Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración

Este trabajo identifica las principales contribuciones de Stephen Ross a la definición de los principios básicos del teorema fundamental de valoración de activos (TFVA), así como sus aplicaciones y extensiones. Al establecer la equivalencia entre la ausencia de arbitraje y la existencia de una regla...

Full description

Autores:
Zapata Quimbayo, Carlos Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Externado de Colombia
Repositorio:
Biblioteca Digital Universidad Externado de Colombia
Idioma:
spa
OAI Identifier:
oai:bdigital.uexternado.edu.co:001/7671
Acceso en línea:
https://bdigital.uexternado.edu.co/handle/001/7671
https://doi.org/10.18601/17941113.n13.02
Palabra clave:
arbitraje
valoración de activos
medida martingala equivalente.
Arbitrage
asset pricing
equivalent martingale measure.
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id uexternad2_5cb830b351302f469375f7361c0018a1
oai_identifier_str oai:bdigital.uexternado.edu.co:001/7671
network_acronym_str uexternad2
network_name_str Biblioteca Digital Universidad Externado de Colombia
repository_id_str
dc.title.spa.fl_str_mv Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
dc.title.translated.eng.fl_str_mv Absence of Arbitrage, equivalent measures and the Fundamental Theorem of asset pricing
title Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
spellingShingle Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
arbitraje
valoración de activos
medida martingala equivalente.
Arbitrage
asset pricing
equivalent martingale measure.
title_short Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
title_full Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
title_fullStr Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
title_full_unstemmed Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
title_sort Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoración
dc.creator.fl_str_mv Zapata Quimbayo, Carlos Andrés
dc.contributor.author.none.fl_str_mv Zapata Quimbayo, Carlos Andrés
dc.subject.spa.fl_str_mv arbitraje
valoración de activos
medida martingala equivalente.
topic arbitraje
valoración de activos
medida martingala equivalente.
Arbitrage
asset pricing
equivalent martingale measure.
dc.subject.eng.fl_str_mv Arbitrage
asset pricing
equivalent martingale measure.
description Este trabajo identifica las principales contribuciones de Stephen Ross a la definición de los principios básicos del teorema fundamental de valoración de activos (TFVA), así como sus aplicaciones y extensiones. Al establecer la equivalencia entre la ausencia de arbitraje y la existencia de una regla de valoración lineal de activos, Ross formula los principios básicos de un enfoque de valoración que conserva las características esenciales del modelo de Black-Scholes-Merton, pero desde un enfoque más simple e intuitivo.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-05-09 00:00:00
2022-09-08T13:40:32Z
dc.date.available.none.fl_str_mv 2018-05-09 00:00:00
2022-09-08T13:40:32Z
dc.date.issued.none.fl_str_mv 2018-05-09
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.18601/17941113.n13.02
dc.identifier.eissn.none.fl_str_mv 2346-2140
dc.identifier.issn.none.fl_str_mv 1794-1113
dc.identifier.uri.none.fl_str_mv https://bdigital.uexternado.edu.co/handle/001/7671
dc.identifier.url.none.fl_str_mv https://doi.org/10.18601/17941113.n13.02
identifier_str_mv 10.18601/17941113.n13.02
2346-2140
1794-1113
url https://bdigital.uexternado.edu.co/handle/001/7671
https://doi.org/10.18601/17941113.n13.02
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revistas.uexternado.edu.co/index.php/odeon/article/download/5336/6518
https://revistas.uexternado.edu.co/index.php/odeon/article/download/5336/6700
dc.relation.citationedition.spa.fl_str_mv Núm. 13 , Año 2017 : Julio-Diciembre
dc.relation.citationendpage.none.fl_str_mv 30
dc.relation.citationissue.spa.fl_str_mv 13
dc.relation.citationstartpage.none.fl_str_mv 7
dc.relation.ispartofjournal.spa.fl_str_mv Odeon
dc.relation.references.spa.fl_str_mv Arrow, K. (1964). The role of securities in the optimal allocation of riskbearing. The Review of Economic Studies, 31(2), 91-96.
Artzner, P. y Heath, D. (1995). Approximate completeness with multiple martingale measures. Mathematical Finance, 5(1), 1-11.
Bachelier, L. (1900). Théorie de la Spéculation. Annales scientiques de l’ École Normale Supérieure, 17, 21-86. English translation in: The Random Character of stock market prices (P. Cootner, editor), MIT Press.
Back, K. y Pliska, S. (1991). On the fundamental theorem of asset pricing with an infinite state space. Journal of Mathematical Economics, 20(1), 1-18.
Balbás, A., Mirás, M. y Muñoz, M. (2002). Projective system approach to the martingale characterization of the absence of arbitrage. Journal of Mathematical Economics, 37(4), 311-323.
