Non-local ring embedded in a direct product of fields

In this paper we study the immersion of a non-local commutative ring with unity R into a direct productof fields. In the product of quotient fields defined by the maximal ideals of R. The ring homomorphismϕ from R into direct product of quotient fields is defined by the universal property of the dir...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/15396
Acceso en línea:
https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15963
https://repositorio.uptc.edu.co/handle/001/15396
Palabra clave:
Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.
Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.
Rights
License
http://purl.org/coar/access_right/c_abf2
id REPOUPTC2_8e8da4552c956c96e6ceded6fe11f94d
oai_identifier_str oai:repositorio.uptc.edu.co:001/15396
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2024-04-092024-07-08T14:24:11Z2024-07-08T14:24:11Zhttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/1596310.19053/01217488.v15.n1.2024.15963https://repositorio.uptc.edu.co/handle/001/15396In this paper we study the immersion of a non-local commutative ring with unity R into a direct productof fields. In the product of quotient fields defined by the maximal ideals of R. The ring homomorphismϕ from R into direct product of quotient fields is defined by the universal property of the direct product.Let Kerϕ be the kernel of ϕ, then Kerϕ = J (R), with J (R) is the Jacobson radical of the ring R. IfJ (R) = {0}, the ring homomorphism is injective in the infinite case and in the finite case, we will proof ϕis an isomorphism. In addition, we consider R a total ring of fractions with finite number of maximal idealsand will show that the ring homomorphism from R into a direct product of localizations is injective. Evenmore, if R have the form Zn, with n ̸= 0, or R is a finite dimensional K−algebra with field K, we have thatthis ring homomorphism is an isomorphism.En este artículo estudiamos la inmersión de R, un anillo conmutativo con unidad no local, en un productodirecto de cuerpos. En el producto de los cuerpos cocientes de R dados por sus ideales maximales. Elhomomorfismo ϕ de R en el producto directo de cuerpos cocientes está definido por la propiedad universaldel producto y su núcleo es Kerϕ = J (R), donde J (R) es el radical de Jacobson de R. Si J (R) = {0},el homomorfismo es inyectivo en el caso infinito, y en el caso finito probaremos que ϕ es un isomorfismo.Además, consideramos el caso donde R es un anillo total de fracciones con un número finito de idealesmaximales y mostraremos que el homomorfismo de R en el producto de sus localizados es inyectivo. Másaún, si R es de la forma Zn, con n ̸= 0, o R es una K−álgebra finita, con K un cuerpo, tenemos que estehomomorfismo es un isomorfismo.spaUniversidad Pedagógica y Tecnológica de ColombiaCiencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-JunioCiencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio2462-76580121-7488Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.Non-local ring embedded in a direct product of fieldsAnillo no local inmerso en producto de cuerposinfo:eu-repo/semantics/articleMathematics research articleArtículo de investigación en matem´aticashttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/access_right/c_abf2Granados Pinzón, Claudia001/15396oai:repositorio.uptc.edu.co:001/153962025-07-18 10:56:33.052metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Non-local ring embedded in a direct product of fields
dc.title.es-ES.fl_str_mv Anillo no local inmerso en producto de cuerpos
title Non-local ring embedded in a direct product of fields
spellingShingle Non-local ring embedded in a direct product of fields
Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.
Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.
title_short Non-local ring embedded in a direct product of fields
title_full Non-local ring embedded in a direct product of fields
title_fullStr Non-local ring embedded in a direct product of fields
title_full_unstemmed Non-local ring embedded in a direct product of fields
title_sort Non-local ring embedded in a direct product of fields
dc.subject.es-ES.fl_str_mv Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.
topic Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.
Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.
dc.subject.en-US.fl_str_mv Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.
description In this paper we study the immersion of a non-local commutative ring with unity R into a direct productof fields. In the product of quotient fields defined by the maximal ideals of R. The ring homomorphismϕ from R into direct product of quotient fields is defined by the universal property of the direct product.Let Kerϕ be the kernel of ϕ, then Kerϕ = J (R), with J (R) is the Jacobson radical of the ring R. IfJ (R) = {0}, the ring homomorphism is injective in the infinite case and in the finite case, we will proof ϕis an isomorphism. In addition, we consider R a total ring of fractions with finite number of maximal idealsand will show that the ring homomorphism from R into a direct product of localizations is injective. Evenmore, if R have the form Zn, with n ̸= 0, or R is a finite dimensional K−algebra with field K, we have thatthis ring homomorphism is an isomorphism.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-08T14:24:11Z
dc.date.available.none.fl_str_mv 2024-07-08T14:24:11Z
dc.date.none.fl_str_mv 2024-04-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.en-US.fl_str_mv Mathematics research article
dc.type.es-ES.fl_str_mv Artículo de investigación en matem´aticas
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15963
10.19053/01217488.v15.n1.2024.15963
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/15396
url https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15963
https://repositorio.uptc.edu.co/handle/001/15396
identifier_str_mv 10.19053/01217488.v15.n1.2024.15963
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Ciencia En Desarrollo; Vol. 15 No. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.es-ES.fl_str_mv Ciencia en Desarrollo; Vol. 15 Núm. 1 (2024): Vol 15, Núm.1 (2024): Enero-Junio
dc.source.none.fl_str_mv 2462-7658
0121-7488
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633827679436800