION OF STRESS RESPONSIVE GENES ENABLES LIMOSILACTOBACILLUS REUTERI TO CROSS-PROTECTION AGAINST ACID, BILE SALT, AND FREEZE-DRYING. FRONTIERS IN MICROBIOLOGY, 15. https://doi.org/10.3389/fmicb.2024.1437803TORRES RODELO, M. D. R. (2018). EVALUACIÓN TECNOLÓGICA DEL PROCESO DE OBTENCIÓN DE BIOMASA DE MICROORGANISMOS PROBIÓTICOS EN MEDIO DE CULTIVO FORMULADO CON SUERO LÁCTEO SUPLEMENTADO (DOCTORAL DISSERTATION).THUMBNAILCARO.pdf.jpgCARO.pdf.jpgimage/jpeg55237http://repository.unilibre.edu.co/bitstream/10901/31391/4/CARO.pdf.jpg1334ef502f6dc0836d09561f847151cfMD54AUTORIZACION CARO.pdf.jpgAUTORIZACION CARO.pdf.jpgIM Thumbnailimage/jpeg26025http://repository.unilibre.edu.co/bitstream/10901/31391/5/AUTORIZACION%20CARO.pdf.jpg40ff960ac9f99abf1a564acd31a78918MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/31391/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALCARO.pdfCARO.pdfArchivo del trabajo de gradoapplication/pdf642698http://repository.unilibre.edu.co/bitstream/10901/31391/1/CARO.pdf2a075834ddcfad6f489fdf89a46a283aMD51AUTORIZACION CARO.pdfAUTORIZACION CARO.pdfAutorización para la publicaciónapplication/pdf1887379http://repository.unilibre.edu.co/bitstream/10901/31391/2/AUTORIZACION%20CARO.pdf23333acb342cf9b27d5bf1951b7346f5MD5210901/31391oai:repository.unilibre.edu.co:10901/313912025-06-26 06:00:25.976Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |