Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama
Figuras
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- spa
eng
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/22534
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/22534
- Palabra clave:
- 620 - Ingeniería y operaciones afines
2. Ingeniería y Tecnología
Ultrasonication
Optimization
Mango cotyledon
Starch
Response surface methodology
Cucurbita moschata
Encapsulation
Spray drying
Circular economy
Carotenoid bioaccessibility
Food matrices
Ingeniería
- Rights
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
REPOUCALDA_7c80ff08f367dcc2d717ae21b392f68f |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/22534 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| title |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| spellingShingle |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama 620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Ultrasonication Optimization Mango cotyledon Starch Response surface methodology Cucurbita moschata Encapsulation Spray drying Circular economy Carotenoid bioaccessibility Food matrices Ingeniería |
| title_short |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| title_full |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| title_fullStr |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| title_full_unstemmed |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| title_sort |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama |
| dc.contributor.none.fl_str_mv |
Chavez Salazar, Andrés Castellanos Galeano, Francisco Javier Alimentos y Agroindustria (Categoría A1) Aranda Bustos, Mario Antonio Andrade-Pizarro, Ricardo |
| dc.subject.none.fl_str_mv |
620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Ultrasonication Optimization Mango cotyledon Starch Response surface methodology Cucurbita moschata Encapsulation Spray drying Circular economy Carotenoid bioaccessibility Food matrices Ingeniería |
| topic |
620 - Ingeniería y operaciones afines 2. Ingeniería y Tecnología Ultrasonication Optimization Mango cotyledon Starch Response surface methodology Cucurbita moschata Encapsulation Spray drying Circular economy Carotenoid bioaccessibility Food matrices Ingeniería |
| description |
Figuras |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07-22T21:57:36Z 2025-07-22T21:57:36Z 2025-07-24 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado http://purl.org/coar/resource_type/c_db06 Text info:eu-repo/semantics/doctoralThesis |
| dc.identifier.none.fl_str_mv |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22534 Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/22534 |
| identifier_str_mv |
Universidad de Caldas Repositorio Institucional Universidad de Caldas repositorio.ucaldas.edu.co |
| dc.language.none.fl_str_mv |
spa eng |
| language |
spa eng |
| dc.relation.none.fl_str_mv |
Adinepour, F., Pouramin, S., Rashidinejad, A., & Jafari, S. M. (2022). Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Research International, 157, 1–19. https://doi.org/10.1016/j.foodres.2022.111212 Almeida, R. L. J., Santos, N. C., dos Santos Pereira, T., Monteiro, S. S., da Silva, L. R. I., da Silva Eduardo, R., … dos Santos, E. S. (2022). Extraction and modification of Achachairu’s seed (Garcinia humilis) starch using high-intensity low-frequency ultrasound. Journal of Food Process Engineering, 45(5), 1–10. https://doi.org/10.1111/jfpe.14022 Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93–102. https://doi.org/10.1016/j.jff.2015.04.051 Amin, M. Z., Islam, T., Uddin, M. R., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 5(9), 1–5. https://doi.org/10.1016/j.heliyon.2019.e02462 Anwar, M., Babu, G., & Bekhit, A. E. D. (2021). Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. Innovative Food Science and Emerging Technologies, 70, 1–9. https://doi.org/10.1016/j.ifset.2021.102691 Araujo, S. B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., & Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317–325. https://doi.org/10.1016/j.carbpol.2017.03.065 Ardabilchi Marand, M., Amjadi, S., Ardabilchi Marand, M., Roufegarinejad, L., & Jafari, S. M. (2020). Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powder Technology, 359, 76–84. https://doi.org/10.1016/j.powtec.2019.09.082 Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179 Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142 Bemfeito, C. M., Carneiro, J. de D. S., Carvalho, E. E. N., Coli, P. C., Pereira, R. C., & Vilas Boas, E. V. de B. (2020). Nutritional and functional potential of pumpkin (Cucurbita moschata) pulp and pequi (Caryocar brasiliense Camb.) peel flours. Journal of Food Science and Technology, 57(10), 3920–3925. https://doi.org/10.1007/s13197-020-04590-4 Benítez, R. (2017). Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe Roma: FAO Boletín embre). FAO Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., … Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT, 63(2), 1145–1154. https://doi.org/10.1016/j.lwt.2015.03.113 Böger, B. R., Acre, L. B., Viegas, M. C., Kurozawa, L. E., & Benassi, M. T. (2021). Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. Innovative Food Science & Emerging Technologies, 72, 1–10. https://doi.org/10.1016/j.ifset.2021.102739 Çam, M., Içyer, N. C., & Erdoǧan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Science and Technology, 55(1), 117–123. https://doi.org/10.1016/j.lwt.2013.09.011 Carneiro, H. C. F., Tonon, R. V, Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033 Comunian, T. A., Chaves, I. E., Thomazini, M., Moraes, I. C. F., Ferro-Furtado, R., de Castro, I. A., & Favaro-Trindade, C. S. (2017). Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chemistry, 237, 948–956. https://doi.org/10.1016/j.foodchem.2017.06.071 Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23(6), 1527–1534. https://doi.org/10.1016/j.foodhyd.2008.09.016 Demarco, M., Oliveira de Moraes, J., Matos, Â. P., Derner, R. B., de Farias Neves, F., & Tribuzi, G. (2022). Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends in Food Science and Technology, 121, 114–128. Dimitry, M. Y., Edith, D. M. J., Therese, B. A. M., Emmanuel, P. A., Armand, A. B., & Nicolas, N. Y. (2022). Comparative evaluation of bioactive compounds, nutritional and physicochemical properties of five Cucurbita species flours of South Cameroon. South African Journal of Botany, 454, 1–10. https://doi.org/10.1016/j.sajb.2022.03.006 DNP. (2016). Pérdida y Desperdicio de alimentos en Colombia. Departamento Nacional de Planeación (Vol. 39). do Prado Ferreira, M., & Teixeira Tarley, C. R. (2020). Assessment of in vitro bioacessibility of macrominerals and trace elements in green banana flour. Journal of Food Composition and Analysis, 92, 1–9. https://doi.org/10.1016/j.jfca.2020.103586 Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L., & Kong, F. (2014). Characterization and invitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology, 57(1), 42–48. https://doi.org/10.1016/j.lwt.2013.12.037 Enneb, S., Drine, S., Bagues, M., Triki, T., Boussora, F., Guasmi, F., … Ferchichi, A. (2020). Phytochemical profiles and nutritional composition of squash (Cucurbita moschata D.) from Tunisia. South African Journal of Botany, 130, 165–171 Esposito, B., Sessa, M. R., Sica, D., & Malandrino, O. (2020). Towards circular economy in the agri-food sector. A systematic literature review. Sustainability (Switzerland), 12(18), 1–21. https://doi.org/10.3390/SU12187401 FAO. (2011). Global Food Losses and Food Waste. Roma. FAO. (2019). El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos. Roma. FAO. (2022). Food loss measurement | Technical Platform on the Measurement and Reduction of Food Loss and Waste | Food and Agriculture Organization of the United Nations. Retrieved November 29, 2022, from https://www.fao.org/platform-food-loss-waste/flw-data/en Fernández, M. de los Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671–678. https://doi.org/10.1016/j.foodchem.2017.06.150 Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016 Ferreira, S., Araujo, T., Souza, N., Rodrigues, L., Lisboa, H. M., Pasquali, M., … Rocha, A. P. (2019). Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. Journal of Agriculture and Food Research, 1, 1–9. https://doi.org/10.1016/j.jafr.2019.100012 Forbes, H., Quested, T., & O’Connor, C. (2021). Food Waste Index Report 2021. United Nations Environment Programme Gobernación del Atlántico. Plan y Acuerdo Departamental de Ciencia, Tecnología e Innovación - PAED (2016). Barranquilla: Gobernación del Atlántico Gobierno de Colombia. (2019). Estrategia nacional de economía circular. Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio. Bogotá D.C., Colombia Gomes, S., Finotelli, P. V., Sardela, V. F., Pereira, H. M. G., Santelli, R. E., Freire, A. S., & Torres, A. G. (2019). Microencapsulated Brazil nut (Bertholletia excelsa) cake extract powder as an added-value functional food ingredient. LWT, 116, 1–7. https://doi.org/10.1016/j.lwt.2019.108495 Grupo de alto nivel de expertos en seguridad alimentaria (HLPE). (2020). Seguridad alimentaria y nutrición Elaborar una descripción global de cara a 2030. Comité de Seguridad Alimentaria Mundial GANASEN. Roma Gumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science and Technology, 110, 267–279. https://doi.org/10.1016/j.tifs.2021.02.016 Guo, K., Lin, L., Fan, X., Zhang, L., & Wei, C. (2018). Comparison of structural and functional properties of starches from five fruit kernels. Food Chemistry, 257, 75–82. https://doi.org/10.1016/j.foodchem.2018.03.004 Gutiérrez, C., Rivera, Y., Gómez, R., Bastidas, V., & Izaguirre, C. (2016). Extracción y caracterización de grasa y almidón de la almendra de mango variedad Alphonso (Mangifera indica L). Extraction and characterization of fat and starch kernel mango variety Alphonso (Mangifera indica L). Revista de La Facultad de Farmacia, 57(2), 33–42. Heydari, A., Razavi, S. M. A., & Farahnaky, A. (2021). Effect of high pressure-treated wheat starch as a fat replacer on the physical and rheological properties of reduced-fat O/W emulsions. Innovative Food Science and Emerging Technologies, 70, 1–11. https://doi.org/10.1016/j.ifset.2021.102702 Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161. https://doi.org/10.1080/87559129.2016.1261298 Jacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., & Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039 Jaeger, L. M., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., … Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040 Jafarzadeh, S., Mohammadi Nafchi, A., Salehabadi, A., Oladzad-abbasabadi, N., & Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 1–13. https://doi.org/10.1016/j.cis.2021.102405 Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3(1), 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003 Kalaivendan, R. G. T., Mishra, A., Eazhumalai, G., & Annapure, U. S. (2022). Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. International Journal of Biological Macromolecules, 196, 63–71. https://doi.org/10.1016/j.ijbiomac.2021.12.013 Kamiloglu, S., Ozdal, T., Bakir, S., & Capanoglu, E. (2022). Bioaccessibility of terebinth (Pistacia terebinthus L.) coffee polyphenols: Influence of milk, sugar and sweetener addition. Food Chemistry, 374, 1–9. https://doi.org/10.1016/j.foodchem.2021.131728 Karrar, E., Mahdi, A. A., Sheth, S., Mohamed Ahmed, I. A., Manzoor, M. F., Wei, W., & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 171, 208–216. https://doi.org/10.1016/j.ijbiomac.2020.12.045 Kim, M. Y., Kim, E. J., Kim, Y. N., Choi, C., & Lee, B. H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27. https://doi.org/10.4162/nrp.2012.6.1.21 Krishnaiah, D., Nithyanandam, R., & Sarbatly, R. (2014). A Critical Review on the Spray Drying of Fruit Extract: Effect of Additives on Physicochemical Properties. Critical Reviews in Food Science and Nutrition, 54(4), 449–473. https://doi.org/10.1080/10408398.2011.587038 Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. (2012). Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, 438, 477–489. https://doi.org/10.1016/j.scitotenv.2012.08.092 Lagunes-Delgado, C., Agama-Acevedo, E., Patiño-Rodríguez, O., Martinez, M. M., & Bello-Pérez, L. A. (2022). Recovery of mango starch from unripe mango juice. LWT, 153, 1–7. https://doi.org/10.1016/j.lwt.2021.112514 Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food and Function, 5(10), 2621–2631. https://doi.org/10.1039/c4fo00203b Li, B., Zhang, Y., Zhang, Y., Zhang, Y., Xu, F., Zhu, K., & Huang, C. (2021). A novel underutilized starch resource— Lucuma nervosa A.DC seed and fruit. Food Hydrocolloids, 120, 106934. https://doi.org/10.1016/j.foodhyd.2021.106934 Lopes, C. R., de Oliveira Júnior, F. D., Marin, G., Alvim, I. D., & Hubinger, M. D. (2020). Plant proteins at low concentrations as natural emulsifiers for an effective orange essential oil microencapsulation by spray drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, 1–15. https://doi.org/10.1016/j.colsurfa.2020.125470 Lu, W., Yang, X., Shen, J., Li, Z., Tan, S., Liu, W., & Cheng, Z. (2021). Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technology, 394, 562–574. https://doi.org/10.1016/j.powtec.2021.08.082 Luciano, C. G., Landi Franco, C. M., Ayala Valencia, G., do Amaral Sobral, P. J., & Freitas Moraes, I. C. (2017). Evaluation of extraction method on the structure and physicochemical properties of starch from seeds of two jackfruit varieties. Starch/Staerke, 69, 1–37. https://doi.org/10.1002/star.201700078 Martins, A., Beninca, C., Bet, C. D., Bisinella, R. Z. B., de Oliveira, C. S., Hornung, P. S., & Schnitzler, E. (2020). Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry, 142(2), 819–828. https://doi.org/10.1007/s10973-020-09298-3 Misión para la Transformación del Campo. (2014). Propuesta para Desarrollar un Modelo eficiente de Comercialización y Distribución de Productos. Documento técnico para la Misión para la Transformación del Campo Mohamed, M. H., Ngadi, N., Suhaidi, A. N., Mohammed Inuwa, I., & Anako Opotu, L. (2022). Response Surface Optimization of Ultrasound-Assisted Extraction of Sago Starch from Sago Pith Waste. Starch/Staerke, 74(1–2), 1–10. https://doi.org/10.1002/star.202100012 Molina, C. V, Lima, J. G., Moraes, I. C. F., & Pinho, S. C. (2019). Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Science and Biotechnology, 28(1), 59–66. https://doi.org/10.1007/s10068-018-0425-y Morales, J. C., & Fuentes, A. P. (2021). Un País que se hunde en el hambre. Cuarto informe sobre la situación del derecho a la alimentación y nutrición adecuadas en Colombia / 2021. Bogotá Morales-Trejo, F., Trujillo-Ramírez, D., Aguirre-Mandujano, E., Lobato-Calleros, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2022). Ultrasound-Assisted Extraction of Lychee (Litchi chinensis Sonn.) Seed Starch: Physicochemical and Functional Properties. Starch/Staerke, 74(1–2). https://doi.org/10.1002/star.202100092 Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., & Chan, E. S. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 100, 320–332. https://doi.org/10.1016/j.tifs.2020.04.020 Nguyen, T. T. T., Le, T. V. A., Dang, N. N., Nguyen, D. C., Nguyen, P. T. N., Tran, T. T., … Thuy Nguyen Pham, D. (2021). Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. Journal of Food Quality, 2021, 1–15. https://doi.org/10.1155/2021/5525879 Nikmaram, P., Mousavi, S. M., Emam-Djomeh, Z., Kiani, H., & Razavi, S. H. (2015). Evaluation and prediction of metabolite production, antioxidant activities, and survival of Lactobacillus casei 431 in a pomegranate juice supplemented yogurt drink using support vector regression. Food Science and Biotechnology, 24(6), 2105–2112. https://doi.org/10.1007/s10068-015-0279-5 Nucci, S. (2013). Pre-feasibility study for tropical fruit processing in Atlantico Department. Económicas CUC, 34(1), 153–182. Nwokocha, L. M., & Williams, P. A. (2009). New starches: Physicochemical properties of sweetsop (Annona squamosa) and soursop (Anonna muricata) starches. Carbohydrate Polymers, 78(3), 462–468. https://doi.org/10.1016/j.carbpol.2009.05.003 Oliveira, C., Ascheri, J. L. R., & Carvalho, C. W. P. de. (2016). Efeito do ultrassom na extração e modificação de amidos. Ciencia Rural, 46(4), 739–746. https://doi.org/10.1590/0103-8478cr20150156 Organización Mundial de la Salud. (2022). Enfermedades no transmisibles. Retrieved September 21, 2022, from https://platform.who.int/mortality/themes/theme-details/MDB/noncommunicable-diseases Ortiz, R. I., Rubio-Ibarra, M. E., Ragazzo-Sanchez, J. A., Beristain, C. I., & Jiménez-Fernández, M. (2017). Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydrate Polymers, 175, 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030 Oyom, W., Zhang, Z., Bi, Y., & Tahergorabi, R. (2022). Application of starch-based coatings incorporated with antimicrobial agents for preservation of fruits and vegetables: A review. Progress in Organic Coatings, 166, 1–9. https://doi.org/10.1016/j.porgcoat.2022.106800 Paramasivam, S. K., Saravanan, A., Narayanan, S., Shiva, K. N., Ravi, I., Mayilvaganan, M., … Uma, S. (2021). Exploring differences in the physicochemical, functional, structural, and pasting properties of banana starches from dessert, cooking, and plantain cultivars (Musa spp.). International Journal of Biological Macromolecules, 191, 1056–1067. https://doi.org/10.1016/j.ijbiomac.2021.09.172 Patiño, O., Agama-Acevedo, E., Ramos-Lopez, G., & Bello-Pérez, L. A. (2020). Unripe mango kernel starch: Partial characterization. Food Hydrocolloids, 101, 1–5. https://doi.org/10.1016/j.foodhyd.2019.105512 Pineda-Vadillo, C., Nau, F., Guerin-Dubiard, C., Jardin, J., Lechevalier, V., Sanz-Buenhombre, M., … Dupont, D. (2017). The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chemistry, 214, 486–496. https://doi.org/10.1016/j.foodchem.2016.07.049 Ponka, R., Bouba, A. A., Fokou, E., Tambe, S. T., Beaucher, E., Piot, M., … Gaucheron, F. (2015). Protein, mineral and amino acid content of some Cameroonian traditional dishes prepared from pumpkin (Cucurbita maxima Duch.). Journal of Food Composition and Analysis, 43, 169–174. https://doi.org/10.1016/j.jfca.2015.06.009 Rahaman, A., Kumari, A., Zeng, X. A., Adil Farooq, M., Siddique, R., Khalifa, I., … Faisal Manzoor, M. (2021). Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, 80, 1350–4177. https://doi.org/10.1016/j.ultsonch.2021.105795 Ramírez-Balboa, G., Balois-Morales, R., Bello-Lara, J. E., Bautista-Rosales, P. U., León-Fernández, A. E., López-Guzmán, G. G., … López-Flores, Y. A. (2021). Ultrasound-assisted extraction and characterization of the functional properties of starch from soursop fruits (Annona muricata l.). Acta Scientiarum - Technology, 43(1), 1–10. https://doi.org/10.4025/actascitechnol.v43i1.49052 Ribeiro, E., Chitchumroonchokchai, C., de Carvalho, L. M. J., de Moura, F. F., de Carvalho, J. L. V., & Failla, M. L. (2015). Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International, 77, 620–626. https://doi.org/10.1016/j.foodres.2015.08.038 Ribeiro, Y. R., Pedreira, J., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281–291. https://doi.org/10.1016/j.foodchem.2018.02.026 Ricci, A., Arboleda Mejia, J. A., Versari, A., Chiarello, E., Bordoni, A., & Parpinello, G. P. (2022). Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. Food and Bioproducts Processing, 132, 1–12. https://doi.org/10.1016/j.fbp.2021.12.003 Rošul, M., Đerić, N., Mišan, A., Pojić, M., Šimurina, O., Halimi, C., … Reboul, E. (2022). Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.). Food Chemistry, 385, 1–8. https://doi.org/10.1016/j.foodchem.2022.132595 Rutz, J. K., Borges, C. D., Zambiazi, R. C., Da Rosa, C. G., & Da Silva, M. M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140 Rutz, J. K., Borges, C. D., Zambiazi, R. C., Da Rosa, C. G., & Da Silva, M. M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140 Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., … Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108, 297–325. https://doi.org/10.1016/j.tifs.2021.01.008 Schoubben, A., Blasi, P., Giovagnoli, S., Rossi, C., & Ricci, M. (2010). Development of a scalable procedure for fine calcium alginate particle preparation. Chemical Engineering Journal, 160(1), 363–369. https://doi.org/10.1016/j.cej.2010.02.062 Setyaningsih, W., Karmila, Fathimah, R. N., & Cahyanto, M. N. (2021). Process optimization for ultrasound-assisted starch production from cassava (manihot esculenta crantz) using response surface methodology. Agronomy, 11(1), 117. https://doi.org/10.3390/agronomy11010117 Shah, A., ul Ashraf, Z., Gani, A., Masoodi, F. A., & Gani, A. (2022). β-Glucan from mushrooms and dates as a wall material for targeted delivery of model bioactive compound: Nutraceutical profiling and bioavailability. Ultrasonics Sonochemistry, 82, 1–7. https://doi.org/10.1016/j.ultsonch.2021.105884 Shen, Z., Apriani, C., Weerakkody, R., Sanguansri, L., & Augustin, M. A. (2011). Food matrix effects on in vitro digestion of microencapsulated tuna oil powder. Journal of Agricultural and Food Chemistry, 59(15), 8442–8449. https://doi.org/10.1021/jf201494b Silva, J. G. S., Rebellato, A. P., Greiner, R., & Pallone, J. A. L. (2017). Bioaccessibility of calcium, iron and magnesium in residues of citrus and characterization of macronutrients. Food Research International, 97, 162–169. https://doi.org/10.1016/j.foodres.2017.04.005 Silva, V. M., Vieira, G. S., & Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61, 132–143. https://doi.org/10.1016/j.foodres.2014.01.052 Singh, R., & Sharanagat, V. S. (2020). Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch. International Journal of Biological Macromolecules, 164, 1061–1069. https://doi.org/10.1016/j.ijbiomac.2020.07.185 Sit, N., Deka, S. C., & Misra, S. (2014). Combined effect of ultrasound and enzymatic pretreatment on yield and functional properties of taro (Colocasia esculenta) starch. Starch/Staerke, 66(11–12), 959–967. https://doi.org/10.1002/star.201400085 Slamet, A., Praseptiangga, D., Hartanto, R., & Samanhudi. (2019). Process optimization for producing pumpkin (Cucurbita moschata D) and arrowroot (Marantha arundinaceae L) starch-based instant porridge. In IOP Conference Series: Materials Science and Engineering (Vol. 633, pp. 1–5). https://doi.org/10.1088/1757-899X/633/1/012016 Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2003). Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. Journal of Food Science, 68(7), 2256–2262. https://doi.org/10.1111/j.1365-2621.2003.tb05756.x Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT - Food Science and Technology, 91, 286–292. https://doi.org/10.1016/j.lwt.2018.01.053 Souza, A., Sousa, D. Z., Assunção, N. A., & Nascimento, A. N. (2019). Bioacessibility of Fe and Zn (associated to proteins) in cashew nut. Journal of Food Composition and Analysis, 83, 1–7. https://doi.org/10.1016/j.jfca.2019.103259 Strack, K. N., Dini, C., García, M. A., & Viña, S. Z. (2021). Effect of thermal and ultrasonic treatments on technological and physicochemical characteristics of fibrous residues from ahipa and cassava starch extraction. Future Foods, 4, 1–9. https://doi.org/10.1016/j.fufo.2021.100057 Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., … Dietz, W. H. (2019). The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. The Lancet Commissions (Vol. 393). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(18)32822-8 Szabo, K., Emőke Teleky, B., Ranga, F., Simon, E., Lelia Pop, O., Babalau-Fuss, V., … Cristian Vodnar, D. (2021). Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model. LWT, 152, 1–9. https://doi.org/10.1016/j.lwt.2021.112285 Tagliapietra, B. L., Felisberto, M. H. F., Sanches, E. A., Campelo, P. H., & Clerici, M. T. P. S. (2021). Non-conventional starch sources. Current Opinion in Food Science, 39, 93–102. https://doi.org/10.1016/j.cofs.2020.11.011 Taksima, T., Limpawattana, M., & Klaypradit, W. (2015). Astaxanthin encapsulated in beads using ultrasonic atomizer andapplication in yogurt as evaluated by consumer sensory profile. LWT, 62(1), 431–437. https://doi.org/10.1016/j.lwt.2015.01.011 Tan, S. X., Andriyana, A., Lim, S., Ong, H. C., Pang, Y. L., & Ngoh, G. C. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers, 13(24), 4398. https://doi.org/10.3390/polym13244398 Thakur, N., Sharma, R., & Thakur, A. (2022). Optimization of lyophilized microencapsulated phenolic extract concentration for enrichment of yoghurt and effect on chemical parameters, bioactive compounds, antioxidant activity and sensory quality under storage. South African Journal of Botany, 13, 1–10. https://doi.org/10.1016/j.sajb.2022.04.015 Urieles, R. (2019). Se pierden toneladas de cosecha de mango en Magdalena por olvido del Estado. El Tiempo. Vonghirundecha, P., Chusri, S., Meunprasertdee, P., & Kaewmanee, T. (2022). Microencapsulated functional ingredients from a Moringa oleifera leaf polyphenol-rich extract: Characterization, antioxidant properties, in vitro simulated digestion, and storage stability. LWT, 154, 1–9. https://doi.org/10.1016/j.lwt.2021.112820 Wang, J., Lan, T., Lei, Y., Suo, J., Zhao, Q., Wang, H., … Ma, T. (2021). Optimization of ultrasonic-assisted enzymatic extraction of kiwi starch and evaluation of its structural, physicochemical, and functional characteristics. Ultrasonics Sonochemistry, 81, 1350–4177. https://doi.org/10.1016/j.ultsonch.2021.105866 Wang, J., Lv, X., Lan, T., Lei, Y., Suo, J., Zhao, Q., … Ma, T. (2022). Modification in structural, physicochemical, functional, and in vitro digestive properties of kiwi starch by high-power ultrasound treatment. Ultrasonics Sonochemistry, 86, 1–13. https://doi.org/10.1016/j.ultsonch.2022.106004 Wu, H., Gu, J., BK, A., Nawaz, M. A., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2022). Effect of processing on bioaccessibility and bioavailability - of bioactive compounds in coffee beans. Food Bioscience, 46, 2212–4292. https://doi.org/10.1016/j.fbio.2021.101373 Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H., & Ma, H. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science and Technology, 118, 252–260. https://doi.org/10.1016/j.tifs.2021.09.025 Ze, Y., Gao, H., Li, T., Yang, B., & Jiang, Y. (2021). Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends in Food Science and Technology, 109, 569–578. https://doi.org/10.1016/j.tifs.2021.01.051 Zhang, Y., Dai, Y., Hou, H., Li, X., Dong, H., Wang, W., & Zhang, H. (2020). Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chemistry: X, 5, 1–8. https://doi.org/10.1016/j.fochx.2020.100077 Zhang, Zhu, K., He, S., Tan, L., & Kong, X. (2016). Characterizations of high purity starches isolated from five different jackfruit cultivars. Food Hydrocolloids, 52, 785–794. https://doi.org/10.1016/j.foodhyd.2015.07.037 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
| dc.format.none.fl_str_mv |
228 páginas application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Inteligencia Artificial e Ingenierías Colombia, Caldas, Manizales Doctorado en Ingeniería |
| publisher.none.fl_str_mv |
Universidad de Caldas Facultad de Inteligencia Artificial e Ingenierías Colombia, Caldas, Manizales Doctorado en Ingeniería |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532544004456448 |
| spelling |
Estudio del efecto de ultrasonido sobre la estructura física, química y morfológica, en la obtención y modificación de almidones de semilla de mango y su utilización como material pared en microcápsula de jugo de ahuyama620 - Ingeniería y operaciones afines2. Ingeniería y TecnologíaUltrasonicationOptimizationMango cotyledonStarchResponse surface methodologyCucurbita moschataEncapsulationSpray dryingCircular economyCarotenoid bioaccessibilityFood matricesIngenieríaFigurasLos cotiledones de semillas de mango, un subproducto del procesado de la pulpa del mango, son ricos en almidón y ofrecen una alternativa sostenible para desarrollar ingredientes alimentarios funcionales. Este estudio se centró en la optimización de los procesos de extracción y modificación del almidón asistidos por ultrasonido, utilizando la metodología de superficie de respuesta. Los almidones obtenidos se modificaron mediante ultrasonidos simples (US) y modificación dual (US seguido de anhídrido octenil succínico) y se evaluaron sus propiedades físicas, químicas térmicas y funcionales. Los almidones modificados se utilizaron para optimizar la estabilidad de suspensiones de ahuyama ricas en carotenoides. El proceso de microencapsulación de estas suspensiones mediante secado por aspersión y una combinación de almidones dual y modificado con ultrasonido se optimizó utilizando la metodología de superficie de respuesta. Por último, las microcápsulas se incorporaron a diversas matrices alimentarias y se determinó la bioaccesibilidad de los carotenoides así como la contribución de una porción de las matrices fortificadas a la ingesta diaria recomendada en diferentes grupos de edades. La extracción asistida por ultrasonido incremento significativamente el rendimiento del almidón (50,74%), la pureza y el contenido de amilosa en comparación con los métodos convencionales, al tiempo que preservó la integridad estructural y mejoró las propiedades funcionales y de plastificación. El tratamiento con US favoreció la fragmentación de los gránulos y el enriquecimiento de la amilosa, mientras que la modificación dual mejoró el grado de sustitución y la eficacia de la reacción, especialmente en las regiones amorfas, lo que redujo la cristalinidad y las temperaturas de gelatinización. El almidón doblemente modificado mejoró significativamente la estabilidad de la suspensión de ahuyama al aumentar el potencial zeta y reducir el tamaño de las partículas. La optimización del proceso de microencapsulación permitió obtener una alta eficiencia de encapsulación (72%) y estabilidad bajo condiciones térmicas y mecánicas optimizadas. Los almidones doblemente modificados mejoraron la bioaccesibilidad a los carotenoides, especialmente en el yogur, que podría aportar hasta el 62,3% de la CDR de vitamina A en niños. Estos resultados subrayan el potencial del almidón de semillas de mango y las tecnologías de ultrasonidos para desarrollar productos alimentarios sostenibles y enriquecidos nutricionalmente.Mango seed cotyledons, a by-product of mango pulp processing, are rich in starch and represent a sustainable alternative for the development of functional food ingredients. This study focused on the optimization of ultrasound-assisted starch extraction and modification processes using response surface methodology (RSM). The extracted starches were modified through simple ultrasound treatment (US) and dual modification (US followed by octenyl succinic anhydride), and their physical, chemical, thermal, and functional properties were characterized. The modified starches were used to enhance the stability of carotenoid-rich pumpkin suspensions. The microencapsulation process of these suspensions by spray drying, using a combination of US-modified and dual-modified starches, was optimized through RSM. Finally, the microcapsules were incorporated into various food matrices, and the carotenoid bioaccessibility was evaluated, as well as the contribution of a single