Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café

Ilustraciones, gráficas

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
eng
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/18769
Acceso en línea:
https://repositorio.ucaldas.edu.co/handle/ucaldas/18769
https://repositorio.ucaldas.edu.co
Palabra clave:
Café
Madurez
Fermentación
Glucosa
Ácidos orgánicos
Reserva
Isótopo
Difusión
Producto vegetal
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id REPOUCALDA_9f030d25d019540c91e54efd92ec72db
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/18769
network_acronym_str REPOUCALDA
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.none.fl_str_mv Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
title Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
spellingShingle Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
Café
Madurez
Fermentación
Glucosa
Ácidos orgánicos
Reserva
Isótopo
Difusión
Producto vegetal
title_short Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
title_full Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
title_fullStr Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
title_full_unstemmed Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
title_sort Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del café
dc.contributor.none.fl_str_mv Álvarez-Barreto, Cristina I
Alimentos y Agroindustria (Categoría A1)
dc.subject.none.fl_str_mv Café
Madurez
Fermentación
Glucosa
Ácidos orgánicos
Reserva
Isótopo
Difusión
Producto vegetal
topic Café
Madurez
Fermentación
Glucosa
Ácidos orgánicos
Reserva
Isótopo
Difusión
Producto vegetal
description Ilustraciones, gráficas
publishDate 2023
dc.date.none.fl_str_mv 2023-02-08T13:03:57Z
2023-02-08T13:03:57Z
2023-02-07
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
http://purl.org/coar/resource_type/c_db06
Text
info:eu-repo/semantics/doctoralThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.none.fl_str_mv https://repositorio.ucaldas.edu.co/handle/ucaldas/18769
Universidad de Caldas
Repositorio Institucional Universidad de Caldas
https://repositorio.ucaldas.edu.co
url https://repositorio.ucaldas.edu.co/handle/ucaldas/18769
https://repositorio.ucaldas.edu.co
identifier_str_mv Universidad de Caldas
Repositorio Institucional Universidad de Caldas
dc.language.none.fl_str_mv eng
spa
language eng
spa
dc.relation.none.fl_str_mv Arcila J., Farfán F., Moreno A., Salazar L., Hincapié E. (2007). Sistemas de producción de café en Colombia. Cenicafé. 310 p.
Clarke R. J., Macrae R. (1985). Coffee Vol. 1. Elsevier. 306 p.
Clarke, R. J., & Vitzthum, O. G. (2001). Coffee Recent Developments.
Clifford, M. N., & Willson, K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage (M. N. Clifford & K. C. Willson, Eds.). AVI.
Coradi P. C., Borém F. M., Saath R., Marques E. (2015). Effect of drying and storage conditions on the quality of natural and washed coffee, (July). https://doi.org/10.13140/RG.2.1.4880.7523
DaMatta, F., Ronchi, C., Maestri, M., & Barros, R. (2008). Ecophysiology of coffee growth and production. Soils, Plant Growth and Crop Production, 3(March), 10.
Duque H., Aristizábal C. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia, 56(4): 299–318.
Echavarría J., Esguerra P., McAllister D., Robayo C. (2015). Informe de la misión de estudios para la competitividad de la caficultura en Colombia, 1–122.
FNC. (2017). Informe de la Industria Cafetera 2017. 64 p.
Giovannucci D., Liu P., Byers A. (2008). Agregando valor: Comercio de café certificado en Norte América, 29–50.
Iamanaka, B. T., Teixeira, A. A., Teixeira, A. R. R., Vicente, E., Frisvad, J. C., Taniwaki, M. H., & Bragagnolo, N. (2014). Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Research International, 64, 166-170. https://doi.org/10.1016/j.foodres.2014.06.017
Liu C., Yang Q., Linforth R., Fisk I. D., Yang N. (2019). Modifying Robusta coffee aroma by green bean chemical pre-treatment, 272(April 2018): 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226
OAGAC. (2021). Informe de coyuntura cafetera Gobierno de Colombia, Ministerio de Hacienda, Oficina Asesor del Gobierno para Asuntos Cafeteros.
Ocampo, O., & Álvarez, L. (2017). Artículo de investigación Tendencia de la producción y el consumo del café en Colombia. Apuntes Del Cenes, 36(Tendencia de la producción y el consumo del café en Colombia), 139–165. https://doi.org/10.19053/01203053.v36.n64.2017.5419
OIC. (2022). El mercado de café finalizó 2020/21 en excedente. Guatemala. 7 p.
Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26-32. https://doi.org/10.1016/j.foodres.2016.12.011
Rodríguez N., Sanz J., Oliveros C., Ramírez C. (2015). Beneficio de Café en Colombia. Cenicafé. 37 p.
Shuler J. D. (2017). Effect of the Presence of the Pericarp on the Chemical Composition and Sensorial Attributes of Arabica coffee, 64.
Smrke, S., Kroslakova, I., Gloess, A. N., & Yeretzian, C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. FOOD CHEMISTRY, 174, 637–642. https://doi.org/10.1016/j.foodchem.2014.11.060
Velásquez S., Peña N., Bohórquez J. C., Gutiérrez N., Sacks G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity, 274: 137–145.
Velásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274, 137–145.
Vélez R. (2018). Informe del Gerente, Federación Nacional de Cafeteros de Colombia.
Wintgens, J. (2008). Coffee: Growing, Processing, Sustainable Production. En Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619627
Yeager, S. E., Batali, M. E., Guinard, J.-X., & Ristenpart, W. D. (2021). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 0(0), 1-27. https://doi.org/10.1080/10408398.2021.1957767
Yusianto, & Nugroho, D. (2014). Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 30(2), 137-158. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v30i2.7
Zambrano D. A. (1993). Fermente y lave su café en el tanque tina, AVT 197(197): 1–8.
Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., & Zhang, Z. (2022). Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lwt, 161(March), 113317. https://doi.org/10.1016/j.lwt.2022.113317
Zhang, S. J., De Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology, 85(6), 1–22. https://doi.org/10.1128/AEM.02635-18
Alcázar Á., Jurado J. M., Martín M. J., Pablos F., González A. G. (2005). Enzymatic-spectrophotometric determination of sucrose in coffee beans, 67(4): 760–766. https://doi.org/10.1016/j.talanta.2005.04.005
Alvarez J. (1991). Despulpado de café sin agua, AVT 164(164): 1–7. Centro Nacional de Investigaciones del café. Cenicafé.
Amorim A. C. L., Hovell A. M. C., Pinto A. C., Eberlin M. N., Arruda N. P., Pereira E. J., … Rezende C. M. (2009). Green and Roasted Arabica Coffees Differentiated by Ripeness, Process and Cup Quality, 20(2): 313– 321.
Arcila J., Farfán F., Moreno A., Salazar L., Hincapié E. (2007). Sistemas de producción de café en Colombia. Cenicafé. 310 p. . Centro Nacional de Investigaciones del café. Cenicafé.
Barboza C. A., Amaya F. L. (1995). Análisis de la calidad del grano y de la bebida del café var. caturra en función de la maduración y tiempo de fermentación, 1–15.
Bytof G., Knopp S., Kramer D., Breitenstein B., Bergervoet J. H. W. (2018). Transient Occurrence of Seed Germination Processes during Coffee Post-harvest Treatment, 100(1): 61–66.
Bytof G., Peter S. K. (2005). Influence of processing on the generation of g -aminobutyric acid in green coffee beans, 245–250. https://doi.org/10.1007/s00217-004-1033-z
Carvajal J. J., Aristizábal I. D., Oliveros C. E., Mejía J. W. (2011). Colorimetría del Fruto de Café ( Coffea arabica L .) Durante su Desarrollo y Maduración, 64(2): 6229–6240.
Clarke R. J., Vitzthum O. G. (2001). Coffee Recent Developments. 266 p. v
Clifford M. N., Willson K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage. AVI. 439 p.
Coradi P. C., Borém F. M., Saath R., Marques E. (2015). Effect of drying and storage conditions on the quality of natural and washed coffee, (July). https://doi.org/10.13140/RG.2.1.4880.7523
Correa P. C., Botelho F. M., Botleho S. de C., Goneli A. L. (2018). Sorption isotherms of fruits of Coffea canephora, 1–10.
De Bruyn F., Jiyuan Zhang S., Pothakos V., Torres J., Lambot C., Moroni A., … De Vuyst L. (2016). Exploring the impact of post-harvest processing on the microbiota and metabolite profiles during a case of green coffee bean production, (October). https://doi.org/10.1128/AEM.02398-16
De Castro R. D., Marraccini P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. https://doi.org/10.1590/S1677-04202006000100013
De Melo G., Neto D. P. D. C., Júnior A. I. M., Vásquez Z. S., Medeiros A. B. P., Vandenberghe L. P. S., Soccol C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of co ff ee beans – A review, 272(August 2018): 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061
De Melo G. V., Neto E., Soccol V. T., Medeiros A. B. P., Woiciechowski A. L., Soccol C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects, 75: 348–356. https://doi.org/10.1016/j.foodres.2015.06.027
De Melo G. V., Soccol V. T., Soccol C. R. (2016). Current state of research on cocoa and coffee fermentations, 50–57. https://doi.org/10.1016/j.cofs.2015.11.001
De Sousa G. R., Duarte Vieira H., Pereira Rodrigues W. (2015). Comparison between manual and semimechanical harvest of coffee fruit in mountainous areas, 10(28): 2724–2730. https://doi.org/10.5897/ajar2014.9356
Duarte G. S., Pereira A. A., Farah A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods, 118(3): 851–855. https://doi.org/10.1016/j.foodchem.2009.05.042
Duque H., Aristizábal C. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia, 56(4): 299–318.
Echavarría J., Esguerra P., McAllister D., Robayo C. (2013). Informe de la misión de estudios para la competitividad de la caficultura en Colombia, 1–122.
Eira M. T. S., Amaral Da Silva E. A., De Castro R. D., Dussert S., Walters C., Bewley J. D., Hilhorst H. W. M. (2006). Coffee seed physiology. https://doi.org/10.1590/S1677-04202006000100011
Esquivel P., Jiménez V. M. (2012). Functional properties of coffee and coffee by-products, 46(2012): 488– 495.
Evangelista S., Da Cruz Pedrozo M. G., Ferreira Silva C., Marques Pinheiro A. C., Freitas Schwan R. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation, 210: 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008
Farah A., Monteiro M., Cavalo V., Franca A. S., Trugo L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee, 98: 373–380. https://doi.org/10.1016/j.foodchem.2005.07.032
Fernandez-Alduenda M., Lusk K., Silcock P., Birch J. (2014). Descriptive Cupping – a Rapid Coffee Flavour Profiling Method Using the Specialty Coffee Association of America (SCAA) Cupping Protocol pp. p42–49.
FNC. (2017). Informe de la Industria Cafetera 2017. 64 p.
Franca A. S., Mendonca J. C. F., Oliveira S. D. (2005). Composition of green and roasted coffees of different cup qualities, 38: 709–715. https://doi.org/10.1016/j.lwt.2004.08.014
Franca A. S., Oliveira L. S., Mendonc J. C. F., Silva X. (2005). Physical and chemical attributes of defective crude and roasted coffee beans, 90: 89–94. https://doi.org/10.1016/j.foodchem.2004.03.028
Garrett R., Rezende C. M., Ifa D. R. (2016). Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging, 65: 711–717. https://doi.org/10.1016/j.lwt.2015.08.062
Geankoplis C. J. (1998). Procesos de transporte y operaciones unitarias.
Giovannucci D., Liu P., Byers A. (2008). Agregando valor: Comercio de café certificado en Norte América, 29–50.
Gonzalez-Rios O., Suarez-Quiroz M. L., Boulanger R., Barel M., Guyot B., Guiraud J.-P., Schorr-Galindo S. (2007). Impact of ‘“ ecological ”’ post-harvest processing on the volatile fraction of coffee beans : I . Green coffee, 20: 289–296. https://doi.org/10.1016/j.jfca.2006.07.009
Iamanaka B. T., Teixeira A. A., Teixeira A. R. R., Vicente E., Frisvad J. C., Taniwaki M. H., Bragagnolo N. (2014). Potential of volatile compounds produced by fungi to in fl uence sensory quality of coffee beverage, 64: 166–170. https://doi.org/10.1016/j.foodres.2014.06.017
Kipkorir R. K., Muliro P., Muhoho S. (2015). Effects of coffee processing technologies on physico-chemical properties and sensory qualities of coffee, 9(4): 230–236. https://doi.org/10.5897/ajfs2014.1221
Koshiro Y., Jackson M. C., Katahira R., Wang M. L., Nagai C., Ashihara H. (2007). Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants, 62(9–10): 731– 742. https://doi.org/10.1515/znc-2007-9-1017
Liu C., Yang Q., Linforth R., Fisk I. D., Yang N. (2019). Modifying Robusta coffee aroma by green bean chemical pre-treatment, 272(April 2018): 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226
Marín C., Puerta G. I. (2008). Cotenido de ácidos clorogénicos en frutos de Coffea arabica y C. canephora, según el desarrollo del fruto, 59(1): 7–28.
Marín S. M., Arcila Pulgarín J., Montoya Restrepo E. C., Oliveros-Tascón C. E. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia), 54(3): 208–225.
Marraccini P., Allard C., Andre M., Courjault C., Gaborit C., Lacoste N., … Deshayes A. (2001). Update on coffee biochemical compounds, protein and gene expression during bean maturation and in other tissues., 1– 12.
Martinez Ramirez A. (2013). Internal structure and water transport in endosperm and parchment of coffee bean, 114: 375–383.
Martinez S. J., Pereira Bressani A. P., Da Cruz Pedrozo M. G., Ribeiro Dias D., Freitas Schwan R. (2017). Different inoculation methods for semi-dry processed co ff ee using yeasts as starter cultures, 102(September): 333–340. https://doi.org/10.1016/j.foodres.2017.09.096
Martínez V. M., Aristizábal Torres I. D., Moreno E. L. (2017). Evaluation of the composition effect of harvested coffee in the organoleptic properties of coffee drink, 24(1): 47–58.
Nikolova-Damyanova B., Velikova R., Jham G. N. (1998). Lipid classes, fatty acid composition and triacylglycerol molecular species in crude coffee beans harvested in Brazil, 31(6–7): 479–486. https://doi.org/10.1016/S0963-9969(99)00016-2
Ocampo Agudelo D. M., Riaño Herrera N. M., López Ruiz J. C., López Forero Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto, 61(4): 327–343.
Ocampo D. M., Riaño Herrera N. M., López Ruiz J. C., López Forero Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto, 61(4): 327–343.
Ocampo O., Álvarez L. (2017). Artículo de investigación Tendencia de la producción y el consumo del café en Colombia, 36(Tendencia de la producción y el consumo del café en Colombia): 139–165. https://doi.org/10.19053/01203053.v36.n64.2017.5419
OIC. (2018). El mercado de café finalizó 2017/18 en excedente. Guatemala. 7 p.
Oliveros C. E., Peñuela Martinez A. E., Jurado Chana J. M. (2009). Controle la humedad del café en el secado solar, utilizando el método gravimet. . Centro Nacional de Investigaciones del café. Cenicafé.
Oliveros C. E., Roa G. (1995). El desmucilaginado mecánico del café. . Centro Nacional de Investigaciones del café. Cenicafé.
Oliveros C. E., Sanz J. R. (2017). Tecnología para el lavado del café en fincas de pequeños productores Ecomill ® LH300, (9): 1–8. . Centro Nacional de Investigaciones del café. Cenicafé.
Oliveros Tascón C. E., Sanz Uribe J. R., Ramírez Gómez C. A., Alvarez Hernández J. R., Roa Mejía G., Alvarez Gallo J. (1995). Desmucilaginadores mecánicos de café. . Centro Nacional de Investigaciones del café. Cenicafé.
Palacios-Cabrera H., Taniwaki M. H., Menezes H. C., Iamanaka B. T. (2004). The production of ochratoxin A by Aspergillus ochraceus in raw coffee at different equilibrium relative humidity and under alternating temperatures, 15: 531–535. https://doi.org/10.1016/j.foodcont.2003.08.006
Pedroza E., Meira Borém F., Damasceno de Oliveira P., Cambuy Siqueira V., Euripedes Alves G. (2018). Quality of natural coffee subjected to different rest periods during the drying process, 1–8.
Peñuela-Martínez A. E., Zapata-Zapata A. D., Durango-Restrepo D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.), 13(4): 465. https://doi.org/10.25186/cs.v13i4.1486
Peñuela A. E., Oliveros Tascón C. E., Sanz Uribe J. R. (2010). Remoción del mucílago de café a través de fermentación natural, 61(2): 159–173. Centro Nacional de Investigaciones del café. Cenicafé.
Peñuela A. E., Pabón Usaquén J. P., Oliveros Tascón C. E. (2011). Enzimas: una alternativa para remover rápida y eficazmente el mucílago del café, (4). Centro Nacional de Investigaciones del café. Cenicafé.
Peñuela A. E., Pabón Usaquén J. P., Sanz Uribe J. R. (2013). Método Fermaestro: Para determinar la finalización de la Fermentación del mucílago de café. Centro Nacional de Investigaciones del café. Cenicafé.
Pereira Bressani A. P., Martinez S. J., Reis Evangelista S., Ribeiro Dias D., Freitas Schwan R. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods, 92(February): 212–219. https://doi.org/10.1016/j.lwt.2018.02.029
Pérez M., Jiménez S., Ebrahimzadeh A., Verdejo M. M., Chaves L. A., Lao M. T. (2008). Propuesta de una metodología para la determinación del color del tejido vegetal pp. p237–242.
Pohlan H. a J., Janssesn M. J. J. (2008). Growth and Production of Coffee, 19(4): 485–510.
Prasanna V., Prabha T. N., Tharanathan R. N. (2007). Fruit ripening phenomena-an overview, 47(1): 1–19. https://doi.org/10.1080/10408390600976841
Puerta G. I. (2006). La humedad controlada del grano preserva la calidad del café.
Puerta G. I. (2011). Composición química de una taza de café, AVT 414(414): 1–12. Disponible en http://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/publicaciones_avt0414comp osicion_quimica_de_una_taza_de_cafe. . Centro Nacional de Investigaciones del café. Cenicafé.
Puerta G. I., Ríos S. (2011). Composición química del mucílago de café, según el tiempo de fermemtación y refrigeración, 62(1999): 23–40. Centro Nacional de Investigaciones del café. Cenicafé.
Ramos-Giraldo P. J., Sanz-Uribe J. R. (2011). Sistema opto-electrónico para la identificación de frutos de café por estados de maduración, 62(1): 87–99. Centro Nacional de Investigaciones del café. Cenicafé.
Reis S., Ferreira C., Gabriela M., Miguel C., Souza C. De, Carla A., Pinheiro M., Ferreira W., Freitas R. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process, 61: 183–195. https://doi.org/10.1016/j.foodres.2013.11.033
Roa G., Oliveros Tascón C. E., Ramírez Gómez C. A. (2000). Utilice la energía solar para secar correctamente el café. Centro Nacional de Investigaciones del café. Cenicafé.
Roa Mejía G., Oliveros Tascón C. E., Parra Coronado A., Ramírez G C. A. (2000). El secado mecánico del café. Centro Nacional de Investigaciones del café. Cenicafé.
Rodríguez N., Sanz J., Oliveros C., Ramírez C. (2015). Beneficio de Cafe en Colombia. Cenicafé. 37 p.
Rogers W. J., Bastin M., Bucheli P. (1999). Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C . arabica) coffees, 149: 115–123.
Salazar M. R., Riaño Herrera N. M., Arcila Pulgarín J., Ponce C. A. (1994). Estudio morfológico anatómico y ultraestructural del fruto de café Coffea arabia L., 45(3): 93–105. Centro Nacional de Investigaciones del café. Cenicafé
Sanz Uribe J. R., Oliveros Tascón C. E., Duque Orrego H., Mejía Mejía C. G., Benavides Machado P., Medina Rivera R. D. (2018). Retención de pases: una opción para mejorar la productividad de la mano de obra en la cosecha de café. Centro Nacional de Investigaciones del café. Cenicafé.
SCA. (2000). Cupping Protocols. Disponible en https://sca.coffee/research/protocols-best-practices
Shuler J. D. (2017). Effect of the Presence of the Pericarp on the Chemical Composition and Sensorial Attributes of Arabica coffee, 64.
Silva C. F., Schwan R. F., Dias S., Wheals A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil, 60: 251–260.
Silva C., Schwan R., Sousa Dias Ë., Wheals A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil Vol. 60, pp. p251–260. https://doi.org/10.1016/S0168- 1605(00)00315-9
Silva L., Egídio Ribeiro D., Reis Evangelista S., Da Cruz Pedrozo M. G., Marques Pinheiro A. C., Meira Borém F., Freitas Schwan R. (2017). Controlled fermentation of semi-dry coffee (Coffea arabica) using starter cultures : A sensory perspective, 82: 32–38. https://doi.org/10.1016/j.lwt.2017.04.008
Silva L., Miguel M. G. da C. P., Evangelista S. R., Martins P. M. M., van Mullem J., Belizario M. H., Schwan R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage, 92: 26–32. https://doi.org/10.1016/j.foodres.2016.12.011
Smrke S., Kroslakova I., Gloess A. N., Yeretzian C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques, 174: 637–642. https://doi.org/10.1016/j.foodchem.2014.11.060
Sunarharum W. B., Williams D. J., Smyth H. E. (2014). Complexity of coffee flavor : A compositional and sensory perspective, 62: 315–325. https://doi.org/10.1016/j.foodres.2014.02.030
Suppavorasatit I., Lopetcharat K., Kulapichitr F., Borompichaichartkul C., Boonbumrung S., Pratontep S. (2017). Differences in volatile compounds and antioxidant activity of ripe and unripe green coffee beans ( Coffea arabica L. ‘Catimor’), 51(1179): 261–268. https://doi.org/10.17660/actahortic.2017.1179.41
Toci A. T., Farah A. (2008). Food Chemistry Volatile compounds as potential defective coffee beans ’ markers, 108: 1133–1141. https://doi.org/10.1016/j.foodchem.2007.11.064
Veiga A., Mendes R., Dellyzete S., Vilela É., De Castro L., Veiga A. (2007). Armazenabilidade de sementes de cafeeiro colhidas em diferentes estádios de maturação e submetidas a diferentes métodos de secagem, 29(1): 83–91. https://doi.org/10.1590/s0101-31222007000100012
Velásquez S., Peña N., Bohórquez J. C., Gutiérrez N., Sacks G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity, 274: 137–145.
Vélez R. (2018). Informe del Gerente, Federación Nacional de Cafeteros de Colombia.
Wallis-García J. A., Montoya Restrepo E. C., Vélez Zape J. C., Oliveros Tascón C. E. (2004). Calidad y eficacia de dos métodos no selectivos de recolección manual de café ( Coffea arabica ), 55(1): 45–51.
Wang C., Sun J., Lassabliere B., Yu B., Zhao F., Zhao F., Chen Y., Liu S. Q. (2019). Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting, 99(1): 409–420. https://doi.org/10.1002/jsfa.9202
Wei L., Wai Cheong M., Curran P., Yu B., Quan Liu S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship, 185: 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124
Wie L., Yu Tay G., Wai Cheong M., Curran P., Yu B., Quan Liu S. (2017). Modulation of the volatile and non volatile profiles of coffee fermented with Yarrowia lipolytica II. Roasted coffee_Wei_2017.pdf.
Wintgens J. (2008). Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. 928 p. https://doi.org/10.1002/9783527619627
Zambrano D. A. (1993). Fermente y lave su café en el tanque tina, AVT 197(197): 1–8. Centro Nacional de Investigaciones del café. Cenicafé.
Amorim, A. C. L., Hovell, A. M. C., Pinto, A. C., Eberlin, M. N., Arruda, N. P., Pereira, E. J., Bizzo, H. R., Catharino, R. R., Filho, Z. B., & Rezende, C. M. (2009). Green and roasted arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. Journal of the Brazilian Chemical Society, 20(2), 313–321. https://doi.org/10.1590/S0103-50532009000200017
Carvajal, J. J., Aristizábal, I. D., & Oliveros, C. E. (2012). Physical and mechanical properties evaluation of coffee fruit (Coffea Arabica L. var. Colombia) during its development and maturation. DYNA, 79(173), 116– 124. https://revistas.unal.edu.co/index.php/dyna/article/view/25965
Barboza, C. A., & Amaya, F. L. (1996). Quality analysis of coffee var. Caturra beans and beverage as a function of berry ripeness and vean fermentation time. Agronomía Tropical, 46(3), 289–311.
Batali, M. E., Frost, S. C., Lebrilla, C. B., Ristenpart, W. D., & Guinard, J. (2020). Sensory and monosaccharide analysis of drip brew coffee fractions versus brewing time. Journal of the Science of Food and Agriculture, 100(7), 2953–2962. https://doi.org/10.1002/jsfa.10323
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Coffee, Tea, Cocoa. In Food Chemistry (pp. 938–970). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7_22
Carvajal, J. J., Aristizábal, I. D., Oliveros, C. E., & Mejía, J. W. (2011). Coffee Fruit (Coffea arabica L.) Colorimetry During its Development and Maturation. Revista Facultad Nacional de Agronomía Medellín, 64(2), 6229–6240. https://revistas.unal.edu.co/index.php/refame/article/view/29414
De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18(1), 175–199. https://doi.org/10.1590/S1677- 04202006000100013
Eira, M. T. S., Silva, E. A. A. da, De Castro, R. D., Dussert, S., Walters, C., Bewley, J. D., & Hilhorst, H. W. M. (2006). Coffee seed physiology. Brazilian Journal of Plant Physiology, 18(1), 149–163. https://doi.org/10.1590/S1677-04202006000100011
Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028
Geromel, C., Ferreira, L. P., Bottcher, A., Pot, D., Pereira, L. F. P., Leroy, T., Vieira, L. G. E., Mazzafera, P., & Marraccini, P. (2008). Sucrose metabolism during fruit development in Coffea racemosa. Annals of Applied Biology, 152(2), 179–187. https://doi.org/10.1111/j.1744-7348.2007.00199.x
Instituto Colombiano de Normas Técnicas y Certificación. (2021). NTC 2324: Café verde. Examen olfativo y visual y determinación de materia extraña y defectos. https://tienda.icontec.org/gp-cafe-verde-examenolfativo-y-visual-y-determinacion-de-materia-extrana-y-defectos-ntc2324-2021.htm
International Organization for Standardization [ISO]. (2003). ISO 6673:2003 Green coffee—Determination of loss in mass at 105 degrees C. https://www.iso.org/obp/ui/#iso:std:iso:6673:ed-2:v1:en
Koshiro, Y., Jackson, M. C., Katahira, R., Wang, M.-L., Nagai, C., & Ashihara, H. (2007). Biosynthesis of Chlorogenic Acids in Growing and Ripening Fruits of Coffea arabica and Coffea canephora Plants. Zeitschrift Für Naturforschung C, 62(9–10), 731–742. https://doi.org/10.1515/znc-2007-9-1017
Koshiro, Y., Jackson, M. C., Nagai, C., & Ashihara, H. (2022). Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. European Chemical Bulletin, 4(8), 378– 378. https://www.eurchembull.com/?mno=66742
Marín, C., & Puerta, G. I. (2008). Contenido de ácidos clorogénicos en granos de Coffea arabica L. y C. canephora, según el desarrollo del fruto. Revista Cenicafé, 59(1), 7–28. http://hdl.handle.net/10778/60
Marín, S. M., Arcila-Pulgarín, J., Montoya-Restrepo, E. C., & Oliveros-Tascón, C. E. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia). Revista Cenicafé, 54(3), 208–225. http://hdl.handle.net/10778/265
Marraccini, P., Allard, C., Andre, M., Courjault, C., Gaborit, C., Lacoste, N., Meunier, A., Michaux, S., Petit, V., Priyono, P., Rogers, J., & Deshayes, A. (2001). Update on coffee biochemical compounds, protein and gene expression during bean maturation and in other tissues. Proceedings of 19th International Scientific Colloquium on Coffee., Trieste, Italy. https://www.asic-cafe.org/conference/19th-international-scientific-colloquiumcoffee
Martinez, V. M., Aristizábal, I. D., & Moreno, E. L. (2017). Evaluation of the composition effect of harvested coffee in the organoleptic properties of coffee drink. Vitae, 24(1), 47–58. https://doi.org/10.17533/udea.vitae.v24n1a06
Montavon, P., Duruz, E., Rumo, G., & Pratz, G. (2003). Evolution of Green Coffee Protein Profiles with Maturation and Relationship to Coffee Cup Quality. Journal of Agricultural and Food Chemistry, 51(8), 2328– 2334. https://doi.org/10.1021/jf020831j
Koshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242–250. https://doi.org/10.1016/j.plantsci.2006.03.017
Ocampo, D. M., Riaño, N. M., López, J. C., & López, Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto. Revista Cenicafé, 61(4), 327–343. http://hdl.handle.net/10778/507
Ortolá, M. D., Gutiérrez, C. L., Chiralt, A., & Fito, P. (1998). Kinetic study of lipid oxidation in roasted coffee. Food Science and Technology International, 4(1), 67–73. https://doi.org/10.1177/108201329800400109
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841
Puerta, G. I., & Rios-Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermemtación y refrigeración. Revista Cenicafé, 62(2), 23–40. http://hdl.handle.net/10778/478
Rogers, W. J., Michaux, S., Bastin, M., & Bucheli, P. (1999). Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Science, 149(2), 115–123. https://doi.org/10.1016/S0168-9452(99)00147-8
Salazar, M. R., Riaño-Herrera, N. M., Arcila Pulgarín, J., & Ponce, C. A. (1994). Estudio morfológico anatómico y ultraestructural del fruto de café Coffea arabica L. Revista Cenicafé, 45(3), 93–105. http://hdl.handle.net/10778/795
Sanz, J. R., Oliveros, C. E., Duque, H., Mejía, C. G., Benavides, P., & Rivera, R. D. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1–8. http://hdl.handle.net/10778/4218
Smrke, S., Kroslakova, I., Gloess, A. N., & Yeretzian, C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. Food Chemistry, 174, 637– 642. https://doi.org/10.1016/j.foodchem.2014.11.060
Veiga, A. D., Guimarães, R. M., Rosa, S. D. V. F., Von Pinho, É. V., Silva, L. H., & Veiga, A. D. (2007). Storability of coffee seeds harvestedat different maturation stages and submitted to different drying methods. Revista Brasileira de Sementes, 29(1), 83–91. https://doi.org/10.1590/S0101-31222007000100012
Velásquez, S., Peña, N., Bohórquez, J. C., Gutierrez, N., & Sacks, G. L. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274, 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127
Wallis-García, J. A., Montoya, E. C., Vélez-Zape, J. C., & Oliveros, C. E. (2004). Calidad y eficacia de dos métodos no selectivos de recolección manual de café Coffea arabica. Revista Cenicafé, 55(1), 45–51. http://hdl.handle.net/10778/113
Amorim, A. C. L., Hovell, A. M. C., Pinto, A. C., Eberlin, M. N., Arruda, N. P., Pereira, E. J., Bizzo, H. R., Catharino, R. R., Morais Filho, Z. B., & Rezende, C. M. (2009). Green and roasted Arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. Journal of the Brazilian Chemical Society, 20(2), 313-321. https://doi.org/10.1590/S0103- 50532009000200017
Brioschi, D., Guarconi, R. C., de Cassia Soares da Silva, M., Reis Veloso, T. G., Megumi Kasuya, M. C., da Silva Oliveira, E. C., Rodrigues da Luz, J. M., Moreira, T. R., Debona, D. G., & Pereira, L. L. (2021). Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. En FOOD CHEMISTRY (Vol. 342). ELSEVIER SCI LTD. https://doi.org/10.1016/j.foodchem.2020.128296
Bruyn, F. D., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., Vuyst, L. D., & Björkroth, J. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Applied and Environmental Microbiology, 83(1), e02398-16. https://doi.org/10.1128/AEM.02398-16
Caixeta, I. F., Mendes Guimarães, R., & Malta, M. R. (2013). Quality of coffee seeds after retardment of postharvest processing. Coffee Science, 8(3), 249-255. https://doi.org/10.25186/cs.v8i3.425
Clarke, R. J., & Vitzthum, O. G. (2001). Coffee Recent Developments.
Clifford, M. N., & Willson, K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage (M. N. Clifford & K. C. Willson, Eds.). AVI.
De Melo, G. V., Soccol, V. T., & Soccol, C. R. (2016). Current state of research on cocoa and coffee fermentations. Food Science, 7, 50-57. https://doi.org/10.1016/j.cofs.2015.11.001
de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. En Food Chemistry (Vol. 272, Número August 2018, pp. 441-452). Elsevier. https://doi.org/10.1016/j.foodchem.2018.08.061
Farah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373-380. https://doi.org/10.1016/j.foodchem.2005.07.032
Franca, A. S., Oliveira, L. S., Mendonca, J. C. F., & Silva, X. (2005). Physical and chemical attributes of defective crude and roasted coffee beans. Food Chemistry, 90, 89-94. https://doi.org/10.1016/j.foodchem.2004.03.028
Franca, A. S., Oliveira, L. S., Mendonca, J. C. F., Silva, X., Dias, R. C. E., Benassi, M. D. T., Luca, S. De, Filippis, M. De, Bucci, R., Magrì, A. L. A. D., Magrì, A. L. A. D., Marini, F., Wang, X., Lim, L., Sorane, C., Kitzberger, G., Brígida, M., Toledo, M. De, Maria, C. A. B. De, … Andrade, F. M. (2005). Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Food Chemistry, 90(3), 127-139. https://doi.org/10.3390/beverages1030127
Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007a). Impact of ‘‘ ecological ’’ post-harvest processing on coffee aroma: II. Roasted coffee. Food Composition an Analysis, 20, 297-307. https://doi.org/10.1016/j.jfca.2006.12.004
Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007b). Impact of ‘‘ ecological ’’ post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Food Composition an Analysis, 20, 289-296. https://doi.org/10.1016/j.jfca.2006.07.009
Iamanaka, B. T., Teixeira, A. A., Teixeira, A. R. R., Vicente, E., Frisvad, J. C., Taniwaki, M. H., & Bragagnolo, N. (2014). Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Research International, 64, 166-170. https://doi.org/10.1016/j.foodres.2014.06.017
Ikumi, P. W., Koskei, R. K., Njoroge, D. M., & Kathurima, C. W. (2017). Effect of Soaking Coffee (Coffea arabica) Cherries on Biochemical Composition and Cup Quality of Coffee Brew. IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(06), 14-18. https://doi.org/10.9790/2402- 1106021418
Norma Técnica Colombiana 2324. Café verde. Examen olfativo y visual y determinación de materia extraña y defectos, (2002).
López, C., Bautista, E., Moreno, E., & Dentan, E. (1989). Factors related to the formation of «overfermented coffee beans» during the wet processing method and storage of coffee. Association Scientifique Internationale du Café, 13th International scientific colloquium on coffee, Paipa (Colombia), 21-25 August 1989. 1990 pp.373-384 ref.24, 373-384.
Peñuela-Martínez, A. E., Zapata-Zapata, A. D., & Durango-Restrepo, D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Science, 13(4), 465. https://doi.org/10.25186/cs.v13i4.1486
Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26-32. https://doi.org/10.1016/j.foodres.2016.12.011
Sanz Uribe, J. R., Oliveros Tascón, C. E., Duque Orrego, H., Mejía Mejía, C. G., Benavides Machado, P., & Medina Rivera, R. D. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café (p. Cenicafé AVT 488 1-8).
Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315-325. https://doi.org/10.1016/j.foodres.2014.02.030
Takahama, U. (2004). Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews, 3(1-2), 207-219. https://doi.org/10.1023/B:PHYT.0000047805.08470.e3
Vargas, E. A., Silva, F. B., Santos, E. A., Souza, S. M. C., Souza, S. E., Correa, T. B. S., Franca, R. C. A., Amorim, S. S., Pfenning, L. H., Batista, L. R., Pereira, R. T. G., Nogueira, M. D., Nacif, A. P., & Junior, P. C. (2005). Influence of Coffee Processing and Defects on the Incidence and Occurrence of Ochratoxin A. International Conference on Coffee Science, 410-417.
Velmourougane, K., Bhat, R., Gopinandhan, T. N., & Panneerselvam, P. (2011). Impact of delay in processing on mold development, ochratoxin-A and cup quality in arabica and robusta coffee. World Journal of Microbiology and Biotechnology, 27(8), 1809-1816. https://doi.org/10.1007/s11274-010-0639-5
Wei, L., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 185, 182-191. https://doi.org/10.1016/j.foodchem.2015.03.124
Wintgens, J. (2008). Coffee: Growing, Processing, Sustainable Production. En Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619627
Yeager, S. E., Batali, M. E., Guinard, J.-X., & Ristenpart, W. D. (2021). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 0(0), 1-27. https://doi.org/10.1080/10408398.2021.1957767
Yusianto, & Nugroho, D. (2014). Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 30(2), 137-158. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v30i2.7
da Mota, M.C.B.; Batista, N.N.; Rabelo, M.H.S.; Ribeiro, D.E.; Borém, F.M.; Schwan, R.F. Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Res. Int. 2020, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482.
Velmourougane, K. Impact of natural fermentation on physicochemical, microbiological and cup quality characteristics of Arabica and Robusta coffee. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 233–239. https://doi.org/10.1007/s40011-012-0130-1.
Pereira Bressani, A.P.; Martinez, S.J.; Reis Evangelista, S.; Ribeiro Dias, D.; Freitas Schwan, R. Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. Food Sci. Technol. 2018, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029
Silva, C.F.; Vilela, D.M.; de Souza Cordeiro, C.; Duarte, W.F.; Dias, D.R.; Schwan, R.F. Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J. Microbiol. Biotechnol. 2013, 29, 235–247. https://doi.org/10.1007/s11274-012-1175-2.
Puerta, G.I.; Rios, S. Chemical composition of coffee mucilage according to fermentation and refrigeration time. Rev. Cenicafé 2011, 62, 23–40
Oliveros, C.E.; Roa, G. Mechanical demucilagination of coffee. Tech. Adv. Cenicafé 1995, 216, 1–7. https://doi.org/10.38141/10779/0216
de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci. Rep. 2019, 9, 8794. https://doi.org/10.1038/s41598-019-45002-8.
Evangelista, S.R.; Silva, C.F.; da Cruz Miguel, M.G.; de Souza Cordeiro, C.; Pinheiro, A.C.; Duarte, W.F.; Schwan, R.F. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 2014, 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033.
Silva, C.; Schwan, R.; Sousa Dias, Ë.; Wheals, A.E. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. https://doi.org/10.1016/S0168-1605(00)00315-9.
Wang, C.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Res. Int. 2020, 136, 109452. https://doi.org/10.1016/j.foodres.2020.109452.
Wei, L.; Wai Cheong, M.; Curran, P.; Yu, B.; Quan Liu, S. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124
De Melo Pereira, G.V.; Neto, E.; Soccol, V.T.; Medeiros, A.B.P.; Woiciechowski, A.L.; Soccol, C.R. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 2015, 75, 348–356. https://doi.org/10.1016/j.foodres.2015.06.027.
. Iamanaka, B.T.; Teixeira, A.A.; Teixeira, A.R.R.; Vicente, E.; Frisvad, J.C.; Taniwaki, M.H.; Bragagnolo, N. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Res. Int. 2014, 64, 166–170. https://doi.org/10.1016/j.foodres.2014.06.017.
Martinez, S.J.; Pereira Bressani, A.P.; Da Cruz Pedrozo, M.G.; Ribeiro Dias, D.; Freitas Schwan, R. Different inoculation methods for semi-dry processed co ff ee using yeasts as starter cultures. Food Res. Int. 2017, 102, 333–340. https://doi.org/10.1016/j.foodres.2017.09.096.
Evangelista, S.; Da Cruz Pedrozo, M.G.; Ferreira Silva, C.; Marques Pinheiro, A.C.; Freitas Schwan, R. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. Int. J. Food Microbiol. 2015, 210, 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008
Silva, L.; Egídio Ribeiro, D.; Reis Evangelista, S.; Da Cruz Pedrozo, M.G.; Marques Pinheiro, A.C.; Meira Borém, F.; Freitas Schwan, R. Controlled fermentation of semi-dry coffee (Coffea arabica) using starter cultures: A sensory perspective. Food Sci. Technol. 2017, 82, 32–38. https://doi.org/10.1016/j.lwt.2017.04.008.
