Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales
Figuras y tablas
- Autores:
-
Barreto Montenegro, Julian Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Llanos
- Repositorio:
- Repositorio Digital Universidad de los LLanos
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unillanos.edu.co:001/3024
- Acceso en línea:
- https://repositorio.unillanos.edu.co/handle/001/3024
https://repositorio.unillanos.edu.co/
- Palabra clave:
- Compuestos orgánicos
Ácidos orgánicos
Digestión anaerobia
Péptidos
Actividad antimicrobiana
Métodos de extracción
Anaerobic digestion
Peptides
Extraction methods
Antimicrobial activity
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de los Llanos, 2016
id |
Unillanos2_7e50ba26b51f8ab30dbd56bcd53b12e6 |
---|---|
oai_identifier_str |
oai:repositorio.unillanos.edu.co:001/3024 |
network_acronym_str |
Unillanos2 |
network_name_str |
Repositorio Digital Universidad de los LLanos |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
title |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
spellingShingle |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales Compuestos orgánicos Ácidos orgánicos Digestión anaerobia Péptidos Actividad antimicrobiana Métodos de extracción Anaerobic digestion Peptides Extraction methods Antimicrobial activity |
title_short |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
title_full |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
title_fullStr |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
title_full_unstemmed |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
title_sort |
Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales |
dc.creator.fl_str_mv |
Barreto Montenegro, Julian Camilo |
dc.contributor.advisor.none.fl_str_mv |
Segura Latorre, Cesar Pachón García, Jorge |
dc.contributor.author.none.fl_str_mv |
Barreto Montenegro, Julian Camilo |
dc.subject.armarc.none.fl_str_mv |
Compuestos orgánicos Ácidos orgánicos |
topic |
Compuestos orgánicos Ácidos orgánicos Digestión anaerobia Péptidos Actividad antimicrobiana Métodos de extracción Anaerobic digestion Peptides Extraction methods Antimicrobial activity |
dc.subject.proposal.spa.fl_str_mv |
Digestión anaerobia Péptidos Actividad antimicrobiana Métodos de extracción |
dc.subject.proposal.eng.fl_str_mv |
Anaerobic digestion Peptides Extraction methods Antimicrobial activity |
description |
Figuras y tablas |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2023-09-26T21:17:38Z |
dc.date.available.none.fl_str_mv |
2023-09-26T21:17:38Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Barreto Montenegro, J. (2016). Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. https://repositorio.unillanos.edu.co/handle/001/3024 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unillanos.edu.co/handle/001/3024 |
dc.identifier.instname.spa.fl_str_mv |
Universidad de los Llanos |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio digital Universidad de los Llanos |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unillanos.edu.co/ |
identifier_str_mv |
Barreto Montenegro, J. (2016). Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. https://repositorio.unillanos.edu.co/handle/001/3024 Universidad de los Llanos Repositorio digital Universidad de los Llanos |
url |
https://repositorio.unillanos.edu.co/handle/001/3024 https://repositorio.unillanos.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abram, F., Enright, A. M., O´Reilly, J., Botting, C. H., Collins, G., & O´Flaherty, V. (2011). A metaproteomic approach gives functional insights into anaerobic digestion. Journal of Applied Microbiology, 110, 1550–1560. Abram, F., Gunnigle, E., & O’Flaherty, V. (2009). Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis, 30, 4149–4151. Acosta, Y., Cristina, M., & Abreu, O. (2005). La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar, XXXlX(1), 35–48. Aguilar, M. (2004). HPLC of Peptides and Proteins. Methods and Protocols. (M. Aguilar, Ed.), Methods in Molecular Biology (Vol. 251). New Jersey: Humana Press. Aguilar, M.-I. (2003). Reversed-Phase High-Performance Liquid Chromatography. En M. Aguilar (Ed.), HPLC of Peptides and Proteins. Methods and Protocols (Vol. 251, pp. 9–22). New Jersey: Humana Press. Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: The key players of anaerobiosis. The Scientific World Journal, 183752, 1–21. Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects — a review. Environmental Reviews, 18, 255–278. Bals, R. (2000). Epithelial antimicrobial peptides in host defense against infection. Respiratory research, 1(3), 141–50. Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Métro, F., Prévost, H., Chobert, J. M. Haertlé, T. (2006). Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. Journal of Applied Microbiology, 101(December 2005), 837–848. Bedoya-Urrego, K., Acevedo-Ruíz, J. M., Peláez-Jaramillo, C. A., & Agudelo-López, S. del P. (2013). Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia). Revista de Salud Pública, 15(5), 778–790. Biosa, G., Addis, M. F., Tanca, A., Pisanu, S., Roggio, T., Uzzau, S., & Pagnozzi, D. (2011). Comparison of blood serum peptide enrichment methods by Tricine SDS-PAGE and mass spectrometry. Journal of Proteomics, 75(1), 93–99. Branco, P., Francisco, D., Chambon, C., Hébraud, M., Arneborg, N., Almeida, M. G., Caldeira, J., & Albergaria, H. (2014). Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Applied Microbiology and Biotechnology, 98, 843–853. Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology, 3(3), 238–50. Cao, Y., Chang, Z.-Z., Ma, Y., Yang, H., & Fu, G.-Q. (2013). Control mechanism of phytophthora blight of chilli pepper by anaerobically digested pig slurry—The roles of ammonium and humic acid in biogas slurry. Chinese Journal of Eco-Agriculture, 9, 0–14. Chong, G., Kimyon, O., Rice, S. A., Kjelleberg, S., & Manefield, M. (2012). The presence and role of bacterial quorum sensing in activated sludge. Microbial biotechnology, 5(5), 621–33. Clarkson, J., Cui, Z., & Darton, R. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4(2), 107–114. Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature reviews. Microbiology, 3(10), 777–88. Cowan, M. M. (1999). Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews, 12(4), 564–582. Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., Eghbalnia, H. R., Sussman, M. R., & Markley, J. L. (2008). Metabolite identification via the Madison Metabolomics Consortium Database. Nature biotechnology, 26(2), 162–4. Dong, H., Kemptner, J., Marchetti-Deschmann, M., Kubicek, C. P., & Allmaier, G. (2009). Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Analytical and bioanalytical chemistry, 395(5), 1373–83. Dong, X., Xin, Y., Jian, W., Liu, X., & Ling, D. (2000). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. International journal of systematic and evolutionary microbiology, 50 Pt 1, 119–25. Dride, D., & Rebuffat, S. (2011). Prokaryotic antimicrobial peptides: from genes to applications. (S. Rebuffat & D. Dride, Eds.), Media. New York: Springer. Empresas Públicas de Medellín. (s. f.). Tratamiento de aguas residuales. Planta San Fernando. Feng, H., Qu, G. F., Ning, P., Xiong, X. F., Jia, L. J., Shi, Y. K., & Zhang, J. (2011). The resource utilization of anaerobic fermentation residue. Procedia Environmental Sciences, 11(PART C), 1092–1099. Fountoulakis, M., Drillia, P., Stamatelatou, K., & Lyberatos, G. (2004). Toxic effect of pharmaceuticals on methanogenesis. Water Science and Technology, 50(5), 335–340. Garcia, S. L., Jangid, K., Whitman, W. B., & Das, K. C. (2011). Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresource Technology, 102(15), 7249–7256. Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC microbiology, 10(1), 22. Hanreich, A., Heyer, R., Benndorf, D., Rapp, E., Pioch, M., Reichl, U., & Klocke, M. (2012). Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Canadian Journal of Microbiology, 58(7), 917–922. Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113, 723–736. Hayes, M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2007). Putting microbes to work: Diary fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal, 2, 435–449. Hegemann, J. D., Zimmermann, M., Xie, X., & Marahiel, M. A. (2015). Lasso Peptides: An Intriguing Class of Bacterial Natural Products. Accounts of Chemical Research, 48(7), 1909–1919. Heyer, R., Kohrs, F., Benndorf, D., Rapp, E., Kausmann, R., Heiermann, M., Klocke, M., & Reichl, U. (2013). Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnology, 30(6), 614–622. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., … Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of mass spectrometry : JMS, 45(7), 703–14. Jack, R., Tagg, J., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59(2), 171–200. Judd, R. C. (1994). Electrophoresis of peptides. En J. M. Walker (Ed.), Methods in molecular biology (Clifton, N.J.) (Vol. 32, pp. 49–57). Huma Press Inc. Kawashima, Y., Fukutomi, T., Tomonaga, T., Takahashi, H., Nomura, F., Maeda, T., & Kodera, Y. (2010). High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. Journal of Proteome Research, 9(4), 1694–1705. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., & de Vos, W. M. (1997). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 24(5), 895–904. Krause, L., Diaz, N. N., Edwards, R. A., Gartemann, K.-H., Krömeke, H., Neuweger, H., … Goesmann, A. (2008). Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. Journal of biotechnology, 136(1-2), 91–101. Kuhn, R., Benndorf, D., Rapp, E., Reichl, U., Palese, L. L., & Pollice, A. (2011). Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics, 11(13), 2738–2744. Kümmerer, K. (2009). Antibiotics in the aquatic environment--a review--part I. Chemosphere, 75(4), 417–34. Lamendella, R., Santo Domingo, J. W., Kelty, C., & Oerther, D. B. (2008). Bifidobacteria in feces and environmental waters. Applied and environmental microbiology, 74(3), 575–84. Laukova, a., Marekova, M., Vasilkova, Z., Papojava, I., & Juris, P. (2002). Selected microbial consortium of row and digested slurry and its susceptibility to enterocins. Word Journal of Microbiology and Biotechnology, 18, 11–15. Lewis, K. (2013). Platforms for antibiotic discovery. Nature reviews. Drug discovery, 12(5), 371– 87. Liu, X., Inbar, Y., Dorrestein, P. C., Wynne, C., Edwards, N., Souda, P., Whitelegge, J. P., Bafna, V., & Pevzner, P. A. (2010). Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Molecular & cellular proteomics : MCP, 9(12), 2772–82. Liu, X., Sirotkin, Y., Shen, Y., Anderson, G., Tsai, Y. S., Ting, Y. S., Goodlett, D. R., Smith, R. D., Bafna, V., & Pevzner, P. A. (2012). Protein Identification Using Top-Down. Molecular & Cellular Proteomics, 11(6), M111.008524–M111.008524. Loans, I., Run, R., Library, S., Lu, S., Walters, G., Parg, R., & Dutcher, J. R. (2014). Nanomechanical response of bacterial cells to cationic antimicrobial peptides. Soft Matter, 10, 1806–1815. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemestry, 193(1), 265–275. Ma, Y., Li, H., Chang, Z.-Z., Xu, Y., & Zhang, J. (2011). Biocontrol Effect and Mechanism of Biogas Slurry on Plant Disease Ⅰ:Primary Study of Growth Inhibition Effects and Mechanism on Phytopathogen Fung. Chinese Journal of Eco-Agriculture, 2. Manes, N. P., Gustin, J. K., Rue, J., Mottaz, H. M., Purvine, S. O., Norbeck, A. D., Monroe, M. E., Zimmer, J. S. D., Metz, T. O., Adkins, J. N., Smith, Richard, D., & Heffron, F. (2007). Targeted protein degradation by Salmonella under phagosome-mimicking culture conditions investigated using comparative peptidomics. Molecular & cellular proteomics : MCP, 6(4), 717–27. Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Okoh, A. I., Makaka, G., & Simon, M. (2014). Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester). International Journal of Environmental Research and Public Health, 11(7), 7184–94. Marques, S. S. I., Nascimento, I. A., De Almeida, P. F., & Chinalia, F. A. (2013). Growth of Chlorella vulgaris on sugarcane vinasse: The effect of anaerobic digestion pretreatment. Applied Biochemistry and Biotechnology, 171, 1933–1943. Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of hazardous materials, 239-240, 40–47. McNaught, A. D. (1984). Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983. European Journal of Biochemistry, 138(1), 9–37. Miao, X. S., Bishay, F., Chen, M., & Metcalfe, C. D. (2004). Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science and Technology, 38(13), 3533–3541. Mo, Y. (1998). Antimicrobial test of biogas fluid on plant pathogenic microorganism. China Biogas, 6(2), 6–10. Murillo, W., Araque, P., & Peláez, C. A. (2012). Actividad fungicida e insecticida de emulsiones agua/aceite de mezclas de extractos de Nicotiana tabacum, Azadiractha indica y Eucalyptus tereticornis. Informacion Tecnologica, 23(1), 139–152. Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of Microbiology, 167(23), 67–77. Park, C., & Helm, R. F. (2008). Application of metaproteomic analysis for studying extracellular polymeric substances (EPS) in activated sludge flocs and their fate in sludge digestion. Water Science and Technology, 57(12), 2009–2015. Perez-Riverol, Y., Wang, R., Hermjakob, H., Müller, M., Vesada, V., & Vizcaíno, J. A. (2014). Open source libraries and frameworks for mass spectrometry based proteomics: a developer’s perspective. Biochimica et biophysica acta, 1844(1 Pt A), 63–76. Pingitore, V. E., Salvucci, E., Sesma, F., & Nader-Macías, M. E. (2007). Different strategies for purification of antimicrobial peptides from Lactic Acid Bacteria ( LAB ). Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 21, 557– 568. Qingsheng, L. S., & Jiaquan, Z. (1993). Study of Biogas Fermentation Liquid on Control of Bacterial Blight of Rice and Sheath and Culm Blight of Rice. China Biogas, 11(3), 11–15. Ras, M., Girbal-Neuhauser, E., Paul, E., Spérandio, M., & Lefebvre, D. (2008). Protein extraction from activated sludge: An analytical approach. Water Research, 42(8-9), 1867– 1878. Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24, 536–547. Rocha, G. F., Kise, F., Rosso, A. M., & Parisi, M. G. (2013). Péptidos con actividad antimicrobiana obtenidos de proteínas lácteas con extractos de salpichroa origanifolia. Informacion Tecnologica, 24(2), 23–30. Sang, Y., & Blecha, F. (2012). Antimicrobial peptides and bacteriocins : alternatives to traditional Antimicrobial peptides and bacteriocins : alternatives to traditional antibiotics, (November 2008). Saraphirom, P., & Reungsang, A. (2011). Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). International Journal of Hydrogen Energy, 36(14), 8765–8773. Satoh, H., Oshima, K., Suda, W., Ranasinghe, P., Li, N., Gunawardana, E. G. W., … Mino, T. (2012). Bacterial Population Dynamics in a Laboratory Activated Sludge Reactor Monitored by Pyrosequencing of 16S rRNA. Microbes and Environments, 28(1), 65–70. Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry, 166(2), 368–379. Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and molecular biology reviews : MMBR, 61(2), 262–280. Schrader, M., & Schulz-Knappe, P. (2001). Peptidomics technologies for human body fluids. Trends in Biotechnology, 19(10 Suppl), S55–60. Scrivener, E., Barry, R., Platt, A., Calvert, R., Masih, G., Hextall, P., … Terrett, J. (2003). Peptidomics: A new approach to affinity protein microarrays. Proteomics, 3(2), 122–8. Sharma, V. K., & Hobson, P. N. (1986). Interactions among cellulolytic bacteria from an anaerobic digester. Microbial ecology, 12(4), 343–53. Shaw, C., & Verhaert, P. D. E. M. (2007). Peptidomics. (M. Soloviev, C. Shaw, & P. Andrn, Eds.), Peptidomics: Methods and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc. Shen, D. (1997). Microbial diversity and application of microbial products for agricultural purposes in China. Agriculture, Ecosystems & Environment, 62(2-3), 237–245. Shrout, J. D., & Nerenberg, R. (2012). Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environmental science & technology, 46(4), 1995–2005. Soloviev, M. (2010). Peptidomics: divide et impera. Methods in molecular biology (Clifton, N.J.), 615, 3–9. Tanaka, S., Fujita, Y., Parry, H. E., Yoshizawa, A. C., Morimoto, K., Murase, M., … Tanaka, K. (2014). Mass++: A Visualization and Analysis Tool for Mass Spectrometry. Journal of proteome research, 13(8), 3846–3853. Tao, X., Shang, B., Dong, H., Chen, Y., & Xin, H. (2014). Effects of Digestate from Swine Manure Digester on in Vitro Growth of Crop Fungal Pathogens: A Laboratory Study. Transactions of the ASABE, 1803–1810. Turcotte, C., Lacroix, C., Kheadr, E., Grignon, L., & Fliss, I. (2004). A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins. International Journal of Food Microbiology, 90(3), 283–293. Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860. Wenig, P., & Odermatt, J. (2010). OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC bioinformatics, 11, 405. Wilmes, P., & Bond, P. L. (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920. Wilmes, P., Wexler, M., & Bond, P. L. (2008). Metaproteomics provides functional insight into activated sludge wastewater treatment. PloS one, 3(3), e1778. Yang, D., Fan, X., Shi, X., Lian, S., Qiao, J., & Guo, R. (2014). Metabolomics reveals stagespecific metabolic pathways of microbial communities in two-stage anaerobic fermentation of corn-stalk. Biotechnology letters, 36(7), 1461–8. Yu, F. B., Li, X. D., Ali, S. W., Song, C. F., Shan, S. D., & Luo, L. P. (2014). Use of biogas slurry for enhancing control of phytopathogens. Polish Journal of Environmental Studies, 23(2), 533–540. Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139. |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de los Llanos, 2016 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos Reservados - Universidad de los Llanos, 2016 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
136 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Llanos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas e Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Villavicencio |
institution |
Universidad de los Llanos |
bitstream.url.fl_str_mv |
https://dspace7-unillanos.metacatalogo.org/bitstreams/2c0608bd-9b9f-43c7-9008-897fdcb1239e/download https://dspace7-unillanos.metacatalogo.org/bitstreams/806fe72c-5340-4d85-b7f6-be7430dbff83/download https://dspace7-unillanos.metacatalogo.org/bitstreams/bf56a845-1db2-4430-a3e0-fdeb04c2f597/download https://dspace7-unillanos.metacatalogo.org/bitstreams/64308e9f-0f1d-4272-8357-2d93d114749b/download https://dspace7-unillanos.metacatalogo.org/bitstreams/e5fc80a6-1652-499d-976d-22d0ccde3496/download https://dspace7-unillanos.metacatalogo.org/bitstreams/45ec4d91-2bf4-4302-b43e-9b764435e79e/download https://dspace7-unillanos.metacatalogo.org/bitstreams/5ee5460f-7738-4528-b658-12e19942bdb2/download |
bitstream.checksum.fl_str_mv |
ac32e7dda4a717e87865d6892df99748 2d6c49142033576c1c1ec5f9ceb4c2d2 f7c6e382a43d2577a35b71202b6dc0cd 5b0d503b4e835406b9e3413fd8875a2d 68b329da9893e34099c7d8ad5cb9c940 1a2e24e1b28aab92780fadcda354b9f5 2623bd4ad029adb538c4139230322781 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Los Llanos |
repository.mail.fl_str_mv |
repositorio@unillanos.edu.co |
_version_ |
1812104610617229312 |
spelling |
Segura Latorre, Cesar566b0b817d4cc430854c8d150ee2b947Pachón García, Jorgef44a9f1c70d24ddeb2ab3d05fdace26cBarreto Montenegro, Julian Camilo610598d64d2253e98584ff84c2a077852023-09-26T21:17:38Z2023-09-26T21:17:38Z2016Barreto Montenegro, J. (2016). Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residuales [Trabajo de grado, Universidad de los Llanos]. Repositorio digital Universidad de los Llanos. https://repositorio.unillanos.edu.co/handle/001/3024https://repositorio.unillanos.edu.co/handle/001/3024Universidad de los LlanosRepositorio digital Universidad de los Llanoshttps://repositorio.unillanos.edu.co/Figuras y tablasLa digestión anaerobia es un proceso fermentativo en ausencia de oxígeno llevado a cabo por comunidades microbianas. Se ha utilizado como una alternativa para el manejo de diversas fuentes residuales y para la producción de biogás. Entender las complejas interacciones y los procesos que involucran a estas comunidades microbianas es crítico para el mejoramiento de las condiciones anaerobias y buscar nuevas aplicaciones. Objetivo: Diseñar una metodología para la extracción y caracterización de péptidos derivados de la digestión anaerobia de lodos de la planta de tratamiento de aguas residuales de San Fernando (Itagüí, Antioquia). Para lograr este objetivo, el material peptídico se extrajo a partir de los lodos y se determinó la actividad antimicrobiana del extracto proteico. Metodología: Los péptidos se extrajeron mecánicamente por sonicación y se tamizaron a través de filtros moleculares de 10 KDa de peso molecular. La presencia y concentración de material proteico en los extractos (péptidos/proteínas pequeñas) se determinó por el método de Lowry. El extracto se caracterizó por cromatografía líquida de alta eficacia (HPLC), acoplado a espectrometría de masas de baja resolución (LC-MS) y electroforesis en gel (Tricina-SDS-PAGE).Anaerobic digestion is a fermentative proccess in the absence of oxygen. Carried out by microbial comunities, it has been an alternative for management of diverse sources of waste and biogas generation. Understanding the complex interactions and procesess involving microbial communities is critical for the improvement of anaerobic conditions and looking for new applications. Aim: Design a methodology for extraction and charaterization of peptides generated by anaerobic digestion of sludges from the Planta de Tratamiento de Aguas Residuales de San Fernando (Itagüí, Antioquía). To get this aim, peptidic material from sludge were extracted and the antimicrobial activity of the proteic extract was determined. Methodology: Peptides were mechanically extracted by sonication and filtered throughout 10 kDa molecular weight cutoff filters. Presence and concentration of proteic material in the extracts (peptides/small proteins) was determined by Lowry method, The extract was characterized by High Performance Liquid Chromatography (HPLC) online to low resolution mass spectrometry (LC-MS) and Tricine-SDSPAGE gel electrophoresis.Planteamiento del problema. -- Hipótesis. -- Objetivos. -- Objetivo general. -- Objetivos específicos. -- Justificación. -- Marco teórico. -- Digestión anaerobia. – Péptidos. – Metodología. -- Recolección de la muestra. -- Extracción de péptidos. -- Determinación de la concentración de proteína péptidos. -- Prueba de actividad antimicrobiana. -- Electroforesis Tricina-SDS-PAGE. -- Caracterización preliminar por HPLC. -- Cromatografía liquida acoplada a espectrometría de masa (LC-MS). -- Resultados. -- Determinación de la presencia de péptidos en el extracto. -- Prueba de actividad antimicrobiana. -- Electroforesis Tricina-SDS-PAGE. -- Caracterización preliminar por HPLC. -- Análisis por espectrometría de masas. -- Discusión. -- Determinación de la presencia/concentración de péptidos en el extracto. -- Prueba de actividad antimicrobiana. -- Electroforesis Tricina-SDS-PAGE. -- Caracterización preliminar por HPLC. -- Análisis por espectrometría de masas. – Conclusiones. -- Dificultades. -- Sugerencias. – Bibliografía. -- Anexos.PregradoBiólogoBiología136 páginasapplication/pdfspaUniversidad de los LlanosFacultad de Ciencias Básicas e IngenieríaVillavicencioDerechos Reservados - Universidad de los Llanos, 2016https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Obtención de péptidos con posible bioactividad a partir de lodos digeridos derivados de la biodigestión anaerobia de aguas residualesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Abram, F., Enright, A. M., O´Reilly, J., Botting, C. H., Collins, G., & O´Flaherty, V. (2011). A metaproteomic approach gives functional insights into anaerobic digestion. Journal of Applied Microbiology, 110, 1550–1560.Abram, F., Gunnigle, E., & O’Flaherty, V. (2009). Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis, 30, 4149–4151.Acosta, Y., Cristina, M., & Abreu, O. (2005). La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar, XXXlX(1), 35–48.Aguilar, M. (2004). HPLC of Peptides and Proteins. Methods and Protocols. (M. Aguilar, Ed.), Methods in Molecular Biology (Vol. 251). New Jersey: Humana Press.Aguilar, M.-I. (2003). Reversed-Phase High-Performance Liquid Chromatography. En M. Aguilar (Ed.), HPLC of Peptides and Proteins. Methods and Protocols (Vol. 251, pp. 9–22). New Jersey: Humana Press.Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: The key players of anaerobiosis. The Scientific World Journal, 183752, 1–21.Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects — a review. Environmental Reviews, 18, 255–278.Bals, R. (2000). Epithelial antimicrobial peptides in host defense against infection. Respiratory research, 1(3), 141–50.Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Métro, F., Prévost, H., Chobert, J. M.Haertlé, T. (2006). Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. Journal of Applied Microbiology, 101(December 2005), 837–848.Bedoya-Urrego, K., Acevedo-Ruíz, J. M., Peláez-Jaramillo, C. A., & Agudelo-López, S. del P. (2013). Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia). Revista de Salud Pública, 15(5), 778–790.Biosa, G., Addis, M. F., Tanca, A., Pisanu, S., Roggio, T., Uzzau, S., & Pagnozzi, D. (2011). Comparison of blood serum peptide enrichment methods by Tricine SDS-PAGE and mass spectrometry. Journal of Proteomics, 75(1), 93–99.Branco, P., Francisco, D., Chambon, C., Hébraud, M., Arneborg, N., Almeida, M. G., Caldeira, J., & Albergaria, H. (2014). Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Applied Microbiology and Biotechnology, 98, 843–853.Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology, 3(3), 238–50.Cao, Y., Chang, Z.-Z., Ma, Y., Yang, H., & Fu, G.-Q. (2013). Control mechanism of phytophthora blight of chilli pepper by anaerobically digested pig slurry—The roles of ammonium and humic acid in biogas slurry. Chinese Journal of Eco-Agriculture, 9, 0–14.Chong, G., Kimyon, O., Rice, S. A., Kjelleberg, S., & Manefield, M. (2012). The presence and role of bacterial quorum sensing in activated sludge. Microbial biotechnology, 5(5), 621–33.Clarkson, J., Cui, Z., & Darton, R. (2000). Effect of solution conditions on protein damage in foam. Biochemical Engineering Journal, 4(2), 107–114.Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature reviews. Microbiology, 3(10), 777–88.Cowan, M. M. (1999). Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews, 12(4), 564–582.Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., Eghbalnia, H. R., Sussman, M. R., & Markley, J. L. (2008). Metabolite identification via the Madison Metabolomics Consortium Database. Nature biotechnology, 26(2), 162–4.Dong, H., Kemptner, J., Marchetti-Deschmann, M., Kubicek, C. P., & Allmaier, G. (2009). Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Analytical and bioanalytical chemistry, 395(5), 1373–83.Dong, X., Xin, Y., Jian, W., Liu, X., & Ling, D. (2000). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. International journal of systematic and evolutionary microbiology, 50 Pt 1, 119–25.Dride, D., & Rebuffat, S. (2011). Prokaryotic antimicrobial peptides: from genes to applications. (S. Rebuffat & D. Dride, Eds.), Media. New York: Springer.Empresas Públicas de Medellín. (s. f.). Tratamiento de aguas residuales. Planta San Fernando.Feng, H., Qu, G. F., Ning, P., Xiong, X. F., Jia, L. J., Shi, Y. K., & Zhang, J. (2011). The resource utilization of anaerobic fermentation residue. Procedia Environmental Sciences, 11(PART C), 1092–1099.Fountoulakis, M., Drillia, P., Stamatelatou, K., & Lyberatos, G. (2004). Toxic effect of pharmaceuticals on methanogenesis. Water Science and Technology, 50(5), 335–340.Garcia, S. L., Jangid, K., Whitman, W. B., & Das, K. C. (2011). Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresource Technology, 102(15), 7249–7256.Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC microbiology, 10(1), 22.Hanreich, A., Heyer, R., Benndorf, D., Rapp, E., Pioch, M., Reichl, U., & Klocke, M. (2012). Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Canadian Journal of Microbiology, 58(7), 917–922.Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113, 723–736.Hayes, M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2007). Putting microbes to work: Diary fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal, 2, 435–449.Hegemann, J. D., Zimmermann, M., Xie, X., & Marahiel, M. A. (2015). Lasso Peptides: An Intriguing Class of Bacterial Natural Products. Accounts of Chemical Research, 48(7), 1909–1919.Heyer, R., Kohrs, F., Benndorf, D., Rapp, E., Kausmann, R., Heiermann, M., Klocke, M., & Reichl, U. (2013). Metaproteome analysis of the microbial communities in agricultural biogas plants. New Biotechnology, 30(6), 614–622.Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., … Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of mass spectrometry : JMS, 45(7), 703–14.Jack, R., Tagg, J., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59(2), 171–200.Judd, R. C. (1994). Electrophoresis of peptides. En J. M. Walker (Ed.), Methods in molecular biology (Clifton, N.J.) (Vol. 32, pp. 49–57). Huma Press Inc.Kawashima, Y., Fukutomi, T., Tomonaga, T., Takahashi, H., Nomura, F., Maeda, T., & Kodera, Y. (2010). High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. Journal of Proteome Research, 9(4), 1694–1705.Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., & de Vos, W. M. (1997). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 24(5), 895–904.Krause, L., Diaz, N. N., Edwards, R. A., Gartemann, K.-H., Krömeke, H., Neuweger, H., … Goesmann, A. (2008). Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. Journal of biotechnology, 136(1-2), 91–101.Kuhn, R., Benndorf, D., Rapp, E., Reichl, U., Palese, L. L., & Pollice, A. (2011). Metaproteome analysis of sewage sludge from membrane bioreactors. Proteomics, 11(13), 2738–2744.Kümmerer, K. (2009). Antibiotics in the aquatic environment--a review--part I. Chemosphere, 75(4), 417–34.Lamendella, R., Santo Domingo, J. W., Kelty, C., & Oerther, D. B. (2008). Bifidobacteria in feces and environmental waters. Applied and environmental microbiology, 74(3), 575–84.Laukova, a., Marekova, M., Vasilkova, Z., Papojava, I., & Juris, P. (2002). Selected microbial consortium of row and digested slurry and its susceptibility to enterocins. Word Journal of Microbiology and Biotechnology, 18, 11–15.Lewis, K. (2013). Platforms for antibiotic discovery. Nature reviews. Drug discovery, 12(5), 371– 87.Liu, X., Inbar, Y., Dorrestein, P. C., Wynne, C., Edwards, N., Souda, P., Whitelegge, J. P., Bafna, V., & Pevzner, P. A. (2010). Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Molecular & cellular proteomics : MCP, 9(12), 2772–82.Liu, X., Sirotkin, Y., Shen, Y., Anderson, G., Tsai, Y. S., Ting, Y. S., Goodlett, D. R., Smith, R. D., Bafna, V., & Pevzner, P. A. (2012). Protein Identification Using Top-Down. Molecular & Cellular Proteomics, 11(6), M111.008524–M111.008524.Loans, I., Run, R., Library, S., Lu, S., Walters, G., Parg, R., & Dutcher, J. R. (2014). Nanomechanical response of bacterial cells to cationic antimicrobial peptides. Soft Matter, 10, 1806–1815.Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemestry, 193(1), 265–275.Ma, Y., Li, H., Chang, Z.-Z., Xu, Y., & Zhang, J. (2011). Biocontrol Effect and Mechanism of Biogas Slurry on Plant Disease Ⅰ:Primary Study of Growth Inhibition Effects and Mechanism on Phytopathogen Fung. Chinese Journal of Eco-Agriculture, 2.Manes, N. P., Gustin, J. K., Rue, J., Mottaz, H. M., Purvine, S. O., Norbeck, A. D., Monroe, M. E., Zimmer, J. S. D., Metz, T. O., Adkins, J. N., Smith, Richard, D., & Heffron, F. (2007). Targeted protein degradation by Salmonella under phagosome-mimicking culture conditions investigated using comparative peptidomics. Molecular & cellular proteomics : MCP, 6(4), 717–27.Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Okoh, A. I., Makaka, G., & Simon, M. (2014). Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester). International Journal of Environmental Research and Public Health, 11(7), 7184–94.Marques, S. S. I., Nascimento, I. A., De Almeida, P. F., & Chinalia, F. A. (2013). Growth of Chlorella vulgaris on sugarcane vinasse: The effect of anaerobic digestion pretreatment. Applied Biochemistry and Biotechnology, 171, 1933–1943.Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of hazardous materials, 239-240, 40–47.McNaught, A. D. (1984). Nomenclature and Symbolism for Amino Acids and Peptides. Recommendations 1983. European Journal of Biochemistry, 138(1), 9–37.Miao, X. S., Bishay, F., Chen, M., & Metcalfe, C. D. (2004). Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science and Technology, 38(13), 3533–3541.Mo, Y. (1998). Antimicrobial test of biogas fluid on plant pathogenic microorganism. China Biogas, 6(2), 6–10.Murillo, W., Araque, P., & Peláez, C. A. (2012). Actividad fungicida e insecticida de emulsiones agua/aceite de mezclas de extractos de Nicotiana tabacum, Azadiractha indica y Eucalyptus tereticornis. Informacion Tecnologica, 23(1), 139–152.Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of Microbiology, 167(23), 67–77.Park, C., & Helm, R. F. (2008). Application of metaproteomic analysis for studying extracellular polymeric substances (EPS) in activated sludge flocs and their fate in sludge digestion. Water Science and Technology, 57(12), 2009–2015.Perez-Riverol, Y., Wang, R., Hermjakob, H., Müller, M., Vesada, V., & Vizcaíno, J. A. (2014). Open source libraries and frameworks for mass spectrometry based proteomics: a developer’s perspective. Biochimica et biophysica acta, 1844(1 Pt A), 63–76.Pingitore, V. E., Salvucci, E., Sesma, F., & Nader-Macías, M. E. (2007). Different strategies for purification of antimicrobial peptides from Lactic Acid Bacteria ( LAB ). Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 21, 557– 568.Qingsheng, L. S., & Jiaquan, Z. (1993). Study of Biogas Fermentation Liquid on Control of Bacterial Blight of Rice and Sheath and Culm Blight of Rice. China Biogas, 11(3), 11–15.Ras, M., Girbal-Neuhauser, E., Paul, E., Spérandio, M., & Lefebvre, D. (2008). Protein extraction from activated sludge: An analytical approach. Water Research, 42(8-9), 1867– 1878.Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24, 536–547.Rocha, G. F., Kise, F., Rosso, A. M., & Parisi, M. G. (2013). Péptidos con actividad antimicrobiana obtenidos de proteínas lácteas con extractos de salpichroa origanifolia. Informacion Tecnologica, 24(2), 23–30.Sang, Y., & Blecha, F. (2012). Antimicrobial peptides and bacteriocins : alternatives to traditional Antimicrobial peptides and bacteriocins : alternatives to traditional antibiotics, (November 2008).Saraphirom, P., & Reungsang, A. (2011). Biological hydrogen production from sweet sorghum syrup by mixed cultures using an anaerobic sequencing batch reactor (ASBR). International Journal of Hydrogen Energy, 36(14), 8765–8773.Satoh, H., Oshima, K., Suda, W., Ranasinghe, P., Li, N., Gunawardana, E. G. W., … Mino, T. (2012). Bacterial Population Dynamics in a Laboratory Activated Sludge Reactor Monitored by Pyrosequencing of 16S rRNA. Microbes and Environments, 28(1), 65–70.Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry, 166(2), 368–379.Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and molecular biology reviews : MMBR, 61(2), 262–280.Schrader, M., & Schulz-Knappe, P. (2001). Peptidomics technologies for human body fluids. Trends in Biotechnology, 19(10 Suppl), S55–60.Scrivener, E., Barry, R., Platt, A., Calvert, R., Masih, G., Hextall, P., … Terrett, J. (2003). Peptidomics: A new approach to affinity protein microarrays. Proteomics, 3(2), 122–8.Sharma, V. K., & Hobson, P. N. (1986). Interactions among cellulolytic bacteria from an anaerobic digester. Microbial ecology, 12(4), 343–53.Shaw, C., & Verhaert, P. D. E. M. (2007). Peptidomics. (M. Soloviev, C. Shaw, & P. Andrn, Eds.), Peptidomics: Methods and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc.Shen, D. (1997). Microbial diversity and application of microbial products for agricultural purposes in China. Agriculture, Ecosystems & Environment, 62(2-3), 237–245.Shrout, J. D., & Nerenberg, R. (2012). Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environmental science & technology, 46(4), 1995–2005.Soloviev, M. (2010). Peptidomics: divide et impera. Methods in molecular biology (Clifton, N.J.), 615, 3–9.Tanaka, S., Fujita, Y., Parry, H. E., Yoshizawa, A. C., Morimoto, K., Murase, M., … Tanaka, K. (2014). Mass++: A Visualization and Analysis Tool for Mass Spectrometry. Journal of proteome research, 13(8), 3846–3853.Tao, X., Shang, B., Dong, H., Chen, Y., & Xin, H. (2014). Effects of Digestate from Swine Manure Digester on in Vitro Growth of Crop Fungal Pathogens: A Laboratory Study. Transactions of the ASABE, 1803–1810.Turcotte, C., Lacroix, C., Kheadr, E., Grignon, L., & Fliss, I. (2004). A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins. International Journal of Food Microbiology, 90(3), 283–293.Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.Wenig, P., & Odermatt, J. (2010). OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC bioinformatics, 11, 405.Wilmes, P., & Bond, P. L. (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology, 6(9), 911–920.Wilmes, P., Wexler, M., & Bond, P. L. (2008). Metaproteomics provides functional insight into activated sludge wastewater treatment. PloS one, 3(3), e1778.Yang, D., Fan, X., Shi, X., Lian, S., Qiao, J., & Guo, R. (2014). Metabolomics reveals stagespecific metabolic pathways of microbial communities in two-stage anaerobic fermentation of corn-stalk. Biotechnology letters, 36(7), 1461–8.Yu, F. B., Li, X. D., Ali, S. W., Song, C. F., Shan, S. D., & Luo, L. P. (2014). Use of biogas slurry for enhancing control of phytopathogens. Polish Journal of Environmental Studies, 23(2), 533–540.Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139.N/ACompuestos orgánicosÁcidos orgánicosDigestión anaerobiaPéptidosActividad antimicrobianaMétodos de extracciónAnaerobic digestionPeptidesExtraction methodsAntimicrobial activityPublicationORIGINAL1121870658.pdf1121870658.pdfTrabajo de gradoapplication/pdf3126595https://dspace7-unillanos.metacatalogo.org/bitstreams/2c0608bd-9b9f-43c7-9008-897fdcb1239e/downloadac32e7dda4a717e87865d6892df99748MD51Anexo 1Anexo 1Carta de Autorizaciónapplication/pdf440268https://dspace7-unillanos.metacatalogo.org/bitstreams/806fe72c-5340-4d85-b7f6-be7430dbff83/download2d6c49142033576c1c1ec5f9ceb4c2d2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8414https://dspace7-unillanos.metacatalogo.org/bitstreams/bf56a845-1db2-4430-a3e0-fdeb04c2f597/downloadf7c6e382a43d2577a35b71202b6dc0cdMD53TEXT1121870658.pdf.txt1121870658.pdf.txtExtracted texttext/plain194446https://dspace7-unillanos.metacatalogo.org/bitstreams/64308e9f-0f1d-4272-8357-2d93d114749b/download5b0d503b4e835406b9e3413fd8875a2dMD54Anexo 1.txtAnexo 1.txtExtracted texttext/plain1https://dspace7-unillanos.metacatalogo.org/bitstreams/e5fc80a6-1652-499d-976d-22d0ccde3496/download68b329da9893e34099c7d8ad5cb9c940MD56THUMBNAIL1121870658.pdf.jpg1121870658.pdf.jpgGenerated Thumbnailimage/jpeg6599https://dspace7-unillanos.metacatalogo.org/bitstreams/45ec4d91-2bf4-4302-b43e-9b764435e79e/download1a2e24e1b28aab92780fadcda354b9f5MD55Anexo 1.jpgAnexo 1.jpgGenerated Thumbnailimage/jpeg16518https://dspace7-unillanos.metacatalogo.org/bitstreams/5ee5460f-7738-4528-b658-12e19942bdb2/download2623bd4ad029adb538c4139230322781MD57001/3024oai:dspace7-unillanos.metacatalogo.org:001/30242024-04-17 16:37:43.988https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de los Llanos, 2016open.accesshttps://dspace7-unillanos.metacatalogo.orgRepositorio Universidad de Los Llanosrepositorio@unillanos.edu.coPGNlbnRlcj48YSByZWw9ImxpY2Vuc2UiIGhyZWY9Imh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8iPjxpbWcgYWx0PSJDcmVhdGl2ZSBDb21tb25zIExpY2Vuc2UiIHN0eWxlPSJib3JkZXItd2lkdGg6MCIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLW5kLzQuMC84OHgzMS5wbmciIC8+PC9hPjxiciAvPlRoaXMgd29yayBpcyBsaWNlbnNlZCB1bmRlciBhIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+Q3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZTwvYT4uPC9jZW50ZXI+ |