Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual
Esta investigación implementó una intervención en el aula, utilizando un laboratorio virtual como estrategia didáctica basada en la comprensión del concepto de derivada, aplicado al problema de la línea tangente. Se aplicó la metodología Pretest-Posttest para ver si existen diferencias significativa...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Caldas
- Repositorio:
- Repositorio Institucional U. Caldas
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.ucaldas.edu.co:ucaldas/24742
- Acceso en línea:
- https://repositorio.ucaldas.edu.co/handle/ucaldas/24742
https://doi.org/10.17151/rlee.2022.18.1.9
- Palabra clave:
- Concepto de derivada
didáctica de las matemáticas
análisis comparativo
cognición
juicios metacognitivos
Derivative concept
didactics of mathematics
comparative analysis cognition
metacognitive judgements
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
REPOUCALDA_7993b10645658fdf2f29bf2c3d1940a2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ucaldas.edu.co:ucaldas/24742 |
| network_acronym_str |
REPOUCALDA |
| network_name_str |
Repositorio Institucional U. Caldas |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual Metacognitive Judgments in Learning the Derivative Concept Using the Virtual Lab Strategy |
| title |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| spellingShingle |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual Concepto de derivada didáctica de las matemáticas análisis comparativo cognición juicios metacognitivos Derivative concept didactics of mathematics comparative analysis cognition metacognitive judgements |
| title_short |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| title_full |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| title_fullStr |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| title_full_unstemmed |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| title_sort |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtual |
| dc.subject.none.fl_str_mv |
Concepto de derivada didáctica de las matemáticas análisis comparativo cognición juicios metacognitivos Derivative concept didactics of mathematics comparative analysis cognition metacognitive judgements |
| topic |
Concepto de derivada didáctica de las matemáticas análisis comparativo cognición juicios metacognitivos Derivative concept didactics of mathematics comparative analysis cognition metacognitive judgements |
| description |
Esta investigación implementó una intervención en el aula, utilizando un laboratorio virtual como estrategia didáctica basada en la comprensión del concepto de derivada, aplicado al problema de la línea tangente. Se aplicó la metodología Pretest-Posttest para ver si existen diferencias significativas en el aprendizaje del concepto de derivada en comparación con el enfoque de enseñanza tradicional. Los resultados indican que al realizar el análisis estadístico se identifican tres categorías en relación a las competencias desarrolladas por los estudiantes: solución de ecuaciones, identificación de términos y cuestiones conceptuales. Se encontró diferencia en las varianzas de poblaciones para la competencia de resolución de ecuaciones, obteniendo  mejor desempeño en el grupo experimental; las otras dos categorías muestran un desempeño similar en ambos grupos, por lo que consideramos el método propuesto como una forma alternativa de enseñar el concepto de derivada. Finalmente, se identificaron las estrategias de regulación metacognitiva aplicadas por los estudiantes durante el proceso de intervención didáctica. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-01-01 2022-01-01T00:00:00Z 2022-01-01T00:00:00Z 2025-10-08T21:40:31Z 2025-10-08T21:40:31Z |
| dc.type.none.fl_str_mv |
Artículo de revista http://purl.org/coar/resource_type/c_6501 Text info:eu-repo/semantics/article Journal article info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
1900-9895 https://repositorio.ucaldas.edu.co/handle/ucaldas/24742 10.17151/rlee.2022.18.1.9 2500-5324 https://doi.org/10.17151/rlee.2022.18.1.9 |
| identifier_str_mv |
1900-9895 10.17151/rlee.2022.18.1.9 2500-5324 |
| url |
https://repositorio.ucaldas.edu.co/handle/ucaldas/24742 https://doi.org/10.17151/rlee.2022.18.1.9 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
186 1 169 18 Latinoamericana de Estudios Educativos Braund, H. L. A. (2017). Exploring the dynamic relationship between metacognition and curriculum: suggestions for integration and implementation [Graduate student symposium] Queen´s university. [https://qspace.library.queensu.ca/handle/1974/15464 Bringula, R. P., Basa, R. S., Dela Cruz, C., & Rodrigo, M. M. T. (2016). Effects of Prior Knowledge in Mathematics on Learner-Interface Interactions in a Learning-by-Teaching Intelligent Tutoring System. Journal of Educational Computing Research, 54(4), 462–482. https://doi.org/10.1177/0735633115622213 Buitrago, S., & García, L. (2011). Procesos de regulación metacognitiva en la resolución de problemas. En Memorias del 12° Encuentro Colombiano de Matemática Educativa (pp. 548–559). http://funes.uniandes.edu.co/2373/ Campbell, D. T., & Stanley, J. C. (1995). Diseños experimentales y cuasiexperimentales en la investigación social. Amorrortu editores. Davis, P., Hersh, R., & Marchisotto, E. A. (2011). The mathematical experience. Springer Science & Business Media. Cheung, C.-N., & Wong, W.-C. (2011). Understanding Conceptual Development Along the Implicit-Explicit Dimension: Looking Through the Lens of the Representational Redescription Model. Child Development, 82(6), 2037–2052. https://doi.org/10.1111/j.1467- 8624.2011.01657.x Elif, A. K. A. R., Tekkaya, C., & Çakiroğlu, J. (2011). The interplay between metacognitive awareness and scientific epistemological beliefs. International Journal on New Trends in Education and Their Implications, 7. Flavell, J. H. (1970). Developmental Studies of Mediated Memory. Advances in Child Development and Behavior, 5, 181–211. https://doi.org/10.1016/S0065-2407(08)60467-X Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. https://doi.org/10.1037/0003-066X.34.10.906 Flavell, J. H. (1999). Cognitive development: Children’s knowledge about the mind. Annual Review of Psychology, 50, 21–45. https://doi.org/10.1146/annurev.psych.50.1.21 Flavell, J. H., & Wellman, H. M. (1975). Metamemory. Institue of Child Development. https://eric.ed.gov/?id=ED115405 Frumos, F. V. (2015). Metacognitive monitoring accuracy and academic performance at university students. Journal of Innovation in Psychology, Education and Didactics, 19(2), 307-314. García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11(2), 139-170. Gok, T. (2010). The General Assessment of Problem Solving Processes and Metacognition in Physics Education. International Journal of Physics & Chemistry Education, 2(2),110-122. https://doi.org/10.51724/ijpce.v2i2.186 Hacker, D. J., Dunlosky, J. & Graesser, A. C. (Eds). (1998). Metacognition in educational theory and practice. Lawrence Erlbaum Associates Publishers. Händel, M., & Dresel, M. (2018). Confidence in performance judgment accuracy: the unskilled and unaware effect revisited. Metacognition and learning, 13(3), 265–285. https://doi.org/10.1007/s11409-018-9185-6 Hashemi, N., Abu, M. S., Kashefi, H., Mokhtar, M., & Rahimi, K. (2015). Designing learning strategy to improve undergraduate students’ problem solving in derivatives and integrals: A conceptual framework. Eurasia Journal of Mathematics, Science and Technology Education, 11(2), 227-238. https://doi.org/10.12973/eurasia.2015.1318a Ho, S. Y., & Lowrie, T. (2014). The model method: students’ performance and its effectiveness. Journal of Mathematical Behavior, 35, 87–100. https://doi.org/10.1016/j.jmathb.2014.06.002 Huitt, W. (1997). Metacognition. Educational Psychology Interactive. Valdosta State University. Izzati, L. R. (2021). The effect of problem-based learning to improve students’ metacognition skills in solving mathematical problems based on cognitive style. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042073 Kitcher, P. (1984). The nature of mathematical knowledge. Oxford University Press. Kline, M. (1998). El fracaso de la matemática moderna; por qué Juanito no sabe sumar, (18a ed.). Silglo veintiuno editores Lakatos, I. (2015). Proofs and refutations: The logic of mathematical discovery. Cambridge university press. Lan, X., & Ying, Z. (2021). Teaching Derivative Concept Using 6 Questions Cognitive Model. Journal of Didactic Mathematics, 1(3),127-137. https://doi.org/10.34007/jdm.v1i3.371 Llorens Fuster, J. L., & Pérez Carreras, P. (1996). Aplicación del modelo de van Hiele al concepto de aproximación local. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 22, 13–24. https://dialnet.unirioja.es/servlet/articulo?codigo=152347 Londoño, D. M. M., Cardozo, M. O., Ferreras, A. P., & Alzate, Ó. E. T. (2021). Los juicios metacognitivos como un campo emergente de investigación. Una revisión sistemática (2016-2020). Latinoamericana de Estudios Educativos, 17(1), 188-223. Martin, C. S., Polly, D., & Kissel, B. (2017). Exploring the impact of written reflections on learning in the elementary mathematics classroom. Journal Of Educational Research, 110(5), 538–553. https://doi.org/10.1080/00220671.2016.1149793 Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1–2), 49–63. Moshman, D. (2018). Metacognitive theories revisited. Educational Psychology Review, 30(2), 599-606. https://psycnet.apa.org/doi/10.1007/s10648-017-9413-7 Özsoy, G., & Ataman, A. (2009). The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education, 1(2), 68–83. https://files.eric.ed.gov/fulltext/ED508334.pdf Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated approach (Student ed.). Lawrence Erlbaum Associates, Inc. Polya, G. (2004). How to solve it: a new aspect of mathematical method. Princeton University press. Sandi-Urena, S., Cooper, M., & Stevens, R. (2012). Effect of cooperative problem-based lab instruction on metacognition and problem-solving skills. Journal of Chemical Education, 89(6),700-706. https://doi.org/10.1021/ed1011844 Vaccaro, A. G., & Fleming, S. M. (2018). Thinking about thinking: A coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements. Brain and Neuroscience Advances, 2, 1-14. https://doi.org/10.1177/2398212818810591 Vega Urquieta, M. A., Carrillo Yañez, J. & Soto Andrade, J. (2014). Analysis according to the cognitive model following constructed learning of the concept of derivative. Bolema - Mathematics Education Bulletin, 28(48),403-429. https://doi.org/10.1590/1980-4415v28n48a20 Veenman, M. V., & Van Cleef, D. (2019). Measuring metacognitive skills for mathematics: students’ self-reports versus on-line assessment methods. ZDM: The International Journal on Mathematics Education, 51(4), 691-701. Vinner, S. (2002). The Role of Definitions in the Teaching and Learning of Mathematics. En Tall D. (eds), Mathematics Education Library, (Vol. 11, pp. 65–81), Springer. https://doi.org/10.1007/0-306-47203-1_5 Vinner, S., & Dreyfus, T. (1989). Images and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356–366. https://doi.org/10.2307/749441 Wewe, M. (2020). The Profile of Students’ Learning Difficulties in Concepts Mastery in Calculus Course. Desimal: Jurnal Matematika, 3(2), 161-168. https://doi.org/10.24042/djm.v3i2.6421 Woolfolk, A. (2010). Pisicología educativa,(11a ed.). Pearson. Ye, L., Posada, A., & Liu, Y. (2019). A Review on the Relationship Between Chinese Adolescents’ Stress and Academic Achievement: Stress and Academic Achievement. New Directions for Child and Adolescent Development, 2019(163), 81-95. https://doi.org/10.1002/cad.20265 Young, A. E., & Worrell, F. C. (2018). Comparing metacognition assessments of mathematics in academically talented students. Gifted Child Quarterly, 62(3), 259-275. https://doi.org/10.1177/0016986218755915 Zambrano, R. A., Ávila, D. I. E., & Medrano, E. F. (2019). An introduction to the concept of derivative in high school students. Educacion Matematica, 31(1). https://doi.org/10.24844/EM3101.10 Zengin, Y. (2018). Examination of the constructed dynamic bridge between the concepts of differential and derivative with the integration of GeoGebra and the ACODESA method. Educational Studies in Mathematics, 99(3), 311–333. https://doi.org/10.1007/s10649-018-9832-5 Zubaidah Amir, M. Z. (2016). Exploration of Metacognitive Ability at Elementary School Students in Learning Mathematics. Journal of Innovative Technology and Education, 3(1), 179-184. http://dx.doi.org/10.12988/jite.2016.6834 Núm. 1 , Año 2022 : Enero - Junio https://revistasojs.ucaldas.edu.co/index.php/latinoamericana/article/download/7339/6414 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Caldas |
| publisher.none.fl_str_mv |
Universidad de Caldas |
| dc.source.none.fl_str_mv |
https://revistasojs.ucaldas.edu.co/index.php/latinoamericana/article/view/7339 |
| institution |
Universidad de Caldas |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1855532520008843264 |
| spelling |
Juicios metacognitivos en el aprendizaje del concepto de derivada utilizando la estrategia del laboratorio virtualMetacognitive Judgments in Learning the Derivative Concept Using the Virtual Lab StrategyConcepto de derivadadidáctica de las matemáticasanálisis comparativocogniciónjuicios metacognitivosDerivative conceptdidactics of mathematicscomparative analysis cognitionmetacognitive judgementsEsta investigación implementó una intervención en el aula, utilizando un laboratorio virtual como estrategia didáctica basada en la comprensión del concepto de derivada, aplicado al problema de la línea tangente. Se aplicó la metodología Pretest-Posttest para ver si existen diferencias significativas en el aprendizaje del concepto de derivada en comparación con el enfoque de enseñanza tradicional. Los resultados indican que al realizar el análisis estadístico se identifican tres categorías en relación a las competencias desarrolladas por los estudiantes: solución de ecuaciones, identificación de términos y cuestiones conceptuales. Se encontró diferencia en las varianzas de poblaciones para la competencia de resolución de ecuaciones, obteniendo  mejor desempeño en el grupo experimental; las otras dos categorías muestran un desempeño similar en ambos grupos, por lo que consideramos el método propuesto como una forma alternativa de enseñar el concepto de derivada. Finalmente, se identificaron las estrategias de regulación metacognitiva aplicadas por los estudiantes durante el proceso de intervención didáctica.This study examined a classroom intervention through a virtual laboratory as a didactic strategy that was based on the understanding of the derivative concept applied to the problem of the tangent line. The PretestPosttest methodology was used to test if there are significant differences in the learning of the derivative concept, compared to the traditional teaching approach. The results indicate that a statistical analysis implies three categories in relation to competencies developed by the students: solution of equations, identification of terms, and conceptual questions. There was a difference in the variances of populations for the competence of solving equations, and the experimental group showed better performance in; the other two categories showed similar performance in both groups. Thus, we consider the proposed method as an alternative form of teaching the derivative concept. The metacognitive regulation strategies implemented by the students during the didactic intervention process were also identified.Universidad de Caldas2022-01-01T00:00:00Z2025-10-08T21:40:31Z2022-01-01T00:00:00Z2025-10-08T21:40:31Z2021-01-01Artículo de revistahttp://purl.org/coar/resource_type/c_6501Textinfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1application/pdf1900-9895https://repositorio.ucaldas.edu.co/handle/ucaldas/2474210.17151/rlee.2022.18.1.92500-5324https://doi.org/10.17151/rlee.2022.18.1.9https://revistasojs.ucaldas.edu.co/index.php/latinoamericana/article/view/7339eng186116918Latinoamericana de Estudios EducativosBraund, H. L. A. (2017). Exploring the dynamic relationship between metacognition and curriculum: suggestions for integration and implementation [Graduate student symposium] Queen´s university. [https://qspace.library.queensu.ca/handle/1974/15464Bringula, R. P., Basa, R. S., Dela Cruz, C., & Rodrigo, M. M. T. (2016). Effects of Prior Knowledge