Brown, D. y Werner, J. (1995). Arbitrage and existence of equilibrium in infinite asset markets. The Review of Economic Studies, 62(1), 101-114.
Black, F. y Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-659.
Cox, J. y Ross, S. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1), 145-166.
Cox, J., Ross, S. y Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229-263.
Dalang, R., Morton, A. y Willinger, W. (1990). Equivalent martingale measures and no-arbitrage in stochastic securities market model. International Journal of Probability and Stochastic Processes, 29(2), 185-201.
Delbaen, F. y Schachermayer, W. (1994). A general version of the Fundamental Theorem of asset pricing. Mathematische Annalen, 300(1), 463-520.
Delbaen, F. y Schachermayer, W. (1995). The no-arbitrage condition under a change of numéraire. Stochastics and Stochastic Reports, 53(3-4), 213-226.
Delbaen, F. y Schachermayer, W. (1998). The Fundamental Theorem of asset pricing for unbounded Stochastic processes. Mathematische Annalen, 312(1), 215-250.
Delbaen, F. y Schachermayer, W. (2006). The Mathematics of Arbitrage. Berlin: Springer Finance.
Dybvig, P. y Ross, S. (1987). Arbitrage. En: Eatwell, J., Milgate, M. y Newman, P. (eds.), The new Palgrave dictionary of economics, vol. 1. London: Macmillan.
Fernholz, E. y Karatzas, I. (2009). Stochastic portfolio theory: An overview. En Bensoussan, A. y Zhang, Q. (eds.), Handbook of numerical analysis, special volume: Mathematical Modelling and Numerical Methods in Finance. New York: Elsevier.
Fontana, C. (2015). Weak and strong no-arbitrage conditions for continuous financial markets. International Journal of Theoretical and Applied Finance, 18(1), 1-34.
Fontana, C. y Runggaldier,W. (2013). Diffusion-based models for financial markets without martingale measures. En Risk Measures and Attitudes, 45-81. London: Springer.
Guasoni, P., R´asonyi, M. y Schachermayer,W. (2010). The fundamental theorem of asset pricing for continuous processes under small transaction costs. Annals of Finance, 6(2), 157-191.
Harrison, J. y Kreps, D. (1979). Martingales and Arbitrage in multiperiod securities markets. Journal of Economic Theory, 20(3), 381-408.
Harrison, J. y Pliska, S. (1981). Martingales and Stochastic integrals in the Theory of continuous trading. Stochastic Processes and their Applications, 11(3), 215-260.
Harrison, J. y Pliska, S. (1983). A stochastic calculus model of continuous trading: Complete markets. Stochastic Processes and their Applications, 15(3), 313-316.
Jacod, J. y Shiryaev, A. (1998). Local martingales and the fundamental asset pricing theorems in the discrete time. Finance and Stochastics, 3(2), 259-273.
Johnson, T. (2017). Ethics in Quantitative Finance. Edinburgh: Palgrave Macmillan. Kabanov, Y. y Kramkov, D. (1994). No-arbitrage and equivalent martingale measures: An elementary proof of the Harrison-Pliska theorem. Theory of Probability and its Applications, 39(3), 523-527.
Kabanov, Y., Rásonyi, M. y Stricker, C. (2002). No-arbitrage criteria for financial markets with efficient friction. Finance and Stochastics, 6(3), 371-382.
Karatzas, I. y Kardaras, C. (2007). The numéraire portfolio in semimartingale financial models. Finance and Stochastics, 11(4), 447-493.
Kreps, D. (1981). Arbitrage and equilibrium in Economics with infinitely many Commodities. Journal of Mathematical Economics, 8(1), 15-35.
Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13-37.
Lewis, K. (2013). A simple proof of the fundamental theorem of asset pricing. Documento de trabajo. Recuperado de http://kalx.net/ftapd.pdf
Merton, R. (1973). The theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141-183.
Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the Econometric Society, 34(1), 768-783.
Platen, E. y Heath, D. (2006). A Benchmark Approach to Quantitative Finance. Sidney: Springer.
Ross, S. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-360.
Ross, S. (1977). Return, risk and arbitrage. En: Rodney, L. Risk and Return in Finance, Vol. 1, 189-218. Pennyslvania: White Center for Financial Research, The Wharton School, University of Pennyslvania.
Ross, S. (1978). A simple approach to the valuation of risky streams. Journal of Business, 51(1), 453-475.
Ross, S. (2005). Neoclassical finance. New Jersey: Princeton University Press.
Rubinstein, M. (1976). The valuation of uncertain income streams and the pricing of options. Bell Journal of Economics and Management Science, 7(2), 407-425.
Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
Schachermayer, W. (1992). A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Mathematics and Economics, 11(4), 249-257.
