Non-local ring embedded in a direct product of fields
In this paper we study the immersion of a non-local commutative ring with unity R into a direct productof fields. In the product of quotient fields defined by the maximal ideals of R. The ring homomorphismϕ from R into direct product of quotient fields is defined by the universal property of the dir...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15396
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/15963
https://repositorio.uptc.edu.co/handle/001/15396
- Palabra clave:
- Anillo total de fracciones, cuerpo cociente, K−álgebra finita, localización, producto directo de anillos, radical de Jacobson.
Total ring of fractions, field of fractions, finite dimensional K−algebra, localization, direct product of rings, Jacobson radical.
- Rights
- License
- http://purl.org/coar/access_right/c_abf2