serving of fortified products to the recommended daily intake (RDI) across different age groups. Ultrasound-assisted extraction significantly improved starch yield (50.74%), purity, and amylose content compared to conventional methods, while preserving structural integrity and enhancing both functional and pasting properties. The US treatment promoted starch granule fragmentation and amylose enrichment, whereas the dual modification increased the degree of substitution and reaction efficiency, particularly in amorphous regions, resulting in reduced crystallinity and lower gelatinization temperatures. The dual-modified starch significantly enhanced the colloidal stability of the pumpkin suspension by increasing the zeta potential and decreasing particle size. Optimization of the microencapsulation process achieved high encapsulation efficiency (72%) and stability under thermal and mechanical stress conditions. The dual-modified starches also improved carotenoid bioaccessibility, especially in yogurt, which could contribute up to 62.3% of the RDI of vitamin A for children. These findings underscore the potential of mango seed starch and ultrasound-based technologies for developing sustainable and nutritionally enhanced food products.Resumen -- Abstract -- Capítulo 1 -- Introducción -- Planteamiento del problema -- Justificación -- Objetivos -- Objetivo general -- Objetivos específicos -- Estructura del documento -- Referencias -- Capítulo 2 -- Revisión bibliográfica -- La ahuyama (Cucurbita moschata) -- El mango (Mangifera indica L.) -- El almidón -- Extracción y modificación de almidones con ultrasonido -- Microencapsulación y el secado por aspersión -- Alimentos funcionales y capacidad antioxidante -- La bioaccesibilidad -- Referencias -- Capítulo 3 -- Optimization of ultrasonic-assisted extraction of mango cotyledon starch: physicochemical, structural, thermal, and functional properties -- Capítulo 4 -- Mechanochemical effects of high-intensity ultrasound on dual starch modification of mango cotyledons -- Capítulo 5 -- Influencia de la proporción de almidones modificados de cotiledones de mango y del proceso de homogenización en la estabilidad fisicoquímica de suspensiones de ahuyama -- Capítulo 6 -- Efectos del agente encapsulante y de las condiciones del proceso en la obtención de microcápsulas de suspensiones de ahuyama ricas en carotenoides obtenidas por secado por atomización -- Capítulo 7 -- Enhancing carotenoid bioaccessibility in food matrices using modified mango starch microcapsules: contribution to the recommended daily intake -- Capítulo 8 -- Conclusión general y recomendaciones -- Anexos -- Anexo 1. Análisis de patentes relacionadas a la microencapsulación con recubrimientos de ñame (Dioscorea rotundata) mediante secado por aspersión.DoctoradoLa optimización del proceso de extracción de almidón de los cotiledones de las semillas de mango asistido por ultrasonidos, se realizó empleando la metodología de superficie de respuesta con un diseño I óptimo personalizado y un criterio de optimalidad óptimo-I. Se investigaron los efectos de la relación cotiledón/agua, tiempo, potencia y frecuencia de sonicación en la maximización del rendimiento de extracción de almidón. Además, exploramos el impacto de los ultrasonidos en las propiedades estructurales, morfológicas, funcionales y de pegado. Los almidones extraídos se modificaron, optimizando el proceso de modificación del almidón de cotiledones de mango con ultrasonidos simples (US) y duales (US seguido de anhídrido octenil succínico, US-OSA) mediante la metodología de superficie de respuesta. Se evaluaron los efectos mecanoquímicos del ultrasonido sobre el contenido de amilosa, el tamaño de partícula y la eficacia de la modificación dual. Además, se evaluaron las propiedades estructurales, térmicas, morfológicas y funcionales. La optimización de las propiedades fisicoquímicas de suspensiones formuladas con pulpa de ahuyama rica en carotenoides y almidón modificado dual, se realizó evaluando su comportamiento en función del contenido de sólidos y el tiempo de agitación. Se ajustaron modelos estadísticos para optimizar variables criticas como viscosidad (1000 cP), potencial Z (a maximizar), índice de estabilidad espectral (a minimizar) y distribución del tamaño de partícula (a minimizar). La evaluación de las condiciones de proceso en la elaboración de micropartículas de ahuyama ricas en carotenoides, usando almidones modificados de cotiledones de mango y secado por aspersión se realizó utilizando un diseño experimental central compuesto, variando: almidón modificado con ultrasonido (0%–3%), temperatura de entrada del aire (160 °C–180 °C), temperatura de salida (80 °C–90 °C), y velocidad del disco de atomización (20000 rpm–22000 rpm). Se mantuvo fija la proporción de almidón dual (i.e., modificación con ultrasonido seguida de modificación con anhídrido octenil succínico)en 2%. Se evaluaron rendimiento, eficiencia de microencapsulación, humedad, solubilidad, humectabilidad, higroscopicidad, actividad de agua, tamaño de partícula, índice de fluencia y diferencia de color. También se analizó la morfología de las micropartículas. Las microcápsulas resultantes se incorporaron en agua, yogur y gelatina para desarrollar alimentos enriquecidos con carotenoides. Los efectos del material de la pared y la matriz sobre la bioaccesibilidad de los carotenoides durante la digestión in vitro y su contribución a la ración dietética recomendada.Doctor(a) en IngenieríaDesarrollo agroindustrialUniversidad de CaldasFacultad de Inteligencia Artificial e IngenieríasColombia, Caldas, ManizalesDoctorado en IngenieríaChavez Salazar, AndrésCastellanos Galeano, Francisco JavierAlimentos y Agroindustria (Categoría A1)Aranda Bustos, Mario AntonioAndrade-Pizarro, RicardoTorres Gallo, Ramiro2025-07-22T21:57:36Z2025-07-22T21:57:36Z2025-07-24Trabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesis228 páginasapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttps://repositorio.ucaldas.edu.co/handle/ucaldas/22534Universidad de CaldasRepositorio Institucional Universidad de Caldasrepositorio.ucaldas.edu.cospaengAdinepour, F., Pouramin, S., Rashidinejad, A., & Jafari, S. M. (2022). Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Research International, 157, 1–19. https://doi.org/10.1016/j.foodres.2022.111212Almeida, R. L. J., Santos, N. C., dos Santos Pereira, T., Monteiro, S. S., da Silva, L. R. I., da Silva Eduardo, R., … dos Santos, E. S. (2022). Extraction and modification of Achachairu’s seed (Garcinia humilis) starch using high-intensity low-frequency ultrasound. Journal of Food Process Engineering, 45(5), 1–10. https://doi.org/10.1111/jfpe.14022Amaya-Cruz, D. M., Rodríguez-González, S., Pérez-Ramírez, I. F., Loarca-Piña, G., Amaya-Llano, S., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2015). Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. Journal of Functional Foods, 17, 93–102. https://doi.org/10.1016/j.jff.2015.04.051Amin, M. Z., Islam, T., Uddin, M. R., Uddin, M. J., Rahman, M. M., & Satter, M. A. (2019). Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon, 5(9), 1–5. https://doi.org/10.1016/j.heliyon.2019.e02462Anwar, M., Babu, G., & Bekhit, A. E. D. (2021). Utilization of ultrasound and pulse electric field for the extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta) peel. Innovative Food Science and Emerging Technologies, 70, 1–9. https://doi.org/10.1016/j.ifset.2021.102691Araujo, S. B., Leyva-Porras, C., Aguirre-Bañuelos, P., Álvarez-Salas, C., & Saavedra-Leos, Z. (2017). Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 167, 317–325. https://doi.org/10.1016/j.carbpol.2017.03.065Ardabilchi Marand, M., Amjadi, S., Ardabilchi Marand, M., Roufegarinejad, L., & Jafari, S. M. (2020). Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powder Technology, 359, 76–84. https://doi.org/10.1016/j.powtec.2019.09.082Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631. https://doi.org/10.1016/j.foodchem.2017.05.142Bemfeito, C. M., Carneiro, J. de D. S., Carvalho, E. E. N., Coli, P. C., Pereira, R. C., & Vilas Boas, E. V. de B. (2020). Nutritional and functional potential of pumpkin (Cucurbita moschata) pulp and pequi (Caryocar brasiliense Camb.) peel flours. Journal of Food Science and Technology, 57(10), 3920–3925. https://doi.org/10.1007/s13197-020-04590-4Benítez, R. (2017). Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe Roma: FAO Boletín embre). FAOBertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., … Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT, 63(2), 1145–1154. https://doi.org/10.1016/j.lwt.2015.03.113Böger, B. R., Acre, L. B., Viegas, M. C., Kurozawa, L. E., & Benassi, M. T. (2021). Roasted coffee oil microencapsulation by spray drying and complex coacervation techniques: Characteristics of the particles and sensory effect. Innovative Food Science & Emerging Technologies, 72, 1–10. https://doi.org/10.1016/j.ifset.2021.102739Çam, M., Içyer, N. C., & Erdoǧan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Science and Technology, 55(1), 117–123. https://doi.org/10.1016/j.lwt.2013.09.011Carneiro, H. C. F., Tonon, R. V, Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033Comunian, T. A., Chaves, I. E., Thomazini, M., Moraes, I. C. F., Ferro-Furtado, R., de Castro, I. A., & Favaro-Trindade, C. S. (2017). Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chemistry, 237, 948–956. https://doi.org/10.1016/j.foodchem.2017.06.071Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23(6), 1527–1534. https://doi.org/10.1016/j.foodhyd.2008.09.016Demarco, M., Oliveira de Moraes, J., Matos, Â. P., Derner, R. B., de Farias Neves, F., & Tribuzi, G. (2022). Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends in Food Science and Technology, 121, 114–128.Dimitry, M. Y., Edith, D. M. J., Therese, B. A. M., Emmanuel, P. A., Armand, A. B., & Nicolas, N. Y. (2022). Comparative evaluation of bioactive compounds, nutritional and physicochemical properties of five Cucurbita species flours of South Cameroon. South African Journal of Botany, 454, 1–10. https://doi.org/10.1016/j.sajb.2022.03.006DNP. (2016). Pérdida y Desperdicio de alimentos en Colombia. Departamento Nacional de Planeación (Vol. 39).do Prado Ferreira, M., & Teixeira Tarley, C. R. (2020). Assessment of in vitro bioacessibility of macrominerals and trace elements in green banana flour. Journal of Food Composition and Analysis, 92, 1–9. https://doi.org/10.1016/j.jfca.2020.103586Donhowe, E. G., Flores, F. P., Kerr, W. L., Wicker, L., & Kong, F. (2014). Characterization and invitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology, 57(1), 42–48. https://doi.org/10.1016/j.lwt.2013.12.037Enneb, S., Drine, S., Bagues, M., Triki, T., Boussora, F., Guasmi, F., … Ferchichi, A. (2020). Phytochemical profiles and nutritional composition of squash (Cucurbita moschata D.) from Tunisia. South African Journal of Botany, 130, 165–171Esposito, B., Sessa, M. R., Sica, D., & Malandrino, O. (2020). Towards circular economy in the agri-food sector. A systematic literature review. Sustainability (Switzerland), 12(18), 1–21. https://doi.org/10.3390/SU12187401FAO. (2011). Global Food Losses and Food Waste. Roma.FAO. (2019). El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos. Roma.FAO. (2022). Food loss measurement | Technical Platform on the Measurement and Reduction of Food Loss and Waste | Food and Agriculture Organization of the United Nations. Retrieved November 29, 2022, from https://www.fao.org/platform-food-loss-waste/flw-data/enFernández, M. de los Á., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671–678. https://doi.org/10.1016/j.foodchem.2017.06.150Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, A. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016Ferreira, S., Araujo, T., Souza, N., Rodrigues, L., Lisboa, H. M., Pasquali, M., … Rocha, A. P. (2019). Physicochemical, morphological and antioxidant properties of spray-dried mango kernel starch. Journal of Agriculture and Food Research, 1, 1–9. https://doi.org/10.1016/j.jafr.2019.100012Forbes, H., Quested, T., & O’Connor, C. (2021). Food Waste Index Report 2021. United Nations Environment ProgrammeGobernación del Atlántico. Plan y Acuerdo Departamental de Ciencia, Tecnología e Innovación - PAED (2016). Barranquilla: Gobernación del AtlánticoGobierno de Colombia. (2019). Estrategia nacional de economía circular. Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio. Bogotá D.C., ColombiaGomes, S., Finotelli, P. V., Sardela, V. F., Pereira, H. M. G., Santelli, R. E., Freire, A. S., & Torres, A. G. (2019). Microencapsulated Brazil nut (Bertholletia excelsa) cake extract powder as an added-value functional food ingredient. LWT, 116, 1–7. https://doi.org/10.1016/j.lwt.2019.108495Grupo de alto nivel de expertos en seguridad alimentaria (HLPE). (2020). Seguridad alimentaria y nutrición Elaborar una descripción global de cara a 2030. Comité de Seguridad Alimentaria Mundial GANASEN. RomaGumus, C. E., & Gharibzahedi, S. M. T. (2021). Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science and Technology, 110, 267–279. https://doi.org/10.1016/j.tifs.2021.02.016Guo, K., Lin, L., Fan, X., Zhang, L., & Wei, C. (2018). Comparison of structural and functional properties of starches from five fruit kernels. Food Chemistry, 257, 75–82. https://doi.org/10.1016/j.foodchem.2018.03.004Gutiérrez, C., Rivera, Y., Gómez, R., Bastidas, V., & Izaguirre, C. (2016). Extracción y caracterización de grasa y almidón de la almendra de mango variedad Alphonso (Mangifera indica L). Extraction and characterization of fat and starch kernel mango variety Alphonso (Mangifera indica L). Revista de La Facultad de Farmacia, 57(2), 33–42.Heydari, A., Razavi, S. M. A., & Farahnaky, A. (2021). Effect of high pressure-treated wheat starch as a fat replacer on the physical and rheological properties of reduced-fat O/W emulsions. Innovative Food Science and Emerging Technologies, 70, 1–11. https://doi.org/10.1016/j.ifset.2021.102702Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161. https://doi.org/10.1080/87559129.2016.1261298Jacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., & Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039Jaeger, L. M., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., … Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040Jafarzadeh, S., Mohammadi Nafchi, A., Salehabadi, A., Oladzad-abbasabadi, N., & Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 1–13. https://doi.org/10.1016/j.cis.2021.102405Jiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3(1), 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003Kalaivendan, R. G. T., Mishra, A., Eazhumalai, G., & Annapure, U. S. (2022). Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch. International Journal of Biological Macromolecules, 196, 63–71. https://doi.org/10.1016/j.ijbiomac.2021.12.013Kamiloglu, S., Ozdal, T., Bakir, S., & Capanoglu, E. (2022). Bioaccessibility of terebinth (Pistacia terebinthus L.) coffee polyphenols: Influence of milk, sugar and sweetener addition. Food Chemistry, 374, 1–9. https://doi.org/10.1016/j.foodchem.2021.131728Karrar, E., Mahdi, A. A., Sheth, S., Mohamed Ahmed, I. A., Manzoor, M. F., Wei, W., & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 171, 208–216. https://doi.org/10.1016/j.ijbiomac.2020.12.045Kim, M. Y., Kim, E. J., Kim, Y. N., Choi, C., & Lee, B. H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27. https://doi.org/10.4162/nrp.2012.6.1.21Krishnaiah, D., Nithyanandam, R., & Sarbatly, R. (2014). A Critical Review on the Spray Drying of Fruit Extract: Effect of Additives on Physicochemical Properties. Critical Reviews in Food Science and Nutrition, 54(4), 449–473. https://doi.org/10.1080/10408398.2011.587038Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. (2012). Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, 438, 477–489. https://doi.org/10.1016/j.scitotenv.2012.08.092Lagunes-Delgado, C., Agama-Acevedo, E., Patiño-Rodríguez, O., Martinez, M. M., & Bello-Pérez, L. A. (2022). Recovery of mango starch from unripe mango juice. LWT, 153, 1–7. https://doi.org/10.1016/j.lwt.2021.112514Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food and Function, 5(10), 2621–2631. https://doi.org/10.1039/c4fo00203bLi, B., Zhang, Y., Zhang, Y., Zhang, Y., Xu, F., Zhu, K., & Huang, C. (2021). A novel underutilized starch resource— Lucuma nervosa A.DC seed and fruit. Food Hydrocolloids, 120, 106934. https://doi.org/10.1016/j.foodhyd.2021.106934Lopes, C. R., de Oliveira Júnior, F. D., Marin, G., Alvim, I. D., & Hubinger, M. D. (2020). Plant proteins at low concentrations as natural emulsifiers for an effective orange essential oil microencapsulation by spray drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, 1–15. https://doi.org/10.1016/j.colsurfa.2020.125470Lu, W., Yang, X., Shen, J., Li, Z., Tan, S., Liu, W., & Cheng, Z. (2021). Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technology, 394, 562–574. https://doi.org/10.1016/j.powtec.2021.08.082Luciano, C. G., Landi Franco, C. M., Ayala Valencia, G., do Amaral Sobral, P. J., & Freitas Moraes, I. C. (2017). Evaluation of extraction method on the structure and physicochemical properties of starch from seeds of two jackfruit varieties. Starch/Staerke, 69, 1–37. https://doi.org/10.1002/star.201700078Martins, A., Beninca, C., Bet, C. D., Bisinella, R. Z. B., de Oliveira, C. S., Hornung, P. S., & Schnitzler, E. (2020). Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry, 142(2), 819–828. https://doi.org/10.1007/s10973-020-09298-3Misión para la Transformación del Campo. (2014). Propuesta para Desarrollar un Modelo eficiente de Comercialización y Distribución de Productos. Documento técnico para la Misión para la Transformación del CampoMohamed, M. H., Ngadi, N., Suhaidi, A. N., Mohammed Inuwa, I., & Anako Opotu, L. (2022). Response Surface Optimization of Ultrasound-Assisted Extraction of Sago Starch from Sago Pith Waste. Starch/Staerke, 74(1–2), 1–10. https://doi.org/10.1002/star.202100012Molina, C. V, Lima, J. G., Moraes, I. C. F., & Pinho, S. C. (2019). Physicochemical characterization and sensory evaluation of yogurts incorporated with beta-carotene-loaded solid lipid microparticles stabilized with hydrolyzed soy protein isolate. Food Science and Biotechnology, 28(1), 59–66. https://doi.org/10.1007/s10068-018-0425-yMorales, J. C., & Fuentes, A. P. (2021). Un País que se hunde en el hambre. Cuarto informe sobre la situación del derecho a la alimentación y nutrición adecuadas en Colombia / 2021. BogotáMorales-Trejo, F., Trujillo-Ramírez, D., Aguirre-Mandujano, E., Lobato-Calleros, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2022). Ultrasound-Assisted Extraction of Lychee (Litchi chinensis Sonn.) Seed Starch: Physicochemical and Functional Properties. Starch/Staerke, 74(1–2). https://doi.org/10.1002/star.202100092Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., & Chan, E. S. (2020). Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 100, 320–332. https://doi.org/10.1016/j.tifs.2020.04.020Nguyen, T. T. T., Le, T. V. A., Dang, N. N., Nguyen, D. C., Nguyen, P. T. N., Tran, T. T., … Thuy Nguyen Pham, D. (2021). Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. Journal of Food Quality, 2021, 1–15. https://doi.org/10.1155/2021/5525879Nikmaram, P., Mousavi, S. M., Emam-Djomeh, Z., Kiani, H., & Razavi, S. H. (2015). Evaluation and prediction of metabolite production, antioxidant activities, and survival of Lactobacillus casei 431 in a pomegranate juice supplemented yogurt drink using support vector regression. Food Science and Biotechnology, 24(6), 2105–2112. https://doi.org/10.1007/s10068-015-0279-5Nucci, S. (2013). Pre-feasibility study for tropical fruit processing in Atlantico Department. Económicas CUC, 34(1), 153–182.Nwokocha, L. M., & Williams, P. A. (2009). New starches: Physicochemical properties of sweetsop (Annona squamosa) and soursop (Anonna muricata) starches. Carbohydrate Polymers, 78(3), 462–468. https://doi.org/10.1016/j.carbpol.2009.05.003Oliveira, C., Ascheri, J. L. R., & Carvalho, C. W. P. de. (2016). Efeito do ultrassom na extração e modificação de amidos. Ciencia Rural, 46(4), 739–746. https://doi.org/10.1590/0103-8478cr20150156Organización Mundial de la Salud. (2022). Enfermedades no transmisibles. Retrieved September 21, 2022, from https://platform.who.int/mortality/themes/theme-details/MDB/noncommunicable-diseasesOrtiz, R. I., Rubio-Ibarra, M. E., Ragazzo-Sanchez, J. A., Beristain, C. I., & Jiménez-Fernández, M. (2017). Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydrate Polymers, 175, 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030Oyom, W., Zhang, Z., Bi, Y., & Tahergorabi, R. (2022). Application of starch-based coatings incorporated with antimicrobial agents for preservation of fruits and vegetables: A review. Progress in Organic Coatings, 166, 1–9. https://doi.org/10.1016/j.porgcoat.2022.106800Paramasivam, S. K., Saravanan, A., Narayanan, S., Shiva, K. N., Ravi, I., Mayilvaganan, M., … Uma, S. (2021). Exploring differences in the physicochemical, functional, structural, and pasting properties of banana starches from dessert, cooking, and plantain cultivars (Musa spp.). International Journal of Biological Macromolecules, 191, 1056–1067. https://doi.org/10.1016/j.ijbiomac.2021.09.172Patiño, O., Agama-Acevedo, E., Ramos-Lopez, G., & Bello-Pérez, L. A. (2020). Unripe mango kernel starch: Partial characterization. Food Hydrocolloids, 101, 1–5. https://doi.org/10.1016/j.foodhyd.2019.105512Pineda-Vadillo, C., Nau, F., Guerin-Dubiard, C., Jardin, J., Lechevalier, V., Sanz-Buenhombre, M., … Dupont, D. (2017). The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chemistry, 214, 486–496. https://doi.org/10.1016/j.foodchem.2016.07.049Ponka, R., Bouba, A. A., Fokou, E., Tambe, S. T., Beaucher, E., Piot, M., … Gaucheron, F. (2015). Protein, mineral and amino acid content of some Cameroonian traditional dishes prepared from pumpkin (Cucurbita maxima Duch.). Journal of Food Composition and Analysis, 43, 169–174. https://doi.org/10.1016/j.jfca.2015.06.009Rahaman, A., Kumari, A., Zeng, X. A., Adil Farooq, M., Siddique, R., Khalifa, I., … Faisal Manzoor, M. (2021). Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, 80, 1350–4177. https://doi.org/10.1016/j.ultsonch.2021.105795Ramírez-Balboa, G., Balois-Morales, R., Bello-Lara, J. E., Bautista-Rosales, P. U., León-Fernández, A. E., López-Guzmán, G. G., … López-Flores, Y. A. (2021). Ultrasound-assisted extraction and characterization of the functional properties of starch from soursop fruits (Annona muricata l.). Acta Scientiarum - Technology, 43(1), 1–10. https://doi.org/10.4025/actascitechnol.v43i1.49052Ribeiro, E., Chitchumroonchokchai, C., de Carvalho, L. M. J., de Moura, F. F., de Carvalho, J. L. V., & Failla, M. L. (2015). Effect of style of home cooking on retention and bioaccessibility of pro-vitamin A carotenoids in biofortified pumpkin (Cucurbita moschata Duch.). Food Research International, 77, 620–626. https://doi.org/10.1016/j.foodres.2015.08.038Ribeiro, Y. R., Pedreira, J., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281–291. https://doi.org/10.1016/j.foodchem.2018.02.026Ricci, A., Arboleda Mejia, J. A., Versari, A., Chiarello, E., Bordoni, A., & Parpinello, G. P. (2022). Microencapsulation of polyphenolic compounds recovered from red wine lees: Process optimization and nutraceutical study. Food and Bioproducts Processing, 132, 1–12. https://doi.org/10.1016/j.fbp.2021.12.003Rošul, M., Đerić, N., Mišan, A., Pojić, M., Šimurina, O., Halimi, C., … Reboul, E. (2022). Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.). Food Chemistry, 385, 1–8. https://doi.org/10.1016/j.foodchem.2022.132595Rutz, J. K., Borges, C. D., Zambiazi, R. C., Da Rosa, C. G., & Da Silva, M. M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140Rutz, J. K., Borges, C. D., Zambiazi, R. C., Da Rosa, C. G., & Da Silva, M. M. (2016). Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chemistry, 202, 324–333. https://doi.org/10.1016/j.foodchem.2016.01.140Samborska, K., Boostani, S., Geranpour, M., Hosseini, H., Dima, C., Khoshnoudi-Nia, S., … Jafari, S. M. (2021). Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 108, 297–325. https://doi.org/10.1016/j.tifs.2021.01.008Schoubben, A., Blasi, P., Giovagnoli, S., Rossi, C., & Ricci, M. (2010). Development of a scalable procedure for fine calcium alginate particle preparation. Chemical Engineering Journal, 160(1), 363–369. https://doi.org/10.1016/j.cej.2010.02.062Setyaningsih, W., Karmila, Fathimah, R. N., & Cahyanto, M. N. (2021). Process optimization for ultrasound-assisted starch production from cassava (manihot esculenta crantz) using response surface methodology. Agronomy, 11(1), 117. https://doi.org/10.3390/agronomy11010117Shah, A., ul Ashraf, Z., Gani, A., Masoodi, F. A., & Gani, A. (2022). β-Glucan from mushrooms and dates as a wall material for targeted delivery of model bioactive compound: Nutraceutical profiling and bioavailability. Ultrasonics Sonochemistry, 82, 1–7. https://doi.org/10.1016/j.ultsonch.2021.105884Shen, Z., Apriani, C., Weerakkody, R., Sanguansri, L., & Augustin, M. A. (2011). Food matrix effects on in vitro digestion of microencapsulated tuna oil powder. Journal of Agricultural and Food Chemistry, 59(15), 8442–8449. https://doi.org/10.1021/jf201494bSilva, J. G. S., Rebellato, A. P., Greiner, R., & Pallone, J. A. L. (2017). Bioaccessibility of calcium, iron and magnesium in residues of citrus and characterization of macronutrients. Food Research International, 97, 162–169. https://doi.org/10.1016/j.foodres.2017.04.005Silva, V. M., Vieira, G. S., & Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61, 132–143. https://doi.org/10.1016/j.foodres.2014.01.052Singh, R., & Sharanagat, V. S. (2020). Physico-functional and structural characterization of ultrasonic-assisted chemically modified elephant foot yam starch. International Journal of Biological Macromolecules, 164, 1061–1069. https://doi.org/10.1016/j.ijbiomac.2020.07.185Sit, N., Deka, S. C., & Misra, S. (2014). Combined effect of ultrasound and enzymatic pretreatment on yield and functional properties of taro (Colocasia esculenta) starch. Starch/Staerke, 66(11–12), 959–967. https://doi.org/10.1002/star.201400085Slamet, A., Praseptiangga, D., Hartanto, R., & Samanhudi. (2019). Process optimization for producing pumpkin (Cucurbita moschata D) and arrowroot (Marantha arundinaceae L) starch-based instant porridge. In IOP Conference Series: Materials Science and Engineering (Vol. 633, pp. 1–5). https://doi.org/10.1088/1757-899X/633/1/012016Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2003). Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. Journal of Food Science, 68(7), 2256–2262. https://doi.org/10.1111/j.1365-2621.2003.tb05756.xSouza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT - Food Science and Technology, 91, 286–292. https://doi.org/10.1016/j.lwt.2018.01.053Souza, A., Sousa, D. Z., Assunção, N. A., & Nascimento, A. N. (2019). Bioacessibility of Fe and Zn (associated to proteins) in cashew nut. Journal of Food Composition and Analysis, 83, 1–7. https://doi.org/10.1016/j.jfca.2019.103259Strack, K. N., Dini, C., García, M. A., & Viña, S. Z. (2021). Effect of thermal and ultrasonic treatments on technological and physicochemical characteristics of fibrous residues from ahipa and cassava starch extraction. Future Foods, 4, 1–9. https://doi.org/10.1016/j.fufo.2021.100057Swinburn, B. A., Kraak, V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R., … Dietz, W. H. (2019). The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. The Lancet Commissions (Vol. 393). Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(18)32822-8Szabo, K., Emőke Teleky, B., Ranga, F., Simon, E., Lelia Pop, O., Babalau-Fuss, V., … Cristian Vodnar, D. (2021). Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model. LWT, 152, 1–9. https://doi.org/10.1016/j.lwt.2021.112285Tagliapietra, B. L., Felisberto, M. H. F., Sanches, E. A., Campelo, P. H., & Clerici, M. T. P. S. (2021). Non-conventional starch sources. Current Opinion in Food Science, 39, 93–102. https://doi.org/10.1016/j.cofs.2020.11.011Taksima, T., Limpawattana, M., & Klaypradit, W. (2015). Astaxanthin encapsulated in beads using ultrasonic atomizer andapplication in yogurt as evaluated by consumer sensory profile. LWT, 62(1), 431–437. https://doi.org/10.1016/j.lwt.2015.01.011Tan, S. X., Andriyana, A., Lim, S., Ong, H. C., Pang, Y. L., & Ngoh, G. C. (2021). Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers, 13(24), 4398. https://doi.org/10.3390/polym13244398Thakur, N., Sharma, R., & Thakur, A. (2022). Optimization of lyophilized microencapsulated phenolic extract concentration for enrichment of yoghurt and effect on chemical parameters, bioactive compounds, antioxidant activity and sensory quality under storage. South African Journal of Botany, 13, 1–10. https://doi.org/10.1016/j.sajb.2022.04.015Urieles, R. (2019). Se pierden toneladas de cosecha de mango en Magdalena por olvido del Estado. El Tiempo.Vonghirundecha, P., Chusri, S., Meunprasertdee, P., & Kaewmanee, T. (2022). Microencapsulated functional ingredients from a Moringa oleifera leaf polyphenol-rich extract: Characterization, antioxidant properties, in vitro simulated digestion, and storage stability. LWT, 154, 1–9. https://doi.org/10.1016/j.lwt.2021.112820Wang, J., Lan, T., Lei, Y., Suo, J., Zhao, Q., Wang, H., … Ma, T. (2021). Optimization of ultrasonic-assisted enzymatic extraction of kiwi starch and evaluation of its structural, physicochemical, and functional characteristics. Ultrasonics Sonochemistry, 81, 1350–4177. https://doi.org/10.1016/j.ultsonch.2021.105866Wang, J., Lv, X., Lan, T., Lei, Y., Suo, J., Zhao, Q., … Ma, T. (2022). Modification in structural, physicochemical, functional, and in vitro digestive properties of kiwi starch by high-power ultrasound treatment. Ultrasonics Sonochemistry, 86, 1–13. https://doi.org/10.1016/j.ultsonch.2022.106004Wu, H., Gu, J., BK, A., Nawaz, M. A., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2022). Effect of processing on bioaccessibility and bioavailability - of bioactive compounds in coffee beans. Food Bioscience, 46, 2212–4292. https://doi.org/10.1016/j.fbio.2021.101373Yang, J., Wen, C., Duan, Y., Deng, Q., Peng, D., Zhang, H., & Ma, H. (2021). The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends in Food Science and Technology, 118, 252–260. https://doi.org/10.1016/j.tifs.2021.09.025Ze, Y., Gao, H., Li, T., Yang, B., & Jiang, Y. (2021). Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends in Food Science and Technology, 109, 569–578. https://doi.org/10.1016/j.tifs.2021.01.051Zhang, Y., Dai, Y., Hou, H., Li, X., Dong, H., Wang, W., & Zhang, H. (2020). Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chemistry: X, 5, 1–8. https://doi.org/10.1016/j.fochx.2020.100077Zhang, Zhu, K., He, S., Tan, L., & Kong, X. (2016). Characterizations of high purity starches isolated from five different jackfruit cultivars. Food Hydrocolloids, 52, 785–794. https://doi.org/10.1016/j.foodhyd.2015.07.037https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2oai:repositorio.ucaldas.edu.co:ucaldas/225342025-07-23T08:01:03Z |