Waters, D.M.; Arendt, E.K.; Moroni, A.V. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 259–274. https://doi.org/10.1080/10408398.2014.902804.
de Melo Pereira, G.V.; da Silva Vale, A.; de Carvalho Neto, D.P.; Muynarsk, E.S.; Soccol, V.T.; Soccol, C.R. Lactic acid bacteria: What coffee industry should know? Curr. Opin. Food Sci. 2020, 31, 1–8. https://doi.org/10.1016/j.cofs.2019.07.004.
Ribeiro, L.S.; Miguel, M.G.; Evangelista, S.R.; Martins, P.M.; van Mullem, J.; Belizario, M.H.; Schwan, R.F. Comportment of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Res. Int. 2017, 92, 26–32. https://doi.org/10.1016/j.foodres.2016.12.011.
Sanz Uribe, J.R.; Oliveros, C.E.; Duque, H.; Mejía, C.G.; Benavides, P.; Medina, R.D. Pass retention: An option to improve labor productivity in coffee harvesting. Tech. Adv. Cenicafé 2018, 488, 1–8. https://doi.org/10.38141/10779/0488.
Peñuela-Martínez, A.E.; Pabón, J.P.; Sanz, J.R. Fermaestro method: To determine the completion of coffee mucilage fermentation. Tech. Adv. Cenicafé 2013, 431, 8. https://doi.org/10.38141/10779/0431.
Colombian Institute of Technical Standards and Certification. NTC 2324: Green coffee. Olfactory and Visual Examination and Determination of Foreign Matter and Defects. Available online: https://tienda.icontec.org/gp-cafe-verde-examen-olfativo-y-visual-y-determinacion-de-materia-extranay-defectos-ntc2324-2021.html (accessed on 1 May 2020 ).
Correa, E.C.; Jiménez-Ariza, T.; Díaz-Barcos, V.; Barreiro, P.; Diezma, B.; Oteros, R.; Echeverri, C.; Arranz, F.J.; Ruiz-Altisent, M. Advanced Characterisation of a Coffee Fermenting Tank by Multidistributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food Bioprocess Technol. 2014, 7, 3166–3174. https://doi.org/10.1007/s11947-014-1328-4.
Avallone, S.; Guiraud, J.-P.; Guyot, B.; Olguin, E.; Brillouet, J.-M. Fate of Mucilage Cell Wall Polysaccharides during Coffee Fermentation. J. Agric. Food Chem. 2001, 49, 5556–5559. https://doi.org/10.1021/jf010510s
Peñuela-Martínez, A.E.; Zapata-Zapata, A.D.; Durango-Restrepo, D.L. Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Sci. 2018, 13, 465–476. https://doi.org/10.25186/cs.v13i4.1486.
De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398- 16. https://doi.org/10.1128/AEM.02398-16
Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796.
de Carvalho Neto, D.P.; de Melo Pereira, G.V.; Finco, A.M.O.; Letti, L.A.J.; da Silva, B.J.G.; Vandenberghe, L.P.S.; Soccol, C.R. Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Biosci. 2018, 26, 80–87. https://doi.org/10.1016/j.fbio.2018.10.005.
Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009. https://doi.org/10.1007/978-3-540-69934-7.
Garrett, R.; Rezende, C.M.; Ifa, D.R. Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. LWT Food Sci. Technol. 2016, 65, 711–717. https://doi.org/10.1016/j.lwt.2015.08.062.
Bressani, A.P.; Martinez, S.J.; Vilela, L.D.; Dias, D.R.; Schwan, R.F. Coffee protein profiles during fermentation using different yeast inoculation methods. Pesquisa Agropecuária Brasileira 2020, v.55. https://doi.org/10.1590/s1678-3921.pab2020.v55.01159.
. Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. https://doi.org/10.1128/AEM.02635-18.
Koshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2015, 4, 378–383.
Do Carmo, K.B.; Do Carmo, J.C.B.; Krause, M.R.; Peterle, G. Sensory and physiological quality of arabic coffee under different fermentation times. Biosci. J. 2020, 36, 429–438. https://doi.org/10.14393/BJv36n2a2020-43255.
Avallone, S.; Guyot, B.; Brillouet, J.M.; Olguin, E.; Guiraud, J.P. Microbiological and biochemical study of coffee fermentation. Curr. Microbiol. 2001, 42, 252–256. https://doi.org/10.1007/s002840110213.
Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252–256. https://doi.org/10.1007/s002840110213
Batista da Mota, M. C., Batista, N. N., Sances Rabelo, M. H., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136(June). https://doi.org/10.1016/j.foodres.2020.109482
Correa, E. C., Jiménez-Ariza, T., Díaz-Barcos, V., Barreiro, P., Diezma, B., Oteros, R., Echeverri, C., Arranz, F. J., & Ruiz-Altisent, M. (2014). Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food and Bioprocess Technology, 7(11), 3166–3174. https://doi.org/10.1007/s11947-014-1328-4
De Bruyn, F., Jiyuan Zhang, S., Pothakos, V., Torres, J., Lambot, C., Moroni, A., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2016). Exploring the impact of post-harvest processing on the microbiota and metabolite profiles during a case of green coffee bean production. American Society for Microbiology, October. https://doi.org/10.1128/AEM.02398-16
De Bruyn, F., Zhang, J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and.
De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuysta, L. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and. Applied and Environmental Microbiology, 83(1), 1–16.
de Melo Pereira, G. V., da Silva Vale, A., de Carvalho Neto, D. P., Muynarsk, E. S., Soccol, V. T., & Soccol, C. R. (2020). Lactic acid bacteria: what coffee industry should know? Current Opinion in Food Science, 31, 1– 8. https://doi.org/10.1016/j.cofs.2019.07.004
de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-45002-8
Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333(May), 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796
Evangelista, S. R., Silva, C. F., Miguel, M. G. P. da C., Cordeiro, C. de S., Pinheiro, A. C. M., Duarte, W. F., & Schwan, R. F. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International, 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033
Garrett, R., Rezende, C. M., & Ifa, D. R. (2016). Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. LWT - Food Science and Technology, 65, 711–717. https://doi.org/10.1016/j.lwt.2015.08.062
Geankoplis, C. J. (1998). Procesos de transporte y operaciones unitarias. In S. A. de C. V. Compañia Editorial Continental (Ed.), Procesos de transporte y operaciones unitarias.
Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007). Impact of ‘“ ecological ”’ post-harvest processing on the volatile fraction of coffee beans: I . Green coffee. Food Composition an Analysis, 20, 289–296. https://doi.org/10.1016/j.jfca.2006.07.009
Koshiro, Y., Jackson, M. C., Nagai, C., & Ashihara, H. (2015). Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. European Chemical Bulletin, 4(8), 378– 383. https://doi.org/10.17628/ECB.2015.4.378
Martinez-Ramirez, A. (2013). Internal structure and water transport in endosperm and parchment of coffee bean (Vol. 114).
Martinez, S. J., Bressani, A. P. P., Dias, D. R., Simão, J. B. P., & Schwan, R. F. (2019). Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01287
Oliveira, G., da Silva, D. M., Alvarenga Pereira, R. G. F., Paiva, L. C., Prado, G., & Batista, L. R. (2013). Effect of different roasting levels and particle sizes on ochratoxin A concentration in coffee beans. Food Control, 34(2), 651–656. https://doi.org/10.1016/j.foodcont.2013.06.014
Peñuela-Martínez, A. E., Zapata-Zapata, A. D., & Durango-Restrepo, D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Science, 13(4), 465. https://doi.org/10.25186/cs.v13i4.1486
Peñuela, A. E., Pabón Usaquén, J. P., & Sanz Uribe, J. R. (2013). Método Fermaestro: Para determinar la finalización de la Fermentación del mucílago de café. Cenicafé.
Ribeiro, L. S., da Cruz Pedrozo Miguel, M. G., Martinez, S. J., Bressani, A. P. P., Evangelista, S. R., Silva e Batista, C. F., & Schwan, R. F. (2020). The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World Journal of Microbiology and Biotechnology, 36(12), 1–15. https://doi.org/10.1007/s11274-020-02963-7
Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26–32. https://doi.org/10.1016/j.foodres.2016.12.011
Sanz Uribe, J. R., Oliveros Tascón, C. E., Duque Orrego, H., Mejía Mejía, C. G., Benavides Machado, P., & Medina Rivera, R. D. (2018). Retención de pases: una opción para mejorar la productividad de la mano de obra en la cosecha de café (p. Cenicafé AVT 488 1-8).
Silva, C. F., Schwan, R. F., Sousa Dias, Ë., & Wheals, A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. International Journal of Food Microbiology, 60(2–3), 251–260. https://doi.org/10.1016/S0168-1605(00)00315-9
Wang, C., Sun, J., Lassabliere, B., Yu, B., Zhao, F., Zhao, F., Chen, Y., & Liu, S. Q. (2019). Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. Journal of the Science of Food and Agriculture, 99(1), 409–420. https://doi.org/10.1002/jsfa.9202
Wei, L., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124
Wei, L., Yu Tay, G., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica : I . Green coffee. Food Science and Technology, 77, 225–232. https://doi.org/10.1016/j.lwt.2016.11.047
Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., & Zhang, Z. (2022). Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lwt, 161(March), 113317. https://doi.org/10.1016/j.lwt.2022.113317
Zhang, S. J., De Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology, 85(6), 1–22. https://doi.org/10.1128/AEM.02635-18
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Facultad de Ingeniería
Manizales
Doctorado en Ingeniería
publisher.none.fl_str_mv Facultad de Ingeniería
Manizales
Doctorado en Ingeniería
institution Universidad de Caldas
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836145065295085568
spelling Efecto de los cambios del pericarpio generados por los grados de madurez, el almacenamiento y la fermentación en la composición química y la calidad sensorial del caféCaféMadurezFermentaciónGlucosaÁcidos orgánicosReservaIsótopoDifusiónProducto vegetalIlustraciones, gráficasspa:El proceso de poscosecha del café se inicia con la selección del estado óptimo de madurez del fruto, y finaliza con el secado de la semilla, donde cada etapa tiene efecto sobre las características intrínsecas del grano. En Colombia, tradicionalmente la poscosecha para obtener granos de café a partir de los frutos maduros se realiza en las fincas a través del método húmedo, dando lugar a los cafés conocidos como lavados, el cual involucra una rápida eliminación de la cáscara y del mucílago del café (exocarpio y mesocarpio), como también un lavado con agua antes de secar el grano. Aunque este método contempla un mayor número de etapas, implica un menor tiempo de proceso y riesgo en la generación de defectos sensoriales. Esta investigación analizó cómo el exocarpio y el mesocarpio durante la etapa de madurez, almacenamiento del fruto y la fermentación prolongada, interactúan con el grano modificando su composición química y su calidad sensorial. Para lograr lo anterior, se definieron tres etapas en la investigación. En la primera etapa se realizó una evaluación de las características químicas y sensoriales del café en tres diferentes estados de madurez del fruto. En la segunda, se determinó el efecto del almacenamiento (reserva) en estos frutos con distintos grados de madurez sobre la composición química y la calidad sensorial del grano. En esta etapa se evaluaron cuatro tratamientos compuestos por dos temperaturas y dos tiempos de reserva antes del procesamiento del café por vía húmeda. En la tercera etapa se estableció la influencia de dos variables del proceso de fermentación prolongada sobre diferentes compuestos químicos, atributos sensoriales del fruto maduro y en la transferencia de masa al interior del grano. El café despulpado fue sometido a cuatro tratamientos, dos tiempos de prolongación y dos temperaturas externas; durante el proceso se monitorearon los comportamientos de los principales ácidos orgánicos y azúcares generados por la degradación del mesocarpio a través del tiempo y los cambios al interior del grano. En la primera etapa, los grados de madurez evaluados (EM1, EM2 y EM3), no presentaron diferencias en los ácidos orgánicos, ácidos grasos libres, lípidos, ácidos clorogénicos totales, proteína cruda, alcaloides y sacarosa. De los azúcares evaluados, la fructosa y glucosa presentaron diferencias con mayores valores asociados a estados de madurez más avanzados. El análisis de varianza no presentó efecto significativo en los atributos sensoriales ni en la calidad sensorial expresada como puntaje total SCA (Specialty Coffee Association). La coordenada cromática a* de la escala CIEL*a*b*, alcanzó un valor máximo de 25,16 en el estado de madurez EM1 y los estados evaluados son diferentes entre ellos. En la segunda etapa, asociada a la reserva del fruto previo a su procesamiento, el estado de madurez EM1 presentó efecto en los ácidos málico y quínico por la interacción de la temperatura y el tiempo de almacenamiento, mientras que el EM3 en la glucosa y la fructosa. El estado de madurez EM2 presentó efecto del tiempo de almacenamiento en los mismos compuestos de los estados EM1 y EM3, además en el contenido de pasilla y sacarosa. Bajo las condiciones evaluadas, la reserva del fruto no presentó efecto en la calidad sensorial. En las fermentaciones prolongadas del mucílago del café, se evidenció el efecto del tiempo de prolongación para los ácidos oxálico, quínico, cítrico, glucosa y fructosa en los grados de madurez EM1 y EM2. La interacción de las condiciones del proceso aumentó el contenido de fructosa y glucosa en uno de