Schachermayer,W. (1994). Martingale measures for discrete time processes with infinite horizon. Mathematical Finance, 4(1), 25-56.
Schwartz, E. y Trigeorgis, L. (2004). Real Options and Investment Under Uncertainty: Classical Readings and Recent Contributions. Cambridge: MIT press.
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
dc.publisher.spa.fl_str_mv Facultad de Finanzas, Gobierno y Relaciones Internacionales
dc.source.spa.fl_str_mv https://revistas.uexternado.edu.co/index.php/odeon/article/view/5336
institution Universidad Externado de Colombia
bitstream.url.fl_str_mv https://bdigital.uexternado.edu.co/bitstreams/e6f21750-9526-4668-82da-868e6dd397af/download
bitstream.checksum.fl_str_mv 3bce965a3f5d52c975e39ab541037c99
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Universidad Externado de Colombia
repository.mail.fl_str_mv metabiblioteca@metabiblioteca.org
_version_ 1828229660623765504
spelling Zapata Quimbayo, Carlos Andrésvirtual::420-12018-05-09 00:00:002022-09-08T13:40:32Z2018-05-09 00:00:002022-09-08T13:40:32Z2018-05-09Este trabajo identifica las principales contribuciones de Stephen Ross a la definición de los principios básicos del teorema fundamental de valoración de activos (TFVA), así como sus aplicaciones y extensiones. Al establecer la equivalencia entre la ausencia de arbitraje y la existencia de una regla de valoración lineal de activos, Ross formula los principios básicos de un enfoque de valoración que conserva las características esenciales del modelo de Black-Scholes-Merton, pero desde un enfoque más simple e intuitivo.This paper identifies the main contributions of Stephen Ross to the definition of the basic principles of the fundamental theorem of asset pricing (FTAP), as well as its applications and extensions. By establishing the equivalence between the absence of arbitrage and the existence of a linear asset pricing rule, Ross formulates the principles of a valuation approach that preserves the essential characteristics of the Black-Scholes model, but from a more  imple and intuitive framework.application/pdftext/html10.18601/17941113.n13.022346-21401794-1113https://bdigital.uexternado.edu.co/handle/001/7671https://doi.org/10.18601/17941113.n13.02spaFacultad de Finanzas, Gobierno y Relaciones Internacionaleshttps://revistas.uexternado.edu.co/index.php/odeon/article/download/5336/6518https://revistas.uexternado.edu.co/index.php/odeon/article/download/5336/6700Núm. 13 , Año 2017 : Julio-Diciembre30137OdeonArrow, K. (1964). The role of securities in the optimal allocation of riskbearing. The Review of Economic Studies, 31(2), 91-96.Artzner, P. y Heath, D. (1995). Approximate completeness with multiple martingale measures. Mathematical Finance, 5(1), 1-11.Bachelier, L. (1900). Théorie de la Spéculation. Annales scientiques de l’ École Normale Supérieure, 17, 21-86. English translation in: The Random Character of stock market prices (P. Cootner, editor), MIT Press.Back, K. y Pliska, S. (1991). On the fundamental theorem of asset pricing with an infinite state space. Journal of Mathematical Economics, 20(1), 1-18.Balbás, A., Mirás, M. y Muñoz, M. (2002). Projective system approach to the martingale characterization of the absence of arbitrage. Journal of Mathematical Economics, 37(4), 311-323.Brown, D. y Werner, J. (1995). Arbitrage and existence of equilibrium in infinite asset markets. The Review of Economic Studies, 62(1), 101-114.Black, F. y Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-659.Cox, J. y Ross, S. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1), 145-166.Cox, J., Ross, S. y Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229-263.Dalang, R., Morton, A. y Willinger, W. (1990). Equivalent martingale measures and no-arbitrage in stochastic securities market model. International Journal of Probability and Stochastic Processes, 29(2), 185-201.Delbaen, F. y Schachermayer, W. (1994). A general version of the Fundamental Theorem of asset pricing. Mathematische Annalen, 300(1), 463-520.Delbaen, F. y Schachermayer, W. (1995). The no-arbitrage condition under a change of numéraire. Stochastics and Stochastic Reports, 53(3-4), 213-226.Delbaen, F. y Schachermayer, W. (1998). The Fundamental Theorem of asset pricing for unbounded Stochastic processes. Mathematische Annalen, 312(1), 215-250.Delbaen, F. y Schachermayer, W. (2006). The Mathematics of Arbitrage. Berlin: Springer Finance.Dybvig, P. y Ross, S. (1987). Arbitrage. En: Eatwell, J., Milgate, M. y Newman, P. (eds.), The new Palgrave dictionary of economics, vol. 1. London: Macmillan.Fernholz, E. y Karatzas, I. (2009). Stochastic portfolio theory: An overview. En