in Mathematics on Learner-Interface Interactions in a Learning-by-Teaching Intelligent Tutoring System. Journal of Educational Computing Research, 54(4), 462–482. https://doi.org/10.1177/0735633115622213Buitrago, S., & García, L. (2011). Procesos de regulación metacognitiva en la resolución de problemas. En Memorias del 12° Encuentro Colombiano de Matemática Educativa (pp. 548–559). http://funes.uniandes.edu.co/2373/Campbell, D. T., & Stanley, J. C. (1995). Diseños experimentales y cuasiexperimentales en la investigación social. Amorrortu editores.Davis, P., Hersh, R., & Marchisotto, E. A. (2011). The mathematical experience. Springer Science & Business Media.Cheung, C.-N., & Wong, W.-C. (2011). Understanding Conceptual Development Along the Implicit-Explicit Dimension: Looking Through the Lens of the Representational Redescription Model. Child Development, 82(6), 2037–2052. https://doi.org/10.1111/j.1467- 8624.2011.01657.xElif, A. K. A. R., Tekkaya, C., & Çakiroğlu, J. (2011). The interplay between metacognitive awareness and scientific epistemological beliefs. International Journal on New Trends in Education and Their Implications, 7.Flavell, J. H. (1970). Developmental Studies of Mediated Memory. Advances in Child Development and Behavior, 5, 181–211. https://doi.org/10.1016/S0065-2407(08)60467-XFlavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. https://doi.org/10.1037/0003-066X.34.10.906Flavell, J. H. (1999). Cognitive development: Children’s knowledge about the mind. Annual Review of Psychology, 50, 21–45. https://doi.org/10.1146/annurev.psych.50.1.21Flavell, J. H., & Wellman, H. M. (1975). Metamemory. Institue of Child Development. https://eric.ed.gov/?id=ED115405Frumos, F. V. (2015). Metacognitive monitoring accuracy and academic performance at university students. Journal of Innovation in Psychology, Education and Didactics, 19(2), 307-314.García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11(2), 139-170.Gok, T. (2010). The General Assessment of Problem Solving Processes and Metacognition in Physics Education. International Journal of Physics & Chemistry Education, 2(2),110-122. https://doi.org/10.51724/ijpce.v2i2.186Hacker, D. J., Dunlosky, J. & Graesser, A. C. (Eds). (1998). Metacognition in educational theory and practice. Lawrence Erlbaum Associates Publishers.Händel, M., & Dresel, M. (2018). Confidence in performance judgment accuracy: the unskilled and unaware effect revisited. Metacognition and learning, 13(3), 265–285. https://doi.org/10.1007/s11409-018-9185-6Hashemi, N., Abu, M. S., Kashefi, H., Mokhtar, M., & Rahimi, K. (2015). Designing learning strategy to improve undergraduate students’ problem solving in derivatives and integrals: A conceptual framework. Eurasia Journal of Mathematics, Science and Technology Education, 11(2), 227-238. https://doi.org/10.12973/eurasia.2015.1318aHo, S. Y., & Lowrie, T. (2014). The model method: students’ performance and its effectiveness. Journal of Mathematical Behavior, 35, 87–100. https://doi.org/10.1016/j.jmathb.2014.06.002Huitt, W. (1997). Metacognition. Educational Psychology Interactive. Valdosta State University.Izzati, L. R. (2021). The effect of problem-based learning to improve students’ metacognition skills in solving mathematical problems based on cognitive style. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042073Kitcher, P. (1984). The nature of mathematical knowledge. Oxford University Press.Kline, M. (1998). El fracaso de la matemática moderna; por qué Juanito no sabe sumar, (18a ed.). Silglo veintiuno editoresLakatos, I. (2015). Proofs and refutations: The logic of mathematical discovery. Cambridge university press.Lan, X., & Ying, Z. (2021). Teaching Derivative Concept Using 6 Questions Cognitive Model. Journal of Didactic Mathematics, 1(3),127-137. https://doi.org/10.34007/jdm.v1i3.371Llorens Fuster, J. L., & Pérez Carreras, P. (1996). Aplicación del modelo de van Hiele al concepto de aproximación local. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 22, 13–24. https://dialnet.unirioja.es/servlet/articulo?codigo=152347Londoño, D. M. M., Cardozo, M. O., Ferreras, A. P., & Alzate, Ó. E. T. (2021). Los juicios metacognitivos como un campo emergente de investigación. Una revisión sistemática (2016-2020). Latinoamericana de Estudios Educativos, 17(1), 188-223.Martin, C. S., Polly, D., & Kissel, B. (2017). Exploring the impact of written reflections on learning in the elementary mathematics classroom. Journal Of Educational Research, 110(5), 538–553. https://doi.org/10.1080/00220671.2016.1149793Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1–2), 49–63.Moshman, D. (2018). Metacognitive theories revisited. Educational Psychology Review, 30(2), 599-606. https://psycnet.apa.org/doi/10.1007/s10648-017-9413-7Özsoy, G., & Ataman, A. (2009). The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education, 1(2), 68–83. https://files.eric.ed.gov/fulltext/ED508334.pdfPedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated approach (Student ed.). Lawrence Erlbaum Associates, Inc.Polya, G. (2004). How to solve it: a new aspect of mathematical method. Princeton University press. Sandi-Urena, S., Cooper, M., & Stevens, R. (2012). Effect of cooperative problem-based lab instruction on metacognition and problem-solving skills. Journal of Chemical Education, 89(6),700-706. https://doi.org/10.1021/ed1011844Vaccaro, A. G., & Fleming, S. M. (2018). Thinking about thinking: A coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements. Brain and Neuroscience Advances, 2, 1-14. https://doi.org/10.1177/2398212818810591Vega Urquieta, M. A., Carrillo Yañez, J. & Soto Andrade, J. (2014). Analysis according to the cognitive model following constructed learning of the concept of derivative. Bolema - Mathematics Education Bulletin, 28(48),403-429. https://doi.org/10.1590/1980-4415v28n48a20Veenman, M. V., & Van Cleef, D. (2019). Measuring metacognitive skills for mathematics: students’ self-reports versus on-line assessment methods. ZDM: The International Journal on Mathematics Education, 51(4), 691-701.Vinner, S. (2002). The Role of Definitions in the Teaching and Learning of Mathematics. En Tall D. (eds), Mathematics Education Library, (Vol. 11, pp. 65–81), Springer. https://doi.org/10.1007/0-306-47203-1_5Vinner, S., & Dreyfus, T. (1989). Images and Definitions for the Concept of Function. Journal for Research in Mathematics Education, 20(4), 356–366. https://doi.org/10.2307/749441Wewe, M. (2020). The Profile of Students’ Learning Difficulties in Concepts Mastery in Calculus Course. Desimal: Jurnal Matematika, 3(2), 161-168. https://doi.org/10.24042/djm.v3i2.6421Woolfolk, A. (2010). Pisicología educativa,(11a ed.). Pearson.Ye, L., Posada, A., & Liu, Y. (2019). A Review on the Relationship Between Chinese Adolescents’ Stress and Academic Achievement: Stress and Academic Achievement. New Directions for Child and Adolescent Development, 2019(163), 81-95. https://doi.org/10.1002/cad.20265Young, A. E., & Worrell, F. C. (2018). Comparing metacognition assessments of mathematics in academically talented students. Gifted Child Quarterly, 62(3), 259-275. https://doi.org/10.1177/0016986218755915Zambrano, R. A., Ávila, D. I. E., & Medrano, E. F. (2019). An introduction to the concept of derivative in high school students. Educacion Matematica, 31(1). https://doi.org/10.24844/EM3101.10Zengin, Y. (2018). Examination of the constructed dynamic bridge between the concepts of differential and derivative with the integration of GeoGebra and the ACODESA method. Educational Studies in Mathematics, 99(3), 311–333. https://doi.org/10.1007/s10649-018-9832-5Zubaidah Amir, M. Z. (2016). Exploration of Metacognitive Ability at Elementary School Students in Learning Mathematics. Journal of Innovative Technology and Education, 3(1), 179-184. http://dx.doi.org/10.12988/jite.2016.6834Núm. 1 , Año 2022 : Enero - Juniohttps://revistasojs.ucaldas.edu.co/index.php/latinoamericana/article/download/7339/6414https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lara Escobar, Rubén DaríoCárdenas Delgado, OscarGarcés Gómez, Yeison A.Parra, Paulo AndrésLópez Jimenez, Paula Andreaoai:repositorio.ucaldas.edu.co:ucaldas/247422025-10-08T21:40:31Z |