los estados, siendo más evidente a 20°C. Los tratamientos asociados al estado de madurez más avanzado (EM3) y con mayor temperatura disminuyen los puntajes de cinco atributos sensoriales.eng:The coffee post-harvest process begins with the selection of the optimum state of maturity of the fruit, and ends with drying, each one of these processes has an effect on the characteristics of the bean. In Colombia, traditionally the post-harvest to produce coffee beans from ripe fruits is obtained in the farms through the wet method, giving rise to coffees known as washed, which involves a rapid elimination of the skin and the mucilage of the coffee (exocarp and mesocarp), as it also involves a washing with water before drying the bean. This method contemplates a greater number of stages, but implies reduced processing time and lower risk in the generation of sensory defects. This research analyzed how the exocarp and mesocarp during the maturity stage and their interaction with the bean during later stages, fruit storage and prolonged fermentation, modify its chemical composition and sensory quality. To comply the objective, three phases were defined in the research. In the first phase an evaluation of the chemical and sensory characteristics of coffee at three different stages of maturity of the fruit was carried out. In the second phase, the effect of storage (reserve) on the chemical composition and sensory quality of the bean was determined for these fruits at different degrees of maturity. In this stage, four treatments composed of two temperatures and two reserve times were evaluated prior to wet processing of the coffee. In the third phase, the influence of two variables of the prolonged fermentation process on different chemical compounds, sensory attributes of the ripe fruit, and on the transfer of mass to the interior of the bean was established. The depulped coffee was subjected to four treatments, two prolongation times and two external temperatures. During the process the behavior of the main organic acids and sugars generated by the degradation of the mesocarp over time and the changes inside the bean were monitored. The maturity grades evaluated (EM1, EM2 and EM3), in the first stage, showed no differences in organic acids, free fatty acids, lipids, total chlorogenic acids, crude protein, alkaloids and sucrose. Of the sugars evaluated, fructose and glucose showed differences with higher values associated with more advanced stages of maturity. The analysis of variance showed no significant effect on sensory attributes or sensory quality expressed as total SCA (Specialty Coffee Association) score. The chromatic coordinate a* of the CIEL*a*b* scale reached a maximum value of 25.16 at maturity stage EM1 and the stages evaluated are different from each other. In the second stage associated with fruit storage prior to processing, maturity stage EM1 had an effect on malic and quinic acids due to the interaction of temperature and time of storage. The maturity stage EM2 showed an effect of storage time on the same compounds of stages EM1 and EM3, as well as on physical defects and sucrose content. Fruit storage under the conditions evaluated had no effect on sensory quality. In the prolonged fermentations of coffee mucilage, the effect of the prolongation time was evidenced for oxalic, quinic, citric, glucose and fructose acids at maturity stages EM1 and EM2. The interaction of process conditions increased fructose and glucose content at one of the stages, being more evident at 20°C. Treatments associated with the most advanced maturity stage (EM3) and with higher temperature decreased the scores of five sensory attributes.Agradecimientos / Resumen / Lista de tablas / 1. Introducción / 1.2. Campo temático / 1.3. Planteamiento del problema / 1.4. Justificación / 1.5. Objetivos / Objetivo general / Objetivos específicos / 1.6. Estructura del documento / 2. Revisión bibliográfica / 2.1 Estructura del fruto / 2.2 Grados de maduración del fruto / 2.2.1 Mediciones de color del exocarpio del fruto / 2.2.2 Cambios químicos del grano de café durante la maduración del fruto en el árbol / 2.3 Beneficio del café y la calidad / 2.3.1. Despulpado / 2.3.2. Remoción del mucílago / 2.3.3. Lavado del café / 2.3.4. Secado / 2.4 Calidad química y relación con la calidad sensorial de café / 2.4.1. Carbohidratos / 2.4.2. Componentes nitrogenados / 2.4.3. Ácidos Clorogénicos / 2.4.4. Lípidos / 2.4.5. Ácidos Carboxílicos / 2.5 Transferencia de masa / 3. Composición química y calidad sensorial de frutos de café con diferentes estados de madurez / 3.1. Resumen / 3.2. Palabras clave / 3.3. Introducción / 4. Impacto de las condiciones de reserva del fruto del café en la composición química y la calidad / 4.1. Resumen / 4.2. Palabras clave / 4.3. Introducción / 5. Effect of prolonged fermentations of coffee mucilage with different stages of maturity on the quality and chemical composition of the vean / 3.1. Abstract / 3.2. Keywords / 3.3. Introduction / 6. Cinética de formación de ácidos orgánicos y azúcares en las fermentaciones prolongadas del mucílago de café / . 6.1. Resumen / 6.3. Palabras clave / 6.4. Introducción / 7. ConclusionesDoctoradoDoctor(a) en IngenieríaIngeniería de AlimentosFacultad de IngenieríaManizalesDoctorado en IngenieríaÁlvarez-Barreto, Cristina IAlimentos y Agroindustria (Categoría A1)Osorio Pérez, Valentina2023-02-08T13:03:57Z2023-02-08T13:03:57Z2023-02-07Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85application/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/18769Universidad de CaldasRepositorio Institucional Universidad de Caldashttps://repositorio.ucaldas.edu.coengspaArcila J., Farfán F., Moreno A., Salazar L., Hincapié E. (2007). Sistemas de producción de café en Colombia. Cenicafé. 310 p.Clarke R. J., Macrae R. (1985). Coffee Vol. 1. Elsevier. 306 p.Clarke, R. J., & Vitzthum, O. G. (2001). Coffee Recent Developments.Clifford, M. N., & Willson, K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage (M. N. Clifford & K. C. Willson, Eds.). AVI.Coradi P. C., Borém F. M., Saath R., Marques E. (2015). Effect of drying and storage conditions on the quality of natural and washed coffee, (July). https://doi.org/10.13140/RG.2.1.4880.7523DaMatta, F., Ronchi, C., Maestri, M., & Barros, R. (2008). Ecophysiology of coffee growth and production. Soils, Plant Growth and Crop Production, 3(March), 10.Duque H., Aristizábal C. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia, 56(4): 299–318.Echavarría J., Esguerra P., McAllister D., Robayo C. (2015). Informe de la misión de estudios para la competitividad de la caficultura en Colombia, 1–122.FNC. (2017). Informe de la Industria Cafetera 2017. 64 p.Giovannucci D., Liu P., Byers A. (2008). Agregando valor: Comercio de café certificado en Norte América, 29–50.Iamanaka, B. T., Teixeira, A. A., Teixeira, A. R. R., Vicente, E., Frisvad, J. C., Taniwaki, M. H., & Bragagnolo, N. (2014). Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Research International, 64, 166-170. https://doi.org/10.1016/j.foodres.2014.06.017Liu C., Yang Q., Linforth R., Fisk I. D., Yang N. (2019). Modifying Robusta coffee aroma by green bean chemical pre-treatment, 272(April 2018): 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226OAGAC. (2021). Informe de coyuntura cafetera Gobierno de Colombia, Ministerio de Hacienda, Oficina Asesor del Gobierno para Asuntos Cafeteros.Ocampo, O., & Álvarez, L. (2017). Artículo de investigación Tendencia de la producción y el consumo del café en Colombia. Apuntes Del Cenes, 36(Tendencia de la producción y el consumo del café en Colombia), 139–165. https://doi.org/10.19053/01203053.v36.n64.2017.5419OIC. (2022). El mercado de café finalizó 2020/21 en excedente. Guatemala. 7 p.Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26-32. https://doi.org/10.1016/j.foodres.2016.12.011Rodríguez N., Sanz J., Oliveros C., Ramírez C. (2015). Beneficio de Café en Colombia. Cenicafé. 37 p.Shuler J. D. (2017). Effect of the Presence of the Pericarp on the Chemical Composition and Sensorial Attributes of Arabica coffee, 64.Smrke, S., Kroslakova, I., Gloess, A. N., & Yeretzian, C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. FOOD CHEMISTRY, 174, 637–642. https://doi.org/10.1016/j.foodchem.2014.11.060Velásquez S., Peña N., Bohórquez J. C., Gutiérrez N., Sacks G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity, 274: 137–145.Velásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274, 137–145.Vélez R. (2018). Informe del Gerente, Federación Nacional de Cafeteros de Colombia.Wintgens, J. (2008). Coffee: Growing, Processing, Sustainable Production. En Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619627Yeager, S. E., Batali, M. E., Guinard, J.-X., & Ristenpart, W. D. (2021). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 0(0), 1-27. https://doi.org/10.1080/10408398.2021.1957767Yusianto, & Nugroho, D. (2014). Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 30(2), 137-158. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v30i2.7Zambrano D. A. (1993). Fermente y lave su café en el tanque tina, AVT 197(197): 1–8.Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., & Zhang, Z. (2022). Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lwt, 161(March), 113317. https://doi.org/10.1016/j.lwt.2022.113317Zhang, S. J., De Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology, 85(6), 1–22. https://doi.org/10.1128/AEM.02635-18Alcázar Á., Jurado J. M., Martín M. J., Pablos F., González A. G. (2005). Enzymatic-spectrophotometric determination of sucrose in coffee beans, 67(4): 760–766. https://doi.org/10.1016/j.talanta.2005.04.005Alvarez J. (1991). Despulpado de café sin agua, AVT 164(164): 1–7. Centro Nacional de Investigaciones del café. Cenicafé.Amorim A. C. L., Hovell A. M. C., Pinto A. C., Eberlin M. N., Arruda N. P., Pereira E. J., … Rezende C. M. (2009). Green and Roasted Arabica Coffees Differentiated by Ripeness, Process and Cup Quality, 20(2): 313– 321.Arcila J., Farfán F., Moreno A., Salazar L., Hincapié E. (2007). Sistemas de producción de café en Colombia. Cenicafé. 310 p. . Centro Nacional de Investigaciones del café. Cenicafé.Barboza C. A., Amaya F. L. (1995). Análisis de la calidad del grano y de la bebida del café var. caturra en función de la maduración y tiempo de fermentación, 1–15.Bytof G., Knopp S., Kramer D., Breitenstein B., Bergervoet J. H. W. (2018). Transient Occurrence of Seed Germination Processes during Coffee Post-harvest Treatment, 100(1): 61–66.Bytof G., Peter S. K. (2005). Influence of processing on the generation of g -aminobutyric acid in green coffee beans, 245–250. https://doi.org/10.1007/s00217-004-1033-zCarvajal J. J., Aristizábal I. D., Oliveros C. E., Mejía J. W. (2011). Colorimetría del Fruto de Café ( Coffea arabica L .) Durante su Desarrollo y Maduración, 64(2): 6229–6240.Clarke R. J., Vitzthum O. G. (2001). Coffee Recent Developments. 266 p. vClifford M. N., Willson K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage. AVI. 439 p.Coradi P. C., Borém F. M., Saath R., Marques E. (2015). Effect of drying and storage conditions on the quality of natural and washed coffee, (July). https://doi.org/10.13140/RG.2.1.4880.7523Correa P. C., Botelho F. M., Botleho S. de C., Goneli A. L. (2018). Sorption isotherms of fruits of Coffea canephora, 1–10.De Bruyn F., Jiyuan Zhang S., Pothakos V., Torres J., Lambot C., Moroni A., … De Vuyst L. (2016). Exploring the impact of post-harvest processing on the microbiota and metabolite profiles during a case of green coffee bean production, (October). https://doi.org/10.1128/AEM.02398-16De Castro R. D., Marraccini P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. https://doi.org/10.1590/S1677-04202006000100013De Melo G., Neto D. P. D. C., Júnior A. I. M., Vásquez Z. S., Medeiros A. B. P., Vandenberghe L. P. S., Soccol C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of co ff ee beans – A review, 272(August 2018): 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061De Melo G. V., Neto E., Soccol V. T., Medeiros A. B. P., Woiciechowski A. L., Soccol C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects, 75: 348–356. https://doi.org/10.1016/j.foodres.2015.06.027De Melo G. V., Soccol V. T., Soccol C. R. (2016). Current state of research on cocoa and coffee fermentations, 50–57. https://doi.org/10.1016/j.cofs.2015.11.001De Sousa G. R., Duarte Vieira H., Pereira Rodrigues W. (2015). Comparison between manual and semimechanical harvest of coffee fruit in mountainous areas, 10(28): 2724–2730. https://doi.org/10.5897/ajar2014.9356Duarte G. S., Pereira A. A., Farah A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods, 118(3): 851–855. https://doi.org/10.1016/j.foodchem.2009.05.042Duque H., Aristizábal C. (2005). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia, 56(4): 299–318.Echavarría J., Esguerra P., McAllister D., Robayo C. (2013). Informe de la misión de estudios para la competitividad de la caficultura en Colombia, 1–122.Eira M. T. S., Amaral Da Silva E. A., De Castro R. D., Dussert S., Walters C., Bewley J. D., Hilhorst H. W. M. (2006). Coffee seed physiology. https://doi.org/10.1590/S1677-04202006000100011Esquivel P., Jiménez V. M. (2012). Functional properties of coffee and coffee by-products, 46(2012): 488– 495.Evangelista S., Da Cruz Pedrozo M. G., Ferreira Silva C., Marques Pinheiro A. C., Freitas Schwan R. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation, 210: 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008Farah A., Monteiro M., Cavalo V., Franca A. S., Trugo L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee, 98: 373–380. https://doi.org/10.1016/j.foodchem.2005.07.032Fernandez-Alduenda M., Lusk K., Silcock P., Birch J. (2014). Descriptive Cupping – a Rapid Coffee Flavour Profiling Method Using the Specialty Coffee Association of America (SCAA) Cupping Protocol pp. p42–49.FNC. (2017). Informe de la Industria Cafetera 2017. 64 p.Franca A. S., Mendonca J. C. F., Oliveira S. D. (2005). Composition of green and roasted coffees of different cup qualities, 38: 709–715. https://doi.org/10.1016/j.lwt.2004.08.014Franca A. S., Oliveira L. S., Mendonc J. C. F., Silva X. (2005). Physical and chemical attributes of defective crude and roasted coffee beans, 90: 89–94. https://doi.org/10.1016/j.foodchem.2004.03.028Garrett R., Rezende C. M., Ifa D. R. (2016). Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging, 65: 711–717. https://doi.org/10.1016/j.lwt.2015.08.062Geankoplis C. J. (1998). Procesos de transporte y operaciones unitarias.Giovannucci D., Liu P., Byers A. (2008). Agregando valor: Comercio de café certificado en Norte América, 29–50.Gonzalez-Rios O., Suarez-Quiroz M. L., Boulanger R., Barel M., Guyot B., Guiraud J.-P., Schorr-Galindo S. (2007). Impact of ‘“ ecological ”’ post-harvest processing on the volatile fraction of coffee beans : I . Green coffee, 20: 289–296. https://doi.org/10.1016/j.jfca.2006.07.009Iamanaka B. T., Teixeira A. A., Teixeira A. R. R., Vicente E., Frisvad J. C., Taniwaki M. H., Bragagnolo N. (2014). Potential of volatile compounds produced by fungi to in fl uence sensory quality of coffee beverage, 64: 166–170. https://doi.org/10.1016/j.foodres.2014.06.017Kipkorir R. K., Muliro P., Muhoho S. (2015). Effects of coffee processing technologies on physico-chemical properties and sensory qualities of coffee, 9(4): 230–236. https://doi.org/10.5897/ajfs2014.1221Koshiro Y., Jackson M. C., Katahira R., Wang M. L., Nagai C., Ashihara H. (2007). Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants, 62(9–10): 731– 742. https://doi.org/10.1515/znc-2007-9-1017Liu C., Yang Q., Linforth R., Fisk I. D., Yang N. (2019). Modifying Robusta coffee aroma by green bean chemical pre-treatment, 272(April 2018): 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226Marín C., Puerta G. I. (2008). Cotenido de ácidos clorogénicos en frutos de Coffea arabica y C. canephora, según el desarrollo del fruto, 59(1): 7–28.Marín S. M., Arcila Pulgarín J., Montoya Restrepo E. C., Oliveros-Tascón C. E. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia), 54(3): 208–225.Marraccini P., Allard C., Andre M., Courjault C., Gaborit C., Lacoste N., … Deshayes A. (2001). Update on coffee biochemical compounds, protein and gene expression during bean maturation and in other tissues., 1– 12.Martinez Ramirez A. (2013). Internal structure and water transport in endosperm and parchment of coffee bean, 114: 375–383.Martinez S. J., Pereira Bressani A. P., Da Cruz Pedrozo M. G., Ribeiro Dias D., Freitas Schwan R. (2017). Different inoculation methods for semi-dry processed co ff ee using yeasts as starter cultures, 102(September): 333–340. https://doi.org/10.1016/j.foodres.2017.09.096Martínez V. M., Aristizábal Torres I. D., Moreno E. L. (2017). Evaluation of the composition effect of harvested coffee in the organoleptic properties of coffee drink, 24(1): 47–58.Nikolova-Damyanova B., Velikova R., Jham G. N. (1998). Lipid classes, fatty acid composition and triacylglycerol molecular species in crude coffee beans harvested in Brazil, 31(6–7): 479–486. https://doi.org/10.1016/S0963-9969(99)00016-2Ocampo Agudelo D. M., Riaño Herrera N. M., López Ruiz J. C., López Forero Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto, 61(4): 327–343.Ocampo D. M., Riaño Herrera N. M., López Ruiz J. C., López Forero Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto, 61(4): 327–343.Ocampo O., Álvarez L. (2017). Artículo de investigación Tendencia de la producción y el consumo del café en Colombia, 36(Tendencia de la producción y el consumo del café en Colombia): 139–165. https://doi.org/10.19053/01203053.v36.n64.2017.5419OIC. (2018). El mercado de café finalizó 2017/18 en excedente. Guatemala. 7 p.Oliveros C. E., Peñuela Martinez A. E., Jurado Chana J. M. (2009). Controle la humedad del café en el secado solar, utilizando el método gravimet. . Centro Nacional de Investigaciones del café. Cenicafé.Oliveros C. E., Roa G. (1995). El desmucilaginado mecánico del café. . Centro Nacional de Investigaciones del café. Cenicafé.Oliveros C. E., Sanz J. R. (2017). Tecnología para el lavado del café en fincas de pequeños productores Ecomill ® LH300, (9): 1–8. . Centro Nacional de Investigaciones del café. Cenicafé.Oliveros Tascón C. E., Sanz Uribe J. R., Ramírez Gómez C. A., Alvarez Hernández J. R., Roa Mejía G., Alvarez Gallo J. (1995). Desmucilaginadores mecánicos de café. . Centro Nacional de Investigaciones del café. Cenicafé.Palacios-Cabrera H., Taniwaki M. H., Menezes H. C., Iamanaka B. T. (2004). The production of ochratoxin A by Aspergillus ochraceus in raw coffee at different equilibrium relative humidity and under alternating temperatures, 15: 531–535. https://doi.org/10.1016/j.foodcont.2003.08.006Pedroza E., Meira Borém F., Damasceno de Oliveira P., Cambuy Siqueira V., Euripedes Alves G. (2018). Quality of natural coffee subjected to different rest periods during the drying process, 1–8.Peñuela-Martínez A. E., Zapata-Zapata A. D., Durango-Restrepo D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.), 13(4): 465. https://doi.org/10.25186/cs.v13i4.1486Peñuela A. E., Oliveros Tascón C. E., Sanz Uribe J. R. (2010). Remoción del mucílago de café a través de fermentación natural, 61(2): 159–173. Centro Nacional de Investigaciones del café. Cenicafé.Peñuela A. E., Pabón Usaquén J. P., Oliveros Tascón C. E. (2011). Enzimas: una alternativa para remover rápida y eficazmente el mucílago del café, (4). Centro Nacional de Investigaciones del café. Cenicafé.Peñuela A. E., Pabón Usaquén J. P., Sanz Uribe J. R. (2013). Método Fermaestro: Para determinar la finalización de la Fermentación del mucílago de café. Centro Nacional de Investigaciones del café. Cenicafé.Pereira Bressani A. P., Martinez S. J., Reis Evangelista S., Ribeiro Dias D., Freitas Schwan R. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods, 92(February): 212–219. https://doi.org/10.1016/j.lwt.2018.02.029Pérez M., Jiménez S., Ebrahimzadeh A., Verdejo M. M., Chaves L. A., Lao M. T. (2008). Propuesta de una metodología para la determinación del color del tejido vegetal pp. p237–242.Pohlan H. a J., Janssesn M. J. J. (2008). Growth and Production of Coffee, 19(4): 485–510.Prasanna V., Prabha T. N., Tharanathan R. N. (2007). Fruit ripening phenomena-an overview, 47(1): 1–19. https://doi.org/10.1080/10408390600976841Puerta G. I. (2006). La humedad controlada del grano preserva la calidad del café.Puerta G. I. (2011). Composición química de una taza de café, AVT 414(414): 1–12. Disponible en http://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/publicaciones_avt0414comp osicion_quimica_de_una_taza_de_cafe. . Centro Nacional de Investigaciones del café. Cenicafé.Puerta G. I., Ríos S. (2011). Composición química del mucílago de café, según el tiempo de fermemtación y refrigeración, 62(1999): 23–40. Centro Nacional de Investigaciones del café. Cenicafé.Ramos-Giraldo P. J., Sanz-Uribe J. R. (2011). Sistema opto-electrónico para la identificación de frutos de café por estados de maduración, 62(1): 87–99. Centro Nacional de Investigaciones del café. Cenicafé.Reis S., Ferreira C., Gabriela M., Miguel C., Souza C. De, Carla A., Pinheiro M., Ferreira W., Freitas R. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process, 61: 183–195. https://doi.org/10.1016/j.foodres.2013.11.033Roa G., Oliveros Tascón C. E., Ramírez Gómez C. A. (2000). Utilice la energía solar para secar correctamente el café. Centro Nacional de Investigaciones del café. Cenicafé.Roa Mejía G., Oliveros Tascón C. E., Parra Coronado A., Ramírez G C. A. (2000). El secado mecánico del café. Centro Nacional de Investigaciones del café. Cenicafé.Rodríguez N., Sanz J., Oliveros C., Ramírez C. (2015). Beneficio de Cafe en Colombia. Cenicafé. 37 p.Rogers W. J., Bastin M., Bucheli P. (1999). Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C . arabica) coffees, 149: 115–123.Salazar M. R., Riaño Herrera N. M., Arcila Pulgarín J., Ponce C. A. (1994). Estudio morfológico anatómico y ultraestructural del fruto de café Coffea arabia L., 45(3): 93–105. Centro Nacional de Investigaciones del café. CenicaféSanz Uribe J. R., Oliveros Tascón C. E., Duque Orrego H., Mejía Mejía C. G., Benavides Machado P., Medina Rivera R. D. (2018). Retención de pases: una opción para mejorar la productividad de la mano de obra en la cosecha de café. Centro Nacional de Investigaciones del café. Cenicafé.SCA. (2000). Cupping Protocols. Disponible en https://sca.coffee/research/protocols-best-practicesShuler J. D. (2017). Effect of the Presence of the Pericarp on the Chemical Composition and Sensorial Attributes of Arabica coffee, 64.Silva C. F., Schwan R. F., Dias S., Wheals A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil, 60: 251–260.Silva C., Schwan R., Sousa Dias Ë., Wheals A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil Vol. 60, pp. p251–260. https://doi.org/10.1016/S0168- 1605(00)00315-9Silva L., Egídio Ribeiro D., Reis Evangelista S., Da Cruz Pedrozo M. G., Marques Pinheiro A. C., Meira Borém F., Freitas Schwan R. (2017). Controlled fermentation of semi-dry coffee (Coffea arabica) using starter cultures : A sensory perspective, 82: 32–38. https://doi.org/10.1016/j.lwt.2017.04.008Silva L., Miguel M. G. da C. P., Evangelista S. R., Martins P. M. M., van Mullem J., Belizario M. H., Schwan R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage, 92: 26–32. https://doi.org/10.1016/j.foodres.2016.12.011Smrke S., Kroslakova I., Gloess A. N., Yeretzian C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques, 174: 637–642. https://doi.org/10.1016/j.foodchem.2014.11.060Sunarharum W. B., Williams D. J., Smyth H. E. (2014). Complexity of coffee flavor : A compositional and sensory perspective, 62: 315–325. https://doi.org/10.1016/j.foodres.2014.02.030Suppavorasatit I., Lopetcharat K., Kulapichitr F., Borompichaichartkul C., Boonbumrung S., Pratontep S. (2017). Differences in volatile compounds and antioxidant activity of ripe and unripe green coffee beans ( Coffea arabica L. ‘Catimor’), 51(1179): 261–268. https://doi.org/10.17660/actahortic.2017.1179.41Toci A. T., Farah A. (2008). Food Chemistry Volatile compounds as potential defective coffee beans ’ markers, 108: 1133–1141. https://doi.org/10.1016/j.foodchem.2007.11.064Veiga A., Mendes R., Dellyzete S., Vilela É., De Castro L., Veiga A. (2007). Armazenabilidade de sementes de cafeeiro colhidas em diferentes estádios de maturação e submetidas a diferentes métodos de secagem, 29(1): 83–91. https://doi.org/10.1590/s0101-31222007000100012Velásquez S., Peña N., Bohórquez J. C., Gutiérrez N., Sacks G. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity, 274: 137–145.Vélez R. (2018). Informe del Gerente, Federación Nacional de Cafeteros de Colombia.Wallis-García J. A., Montoya Restrepo E. C., Vélez Zape J. C., Oliveros Tascón C. E. (2004). Calidad y eficacia de dos métodos no selectivos de recolección manual de café ( Coffea arabica ), 55(1): 45–51.Wang C., Sun J., Lassabliere B., Yu B., Zhao F., Zhao F., Chen Y., Liu S. Q. (2019). Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting, 99(1): 409–420. https://doi.org/10.1002/jsfa.9202Wei L., Wai Cheong M., Curran P., Yu B., Quan Liu S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship, 185: 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124Wie L., Yu Tay G., Wai Cheong M., Curran P., Yu B., Quan Liu S. (2017). Modulation of the volatile and non volatile profiles of coffee fermented with Yarrowia lipolytica II. Roasted coffee_Wei_2017.pdf.Wintgens J. (2008). Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. 928 p. https://doi.org/10.1002/9783527619627Zambrano D. A. (1993). Fermente y lave su café en el tanque tina, AVT 197(197): 1–8. Centro Nacional de Investigaciones del café. Cenicafé.Amorim, A. C. L., Hovell, A. M. C., Pinto, A. C., Eberlin, M. N., Arruda, N. P., Pereira, E. J., Bizzo, H. R., Catharino, R. R., Filho, Z. B., & Rezende, C. M. (2009). Green and roasted arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. Journal of the Brazilian Chemical Society, 20(2), 313–321. https://doi.org/10.1590/S0103-50532009000200017Carvajal, J. J., Aristizábal, I. D., & Oliveros, C. E. (2012). Physical and mechanical properties evaluation of coffee fruit (Coffea Arabica L. var. Colombia) during its development and maturation. DYNA, 79(173), 116– 124. https://revistas.unal.edu.co/index.php/dyna/article/view/25965Barboza, C. A., & Amaya, F. L. (1996). Quality analysis of coffee var. Caturra beans and beverage as a function of berry ripeness and vean fermentation time. Agronomía Tropical, 46(3), 289–311.Batali, M. E., Frost, S. C., Lebrilla, C. B., Ristenpart, W. D., & Guinard, J. (2020). Sensory and monosaccharide analysis of drip brew coffee fractions versus brewing time. Journal of the Science of Food and Agriculture, 100(7), 2953–2962. https://doi.org/10.1002/jsfa.10323Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Coffee, Tea, Cocoa. In Food Chemistry (pp. 938–970). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7_22Carvajal, J. J., Aristizábal, I. D., Oliveros, C. E., & Mejía, J. W. (2011). Coffee Fruit (Coffea arabica L.) Colorimetry During its Development and Maturation. Revista Facultad Nacional de Agronomía Medellín, 64(2), 6229–6240. https://revistas.unal.edu.co/index.php/refame/article/view/29414De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18(1), 175–199. https://doi.org/10.1590/S1677- 04202006000100013Eira, M. T. S., Silva, E. A. A. da, De Castro, R. D., Dussert, S., Walters, C., Bewley, J. D., & Hilhorst, H. W. M. (2006). Coffee seed physiology. Brazilian Journal of Plant Physiology, 18(1), 149–163. https://doi.org/10.1590/S1677-04202006000100011Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488–495. https://doi.org/10.1016/j.foodres.2011.05.028Geromel, C., Ferreira, L. P., Bottcher, A., Pot, D., Pereira, L. F. P., Leroy, T., Vieira, L. G. E., Mazzafera, P., & Marraccini, P. (2008). Sucrose metabolism during fruit development in Coffea racemosa. Annals of Applied Biology, 152(2), 179–187. https://doi.org/10.1111/j.1744-7348.2007.00199.xInstituto Colombiano de Normas Técnicas y Certificación. (2021). NTC 2324: Café verde. Examen olfativo y visual y determinación de materia extraña y defectos. https://tienda.icontec.org/gp-cafe-verde-examenolfativo-y-visual-y-determinacion-de-materia-extrana-y-defectos-ntc2324-2021.htmInternational Organization for Standardization [ISO]. (2003). ISO 6673:2003 Green coffee—Determination of loss in mass at 105 degrees C. https://www.iso.org/obp/ui/#iso:std:iso:6673:ed-2:v1:enKoshiro, Y., Jackson, M. C., Katahira, R., Wang, M.-L., Nagai, C., & Ashihara, H. (2007). Biosynthesis of Chlorogenic Acids in Growing and Ripening Fruits of Coffea arabica and Coffea canephora Plants. Zeitschrift Für Naturforschung C, 62(9–10), 731–742. https://doi.org/10.1515/znc-2007-9-1017Koshiro, Y., Jackson, M. C., Nagai, C., & Ashihara, H. (2022). Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. European Chemical Bulletin, 4(8), 378– 378. https://www.eurchembull.com/?mno=66742Marín, C., & Puerta, G. I. (2008). Contenido de ácidos clorogénicos en granos de Coffea arabica L. y C. canephora, según el desarrollo del fruto. Revista Cenicafé, 59(1), 7–28. http://hdl.handle.net/10778/60Marín, S. M., Arcila-Pulgarín, J., Montoya-Restrepo, E. C., & Oliveros-Tascón, C. E. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea arabica L. var. Colombia). Revista Cenicafé, 54(3), 208–225. http://hdl.handle.net/10778/265Marraccini, P., Allard, C., Andre, M., Courjault, C., Gaborit, C., Lacoste, N., Meunier, A., Michaux, S., Petit, V., Priyono, P., Rogers, J., & Deshayes, A. (2001). Update on coffee biochemical compounds, protein and gene expression during bean maturation and in other tissues. Proceedings of 19th International Scientific Colloquium on Coffee., Trieste, Italy. https://www.asic-cafe.org/conference/19th-international-scientific-colloquiumcoffeeMartinez, V. M., Aristizábal, I. D., & Moreno, E. L. (2017). Evaluation of the composition effect of harvested coffee in the organoleptic properties of coffee drink. Vitae, 24(1), 47–58. https://doi.org/10.17533/udea.vitae.v24n1a06Montavon, P., Duruz, E., Rumo, G., & Pratz, G. (2003). Evolution of Green Coffee Protein Profiles with Maturation and Relationship to Coffee Cup Quality. Journal of Agricultural and Food Chemistry, 51(8), 2328– 2334. https://doi.org/10.1021/jf020831jKoshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242–250. https://doi.org/10.1016/j.plantsci.2006.03.017Ocampo, D. M., Riaño, N. M., López, J. C., & López, Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos en el pericarpio durante el desarrollo del fruto del cafeto. Revista Cenicafé, 61(4), 327–343. http://hdl.handle.net/10778/507Ortolá, M. D., Gutiérrez, C. L., Chiralt, A., & Fito, P. (1998). Kinetic study of lipid oxidation in roasted coffee. Food Science and Technology International, 4(1), 67–73. https://doi.org/10.1177/108201329800400109Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit Ripening Phenomena–An Overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841Puerta, G. I., & Rios-Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermemtación y refrigeración. Revista Cenicafé, 62(2), 23–40. http://hdl.handle.net/10778/478Rogers, W. J., Michaux, S., Bastin, M., & Bucheli, P. (1999). Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Science, 149(2), 115–123. https://doi.org/10.1016/S0168-9452(99)00147-8Salazar, M. R., Riaño-Herrera, N. M., Arcila Pulgarín, J., & Ponce, C. A. (1994). Estudio morfológico anatómico y ultraestructural del fruto de café Coffea arabica L. Revista Cenicafé, 45(3), 93–105. http://hdl.handle.net/10778/795Sanz, J. R., Oliveros, C. E., Duque, H., Mejía, C. G., Benavides, P., & Rivera, R. D. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1–8. http://hdl.handle.net/10778/4218Smrke, S., Kroslakova, I., Gloess, A. N., & Yeretzian, C. (2015). Differentiation of degrees of ripeness of Catuai and Tipica green coffee by chromatographical and statistical techniques. Food Chemistry, 174, 637– 642. https://doi.org/10.1016/j.foodchem.2014.11.060Veiga, A. D., Guimarães, R. M., Rosa, S. D. V. F., Von Pinho, É. V., Silva, L. H., & Veiga, A. D. (2007). Storability of coffee seeds harvestedat different maturation stages and submitted to different drying methods. Revista Brasileira de Sementes, 29(1), 83–91. https://doi.org/10.1590/S0101-31222007000100012Velásquez, S., Peña, N., Bohórquez, J. C., Gutierrez, N., & Sacks, G. L. (2019). Volatile and sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry, 274, 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127Wallis-García, J. A., Montoya, E. C., Vélez-Zape, J. C., & Oliveros, C. E. (2004). Calidad y eficacia de dos métodos no selectivos de recolección manual de café Coffea arabica. Revista Cenicafé, 55(1), 45–51. http://hdl.handle.net/10778/113Amorim, A. C. L., Hovell, A. M. C., Pinto, A. C., Eberlin, M. N., Arruda, N. P., Pereira, E. J., Bizzo, H. R., Catharino, R. R., Morais Filho, Z. B., & Rezende, C. M. (2009). Green and roasted Arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. Journal of the Brazilian Chemical Society, 20(2), 313-321. https://doi.org/10.1590/S0103- 50532009000200017Brioschi, D., Guarconi, R. C., de Cassia Soares da Silva, M., Reis Veloso, T. G., Megumi Kasuya, M. C., da Silva Oliveira, E. C., Rodrigues da Luz, J. M., Moreira, T. R., Debona, D. G., & Pereira, L. L. (2021). Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. En FOOD CHEMISTRY (Vol. 342). ELSEVIER SCI LTD. https://doi.org/10.1016/j.foodchem.2020.128296Bruyn, F. D., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., Vuyst, L. D., & Björkroth, J. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Applied and Environmental Microbiology, 83(1), e02398-16. https://doi.org/10.1128/AEM.02398-16Caixeta, I. F., Mendes Guimarães, R., & Malta, M. R. (2013). Quality of coffee seeds after retardment of postharvest processing. Coffee Science, 8(3), 249-255. https://doi.org/10.25186/cs.v8i3.425Clarke, R. J., & Vitzthum, O. G. (2001). Coffee Recent Developments.Clifford, M. N., & Willson, K. C. (1985). Coffee: Botany, biochemistry and production of beans an beverage (M. N. Clifford & K. C. Willson, Eds.). AVI.De Melo, G. V., Soccol, V. T., & Soccol, C. R. (2016). Current state of research on cocoa and coffee fermentations. Food Science, 7, 50-57. https://doi.org/10.1016/j.cofs.2015.11.001de Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S., Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. En Food Chemistry (Vol. 272, Número August 2018, pp. 441-452). Elsevier. https://doi.org/10.1016/j.foodchem.2018.08.061Farah, A., Monteiro, M. C., Calado, V., Franca, A. S., & Trugo, L. C. (2006). Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chemistry, 98(2), 373-380. https://doi.org/10.1016/j.foodchem.2005.07.032Franca, A. S., Oliveira, L. S., Mendonca, J. C. F., & Silva, X. (2005). Physical and chemical attributes of defective crude and roasted coffee beans. Food Chemistry, 90, 89-94. https://doi.org/10.1016/j.foodchem.2004.03.028Franca, A. S., Oliveira, L. S., Mendonca, J. C. F., Silva, X., Dias, R. C. E., Benassi, M. D. T., Luca, S. De, Filippis, M. De, Bucci, R., Magrì, A. L. A. D., Magrì, A. L. A. D., Marini, F., Wang, X., Lim, L., Sorane, C., Kitzberger, G., Brígida, M., Toledo, M. De, Maria, C. A. B. De, … Andrade, F. M. (2005). Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Food Chemistry, 90(3), 127-139. https://doi.org/10.3390/beverages1030127Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007a). Impact of ‘‘ ecological ’’ post-harvest processing on coffee aroma: II. Roasted coffee. Food Composition an Analysis, 20, 297-307. https://doi.org/10.1016/j.jfca.2006.12.004Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007b). Impact of ‘‘ ecological ’’ post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Food Composition an Analysis, 20, 289-296. https://doi.org/10.1016/j.jfca.2006.07.009Iamanaka, B. T., Teixeira, A. A., Teixeira, A. R. R., Vicente, E., Frisvad, J. C., Taniwaki, M. H., & Bragagnolo, N. (2014). Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Research International, 64, 166-170. https://doi.org/10.1016/j.foodres.2014.06.017Ikumi, P. W., Koskei, R. K., Njoroge, D. M., & Kathurima, C. W. (2017). Effect of Soaking Coffee (Coffea arabica) Cherries on Biochemical Composition and Cup Quality of Coffee Brew. IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(06), 14-18. https://doi.org/10.9790/2402- 1106021418Norma Técnica Colombiana 2324. Café verde. Examen olfativo y visual y determinación de materia extraña y defectos, (2002).López, C., Bautista, E., Moreno, E., & Dentan, E. (1989). Factors related to the formation of «overfermented coffee beans» during the wet processing method and storage of coffee. Association Scientifique Internationale du Café, 13th International scientific colloquium on coffee, Paipa (Colombia), 21-25 August 1989. 1990 pp.373-384 ref.24, 373-384.Peñuela-Martínez, A. E., Zapata-Zapata, A. D., & Durango-Restrepo, D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Science, 13(4), 465. https://doi.org/10.25186/cs.v13i4.1486Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26-32. https://doi.org/10.1016/j.foodres.2016.12.011Sanz Uribe, J. R., Oliveros Tascón, C. E., Duque Orrego, H., Mejía Mejía, C. G., Benavides Machado, P., & Medina Rivera, R. D. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café (p. Cenicafé AVT 488 1-8).Sunarharum, W. B., Williams, D. J., & Smyth, H. E. (2014). Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62, 315-325. https://doi.org/10.1016/j.foodres.2014.02.030Takahama, U. (2004). Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochemistry Reviews, 3(1-2), 207-219. https://doi.org/10.1023/B:PHYT.0000047805.08470.e3Vargas, E. A., Silva, F. B., Santos, E. A., Souza, S. M. C., Souza, S. E., Correa, T. B. S., Franca, R. C. A., Amorim, S. S., Pfenning, L. H., Batista, L. R., Pereira, R. T. G., Nogueira, M. D., Nacif, A. P., & Junior, P. C. (2005). Influence of Coffee Processing and Defects on the Incidence and Occurrence of Ochratoxin A. International Conference on Coffee Science, 410-417.Velmourougane, K., Bhat, R., Gopinandhan, T. N., & Panneerselvam, P. (2011). Impact of delay in processing on mold development, ochratoxin-A and cup quality in arabica and robusta coffee. World Journal of Microbiology and Biotechnology, 27(8), 1809-1816. https://doi.org/10.1007/s11274-010-0639-5Wei, L., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 185, 182-191. https://doi.org/10.1016/j.foodchem.2015.03.124Wintgens, J. (2008). Coffee: Growing, Processing, Sustainable Production. En Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619627Yeager, S. E., Batali, M. E., Guinard, J.-X., & Ristenpart, W. D. (2021). Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Critical Reviews in Food Science and Nutrition, 0(0), 1-27. https://doi.org/10.1080/10408398.2021.1957767Yusianto, & Nugroho, D. (2014). Physical and Flavor Profiles of Arabica Coffee as Affected by Cherry Storage Before Pulping. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 30(2), 137-158. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v30i2.7da Mota, M.C.B.; Batista, N.N.; Rabelo, M.H.S.; Ribeiro, D.E.; Borém, F.M.; Schwan, R.F. Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Res. Int. 2020, 136, 109482. https://doi.org/10.1016/j.foodres.2020.109482.Velmourougane, K. Impact of natural fermentation on physicochemical, microbiological and cup quality characteristics of Arabica and Robusta coffee. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 233–239. https://doi.org/10.1007/s40011-012-0130-1.Pereira Bressani, A.P.; Martinez, S.J.; Reis Evangelista, S.; Ribeiro Dias, D.; Freitas Schwan, R. Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. Food Sci. Technol. 2018, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029Silva, C.F.; Vilela, D.M.; de Souza Cordeiro, C.; Duarte, W.F.; Dias, D.R.; Schwan, R.F. Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J. Microbiol. Biotechnol. 2013, 29, 235–247. https://doi.org/10.1007/s11274-012-1175-2.Puerta, G.I.; Rios, S. Chemical composition of coffee mucilage according to fermentation and refrigeration time. Rev. Cenicafé 2011, 62, 23–40Oliveros, C.E.; Roa, G. Mechanical demucilagination of coffee. Tech. Adv. Cenicafé 1995, 216, 1–7. https://doi.org/10.38141/10779/0216de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci. Rep. 2019, 9, 8794. https://doi.org/10.1038/s41598-019-45002-8.Evangelista, S.R.; Silva, C.F.; da Cruz Miguel, M.G.; de Souza Cordeiro, C.; Pinheiro, A.C.; Duarte, W.F.; Schwan, R.F. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res. Int. 2014, 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033.Silva, C.; Schwan, R.; Sousa Dias, Ë.; Wheals, A.E. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. https://doi.org/10.1016/S0168-1605(00)00315-9.Wang, C.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Res. Int. 2020, 136, 109452. https://doi.org/10.1016/j.foodres.2020.109452.Wei, L.; Wai Cheong, M.; Curran, P.; Yu, B.; Quan Liu, S. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124De Melo Pereira, G.V.; Neto, E.; Soccol, V.T.; Medeiros, A.B.P.; Woiciechowski, A.L.; Soccol, C.R. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Res. Int. 2015, 75, 348–356. https://doi.org/10.1016/j.foodres.2015.06.027.. Iamanaka, B.T.; Teixeira, A.A.; Teixeira, A.R.R.; Vicente, E.; Frisvad, J.C.; Taniwaki, M.H.; Bragagnolo, N. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage. Food Res. Int. 2014, 64, 166–170. https://doi.org/10.1016/j.foodres.2014.06.017.Martinez, S.J.; Pereira Bressani, A.P.; Da Cruz Pedrozo, M.G.; Ribeiro Dias, D.; Freitas Schwan, R. Different inoculation methods for semi-dry processed co ff ee using yeasts as starter cultures. Food Res. Int. 2017, 102, 333–340. https://doi.org/10.1016/j.foodres.2017.09.096.Evangelista, S.; Da Cruz Pedrozo, M.G.; Ferreira Silva, C.; Marques Pinheiro, A.C.; Freitas Schwan, R. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. Int. J. Food Microbiol. 2015, 210, 102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008Silva, L.; Egídio Ribeiro, D.; Reis Evangelista, S.; Da Cruz Pedrozo, M.G.; Marques Pinheiro, A.C.; Meira Borém, F.; Freitas Schwan, R. Controlled fermentation of semi-dry coffee (Coffea arabica) using starter cultures: A sensory perspective. Food Sci. Technol. 2017, 82, 32–38. https://doi.org/10.1016/j.lwt.2017.04.008.Waters, D.M.; Arendt, E.K.; Moroni, A.V. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 259–274. https://doi.org/10.1080/10408398.2014.902804.de Melo Pereira, G.V.; da Silva Vale, A.; de Carvalho Neto, D.P.; Muynarsk, E.S.; Soccol, V.T.; Soccol, C.R. Lactic acid bacteria: What coffee industry should know? Curr. Opin. Food Sci. 2020, 31, 1–8. https://doi.org/10.1016/j.cofs.2019.07.004.Ribeiro, L.S.; Miguel, M.G.; Evangelista, S.R.; Martins, P.M.; van Mullem, J.; Belizario, M.H.; Schwan, R.F. Comportment of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Res. Int. 2017, 92, 26–32. https://doi.org/10.1016/j.foodres.2016.12.011.Sanz Uribe, J.R.; Oliveros, C.E.; Duque, H.; Mejía, C.G.; Benavides, P.; Medina, R.D. Pass retention: An option to improve labor productivity in coffee harvesting. Tech. Adv. Cenicafé 2018, 488, 1–8. https://doi.org/10.38141/10779/0488.Peñuela-Martínez, A.E.; Pabón, J.P.; Sanz, J.R. Fermaestro method: To determine the completion of coffee mucilage fermentation. Tech. Adv. Cenicafé 2013, 431, 8. https://doi.org/10.38141/10779/0431.Colombian Institute of Technical Standards and Certification. NTC 2324: Green coffee. Olfactory and Visual Examination and Determination of Foreign Matter and Defects. Available online: https://tienda.icontec.org/gp-cafe-verde-examen-olfativo-y-visual-y-determinacion-de-materia-extranay-defectos-ntc2324-2021.html (accessed on 1 May 2020 ).Correa, E.C.; Jiménez-Ariza, T.; Díaz-Barcos, V.; Barreiro, P.; Diezma, B.; Oteros, R.; Echeverri, C.; Arranz, F.J.; Ruiz-Altisent, M. Advanced Characterisation of a Coffee Fermenting Tank by Multidistributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food Bioprocess Technol. 2014, 7, 3166–3174. https://doi.org/10.1007/s11947-014-1328-4.Avallone, S.; Guiraud, J.-P.; Guyot, B.; Olguin, E.; Brillouet, J.-M. Fate of Mucilage Cell Wall Polysaccharides during Coffee Fermentation. J. Agric. Food Chem. 2001, 49, 5556–5559. https://doi.org/10.1021/jf010510sPeñuela-Martínez, A.E.; Zapata-Zapata, A.D.; Durango-Restrepo, D.L. Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Sci. 2018, 13, 465–476. https://doi.org/10.25186/cs.v13i4.1486.De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398- 16. https://doi.org/10.1128/AEM.02398-16Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796.de Carvalho Neto, D.P.; de Melo Pereira, G.V.; Finco, A.M.O.; Letti, L.A.J.; da Silva, B.J.G.; Vandenberghe, L.P.S.; Soccol, C.R. Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Biosci. 2018, 26, 80–87. https://doi.org/10.1016/j.fbio.2018.10.005.Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009. https://doi.org/10.1007/978-3-540-69934-7.Garrett, R.; Rezende, C.M.; Ifa, D.R. Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. LWT Food Sci. Technol. 2016, 65, 711–717. https://doi.org/10.1016/j.lwt.2015.08.062.Bressani, A.P.; Martinez, S.J.; Vilela, L.D.; Dias, D.R.; Schwan, R.F. Coffee protein profiles during fermentation using different yeast inoculation methods. Pesquisa Agropecuária Brasileira 2020, v.55. https://doi.org/10.1590/s1678-3921.pab2020.v55.01159.. Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. https://doi.org/10.1128/AEM.02635-18.Koshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2015, 4, 378–383.Do Carmo, K.B.; Do Carmo, J.C.B.; Krause, M.R.; Peterle, G. Sensory and physiological quality of arabic coffee under different fermentation times. Biosci. J. 2020, 36, 429–438. https://doi.org/10.14393/BJv36n2a2020-43255.Avallone, S.; Guyot, B.; Brillouet, J.M.; Olguin, E.; Guiraud, J.P. Microbiological and biochemical study of coffee fermentation. Curr. Microbiol. 2001, 42, 252–256. https://doi.org/10.1007/s002840110213.Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252–256. https://doi.org/10.1007/s002840110213Batista da Mota, M. C., Batista, N. N., Sances Rabelo, M. H., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136(June). https://doi.org/10.1016/j.foodres.2020.109482Correa, E. C., Jiménez-Ariza, T., Díaz-Barcos, V., Barreiro, P., Diezma, B., Oteros, R., Echeverri, C., Arranz, F. J., & Ruiz-Altisent, M. (2014). Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food and Bioprocess Technology, 7(11), 3166–3174. https://doi.org/10.1007/s11947-014-1328-4De Bruyn, F., Jiyuan Zhang, S., Pothakos, V., Torres, J., Lambot, C., Moroni, A., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2016). Exploring the impact of post-harvest processing on the microbiota and metabolite profiles during a case of green coffee bean production. American Society for Microbiology, October. https://doi.org/10.1128/AEM.02398-16De Bruyn, F., Zhang, J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuyst, L. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and.De Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., Callanan, M., Sybesma, W., Weckx, S., & De Vuysta, L. (2017). Exploring the Impacts of Postharvest Processing on the Microbiota and. Applied and Environmental Microbiology, 83(1), 1–16.de Melo Pereira, G. V., da Silva Vale, A., de Carvalho Neto, D. P., Muynarsk, E. S., Soccol, V. T., & Soccol, C. R. (2020). Lactic acid bacteria: what coffee industry should know? Current Opinion in Food Science, 31, 1– 8. https://doi.org/10.1016/j.cofs.2019.07.004de Oliveira Junqueira, A. C., de Melo Pereira, G. V., Coral Medina, J. D., Alvear, M. C. R., Rosero, R., de Carvalho Neto, D. P., Enríquez, H. G., & Soccol, C. R. (2019). First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-45002-8Elhalis, H., Cox, J., Frank, D., & Zhao, J. (2020). The crucial role of yeasts in the wet fermentation of coffee beans and quality. International Journal of Food Microbiology, 333(May), 108796. https://doi.org/10.1016/j.ijfoodmicro.2020.108796Evangelista, S. R., Silva, C. F., Miguel, M. G. P. da C., Cordeiro, C. de S., Pinheiro, A. C. M., Duarte, W. F., & Schwan, R. F. (2014). Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International, 61, 183–195. https://doi.org/10.1016/j.foodres.2013.11.033Garrett, R., Rezende, C. M., & Ifa, D. R. (2016). Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging. LWT - Food Science and Technology, 65, 711–717. https://doi.org/10.1016/j.lwt.2015.08.062Geankoplis, C. J. (1998). Procesos de transporte y operaciones unitarias. In S. A. de C. V. Compañia Editorial Continental (Ed.), Procesos de transporte y operaciones unitarias.Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., & SchorrGalindo, S. (2007). Impact of ‘“ ecological ”’ post-harvest processing on the volatile fraction of coffee beans: I . Green coffee. Food Composition an Analysis, 20, 289–296. https://doi.org/10.1016/j.jfca.2006.07.009Koshiro, Y., Jackson, M. C., Nagai, C., & Ashihara, H. (2015). Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. European Chemical Bulletin, 4(8), 378– 383. https://doi.org/10.17628/ECB.2015.4.378Martinez-Ramirez, A. (2013). Internal structure and water transport in endosperm and parchment of coffee bean (Vol. 114).Martinez, S. J., Bressani, A. P. P., Dias, D. R., Simão, J. B. P., & Schwan, R. F. (2019). Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01287Oliveira, G., da Silva, D. M., Alvarenga Pereira, R. G. F., Paiva, L. C., Prado, G., & Batista, L. R. (2013). Effect of different roasting levels and particle sizes on ochratoxin A concentration in coffee beans. Food Control, 34(2), 651–656. https://doi.org/10.1016/j.foodcont.2013.06.014Peñuela-Martínez, A. E., Zapata-Zapata, A. D., & Durango-Restrepo, D. L. (2018). Performance of different fermentation methods and the effect on quality coffee (Coffea arabica L.). Coffee Science, 13(4), 465. https://doi.org/10.25186/cs.v13i4.1486Peñuela, A. E., Pabón Usaquén, J. P., & Sanz Uribe, J. R. (2013). Método Fermaestro: Para determinar la finalización de la Fermentación del mucílago de café. Cenicafé.Ribeiro, L. S., da Cruz Pedrozo Miguel, M. G., Martinez, S. J., Bressani, A. P. P., Evangelista, S. R., Silva e Batista, C. F., & Schwan, R. F. (2020). The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World Journal of Microbiology and Biotechnology, 36(12), 1–15. https://doi.org/10.1007/s11274-020-02963-7Ribeiro, L. S., Miguel, M. G. da C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J., Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry coffee fermentation and the effect on chemical and sensorial properties of the final beverage. Food Research International, 92, 26–32. https://doi.org/10.1016/j.foodres.2016.12.011Sanz Uribe, J. R., Oliveros Tascón, C. E., Duque Orrego, H., Mejía Mejía, C. G., Benavides Machado, P., & Medina Rivera, R. D. (2018). Retención de pases: una opción para mejorar la productividad de la mano de obra en la cosecha de café (p. Cenicafé AVT 488 1-8).Silva, C. F., Schwan, R. F., Sousa Dias, Ë., & Wheals, A. E. (2000). Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. International Journal of Food Microbiology, 60(2–3), 251–260. https://doi.org/10.1016/S0168-1605(00)00315-9Wang, C., Sun, J., Lassabliere, B., Yu, B., Zhao, F., Zhao, F., Chen, Y., & Liu, S. Q. (2019). Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. Journal of the Science of Food and Agriculture, 99(1), 409–420. https://doi.org/10.1002/jsfa.9202Wei, L., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2015). Coffee fermentation and flavor – An intricate and delicate relationship. Food Chemistry, 185, 182–191. https://doi.org/10.1016/j.foodchem.2015.03.124Wei, L., Yu Tay, G., Wai Cheong, M., Curran, P., Yu, B., & Quan Liu, S. (2017). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica : I . Green coffee. Food Science and Technology, 77, 225–232. https://doi.org/10.1016/j.lwt.2016.11.047Zhang, K., Cheng, J., Hong, Q., Dong, W., Chen, X., Wu, G., & Zhang, Z. (2022). Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. Lwt, 161(March), 113317. https://doi.org/10.1016/j.lwt.2022.113317Zhang, S. J., De Bruyn, F., Pothakos, V., Torres, J., Falconi, C., Moccand, C., Weckx, S., & De Vuyst, L. (2019). Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology, 85(6), 1–22. https://doi.org/10.1128/AEM.02635-18info:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccessinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/187692024-07-16T21:46:30Z