Bensoussan, A. y Zhang, Q. (eds.), Handbook of numerical analysis, special volume: Mathematical Modelling and Numerical Methods in Finance. New York: Elsevier.Fontana, C. (2015). Weak and strong no-arbitrage conditions for continuous financial markets. International Journal of Theoretical and Applied Finance, 18(1), 1-34.Fontana, C. y Runggaldier,W. (2013). Diffusion-based models for financial markets without martingale measures. En Risk Measures and Attitudes, 45-81. London: Springer.Guasoni, P., R´asonyi, M. y Schachermayer,W. (2010). The fundamental theorem of asset pricing for continuous processes under small transaction costs. Annals of Finance, 6(2), 157-191.Harrison, J. y Kreps, D. (1979). Martingales and Arbitrage in multiperiod securities markets. Journal of Economic Theory, 20(3), 381-408.Harrison, J. y Pliska, S. (1981). Martingales and Stochastic integrals in the Theory of continuous trading. Stochastic Processes and their Applications, 11(3), 215-260.Harrison, J. y Pliska, S. (1983). A stochastic calculus model of continuous trading: Complete markets. Stochastic Processes and their Applications, 15(3), 313-316.Jacod, J. y Shiryaev, A. (1998). Local martingales and the fundamental asset pricing theorems in the discrete time. Finance and Stochastics, 3(2), 259-273.Johnson, T. (2017). Ethics in Quantitative Finance. Edinburgh: Palgrave Macmillan. Kabanov, Y. y Kramkov, D. (1994). No-arbitrage and equivalent martingale measures: An elementary proof of the Harrison-Pliska theorem. Theory of Probability and its Applications, 39(3), 523-527.Kabanov, Y., Rásonyi, M. y Stricker, C. (2002). No-arbitrage criteria for financial markets with efficient friction. Finance and Stochastics, 6(3), 371-382.Karatzas, I. y Kardaras, C. (2007). The numéraire portfolio in semimartingale financial models. Finance and Stochastics, 11(4), 447-493.Kreps, D. (1981). Arbitrage and equilibrium in Economics with infinitely many Commodities. Journal of Mathematical Economics, 8(1), 15-35.Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13-37.Lewis, K. (2013). A simple proof of the fundamental theorem of asset pricing. Documento de trabajo. Recuperado de http://kalx.net/ftapd.pdfMerton, R. (1973). The theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141-183.Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica: Journal of the Econometric Society, 34(1), 768-783.Platen, E. y Heath, D. (2006). A Benchmark Approach to Quantitative Finance. Sidney: Springer.Ross, S. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341-360.Ross, S. (1977). Return, risk and arbitrage. En: Rodney, L. Risk and Return in Finance, Vol. 1, 189-218. Pennyslvania: White Center for Financial Research, The Wharton School, University of Pennyslvania.Ross, S. (1978). A simple approach to the valuation of risky streams. Journal of Business, 51(1), 453-475.Ross, S. (2005). Neoclassical finance. New Jersey: Princeton University Press.Rubinstein, M. (1976). The valuation of uncertain income streams and the pricing of options. Bell Journal of Economics and Management Science, 7(2), 407-425.Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.Schachermayer, W. (1992). A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Mathematics and Economics, 11(4), 249-257.Schachermayer,W. (1994). Martingale measures for discrete time processes with infinite horizon. Mathematical Finance, 4(1), 25-56.Schwartz, E. y Trigeorgis, L. (2004). Real Options and Investment Under Uncertainty: Classical Readings and Recent Contributions. Cambridge: MIT press.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revistas.uexternado.edu.co/index.php/odeon/article/view/5336arbitrajevaloración de activosmedida martingala equivalente.Arbitrageasset pricingequivalent martingale measure.Ausencia de arbitraje, medidas equivalentes y teorema fundamental de valoraciónAbsence of Arbitrage, equivalent measures and the Fundamental Theorem of asset pricingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionPublicationZapata Quimbayovirtual::420-1Carlos Andrésvirtual::420-1https://scholar.google.com/citations?user=HRLzkWMAAAAJ&hl=esvirtual::420-10000-0003-3337-0182virtual::420-145febcec-2de6-48ab-8e77-0efc1a2af467virtual::420-145febcec-2de6-48ab-8e77-0efc1a2af467virtual::420-1OREORE.xmltext/xml2565https://bdigital.uexternado.edu.co/bitstreams/e6f21750-9526-4668-82da-868e6dd397af/download3bce965a3f5d52c975e39ab541037c99MD51001/7671oai:bdigital.uexternado.edu.co:001/76712022-10-10 10:05:54.734https://creativecommons.org/licenses/by-nc-sa/4.0/https://bdigital.uexternado.edu.coUniversidad Externado de Colombiametabiblioteca@metabiblioteca.org