Data analysis of thefts in the city of Medellin from a descriptive approach

This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the t...

Full description

Autores:
Tipo de recurso:
http://purl.org/coar/resource_type/c_6584
Fecha de publicación:
2023
Institución:
Universidad Pedagógica y Tecnológica de Colombia
Repositorio:
RiUPTC: Repositorio Institucional UPTC
Idioma:
spa
OAI Identifier:
oai:repositorio.uptc.edu.co:001/10407
Acceso en línea:
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
https://repositorio.uptc.edu.co/handle/001/10407
Palabra clave:
open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
Rights
License
Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación
id REPOUPTC2_8e55431e07d1b00ac73c02d900f1df76
oai_identifier_str oai:repositorio.uptc.edu.co:001/10407
network_acronym_str REPOUPTC2
network_name_str RiUPTC: Repositorio Institucional UPTC
repository_id_str
spelling 2023-02-152024-07-05T18:04:15Z2024-07-05T18:04:15Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1605910.19053/20278306.v13.n1.2023.16059https://repositorio.uptc.edu.co/handle/001/10407This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizensEste artículo tiene por objetivo identificar las tendencias y patrones de hurto en la ciudad de Medellín en el periodo 2014-2020, usando datos abiertos de gobierno. Se utiliza como metodología la inteligencia de negocios para el análisis de datos descriptivo. Se analizan variables como barrios, modalidades, tipo de hurto y se realiza la predicción de la variable modalidad de hurto. Los resultados muestran que históricamente el segundo semestre del año tiene la mayor tendencia de incidencias, donde la mayoría de robos suceden en los lugares públicos con un 60% sin el uso de armas. Se identificó que, debido a la pandemia de COVID, las tendencias históricas presentaron alteraciones notables, pero una vez levantadas las restricciones, estas retomaron las tendencias de alzas en robos en las condiciones de prepandemia. Se concluye que el análisis de datos abiertos brinda información relevante para la toma de decisiones de los ciudadanosapplication/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13097https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13561Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf85http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 13 No. 1 (2023): Enero-Junio; 173-184Revista de Investigación, Desarrollo e Innovación; Vol. 13 Núm. 1 (2023): Enero-Junio; 173-1842389-94172027-8306open data;theft;machine learning;business intelligencedatos abiertos;robo;aprendizaje automático;inteligencia de negociosData analysis of thefts in the city of Medellin from a descriptive approachAnálisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6584http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a168http://purl.org/coar/version/c_970fb48d4fbd8a85Maestre-Gongora, GinaAcuña-Castellanos, Camilo AndrésLondoño-Bedoya, EdwarGarcía-García, Sergio001/10407oai:repositorio.uptc.edu.co:001/104072025-07-18 11:51:10.173metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co
dc.title.en-US.fl_str_mv Data analysis of thefts in the city of Medellin from a descriptive approach
dc.title.es-ES.fl_str_mv Análisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivo
title Data analysis of thefts in the city of Medellin from a descriptive approach
spellingShingle Data analysis of thefts in the city of Medellin from a descriptive approach
open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
title_short Data analysis of thefts in the city of Medellin from a descriptive approach
title_full Data analysis of thefts in the city of Medellin from a descriptive approach
title_fullStr Data analysis of thefts in the city of Medellin from a descriptive approach
title_full_unstemmed Data analysis of thefts in the city of Medellin from a descriptive approach
title_sort Data analysis of thefts in the city of Medellin from a descriptive approach
dc.subject.en-US.fl_str_mv open data;
theft;
machine learning;
business intelligence
topic open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
dc.subject.es-ES.fl_str_mv datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
description This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizens
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-07-05T18:04:15Z
dc.date.available.none.fl_str_mv 2024-07-05T18:04:15Z
dc.date.none.fl_str_mv 2023-02-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6584
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a168
format http://purl.org/coar/resource_type/c_6584
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
10.19053/20278306.v13.n1.2023.16059
dc.identifier.uri.none.fl_str_mv https://repositorio.uptc.edu.co/handle/001/10407
url https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
https://repositorio.uptc.edu.co/handle/001/10407
identifier_str_mv 10.19053/20278306.v13.n1.2023.16059
dc.language.none.fl_str_mv spa
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13097
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13561
dc.rights.es-ES.fl_str_mv Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf85
rights_invalid_str_mv Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación
http://purl.org/coar/access_right/c_abf85
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.es-ES.fl_str_mv Universidad Pedagógica y Tecnológica de Colombia
dc.source.en-US.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 13 No. 1 (2023): Enero-Junio; 173-184
dc.source.es-ES.fl_str_mv Revista de Investigación, Desarrollo e Innovación; Vol. 13 Núm. 1 (2023): Enero-Junio; 173-184
dc.source.none.fl_str_mv 2389-9417
2027-8306
institution Universidad Pedagógica y Tecnológica de Colombia
repository.name.fl_str_mv Repositorio Institucional UPTC
repository.mail.fl_str_mv repositorio.uptc@uptc.edu.co
_version_ 1839633808187457536