Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática

Incluye índice de tablas y figuras

Autores:
Castillo, Luis Manuel
Pimienta Barros, Roger David
Redondo Mosquera, Jesús David
Tipo de recurso:
Book
Fecha de publicación:
2023
Institución:
Universidad de la Guajira
Repositorio:
Repositorio Uniguajira
Idioma:
spa
OAI Identifier:
oai:repositoryinst.uniguajira.edu.co:uniguajira/1672
Acceso en línea:
https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1672
Palabra clave:
Calibración de módelos
Suelos granulares
Cargas cíclicas
Rights
openAccess
License
Derechos Reservados Universidad de La Guajira
id Uniguajra2_73b362e43288f725c61a4363fb1723e0
oai_identifier_str oai:repositoryinst.uniguajira.edu.co:uniguajira/1672
network_acronym_str Uniguajra2
network_name_str Repositorio Uniguajira
repository_id_str
dc.title.spa.fl_str_mv Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
title Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
spellingShingle Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
Calibración de módelos
Suelos granulares
Cargas cíclicas
title_short Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
title_full Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
title_fullStr Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
title_full_unstemmed Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
title_sort Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática
dc.creator.fl_str_mv Castillo, Luis Manuel
Pimienta Barros, Roger David
Redondo Mosquera, Jesús David
dc.contributor.author.none.fl_str_mv Castillo, Luis Manuel
Pimienta Barros, Roger David
Redondo Mosquera, Jesús David
dc.subject.proposal.spa.fl_str_mv Calibración de módelos
Suelos granulares
Cargas cíclicas
topic Calibración de módelos
Suelos granulares
Cargas cíclicas
description Incluye índice de tablas y figuras
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2025-10-03T22:40:07Z
dc.date.available.none.fl_str_mv 2025-10-03T22:40:07Z
dc.type.none.fl_str_mv Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/book
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-628-7718-89-0
dc.identifier.uri.none.fl_str_mv https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1672
identifier_str_mv 978-628-7718-89-0
url https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1672
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Andrus, R. D. & Stokoe, K. H. (2000). Liquefaction Resistance of Soils from Shear-Wave Velo city. 126(11)(FEBRUARY 2000), 1015–1025. https://doi.org/10.1061/(ASCE)1090 0241(2000)126
ASTM. (2011). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. Norm. https://doi.org/10.1520/D7181
STM. (2013). D5311 - Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. Astm D5311M-13, 92(Reapproved), 1–11. https://doi.org/10.1520/D5311
Baecher, G. B. & Christian, J. T. (2005). Reliability and Statistics in Geotechnical Engineering. Chicester, UK: John Wiley & Sons. Boulanger, R., & Idriss, I. (2014). CpPT and SPT Based Liquefaction Triggering. (April). Boulanger, R. W., & Ziotopoulou, K. (2015). PM4Sand (Version 3): a Sand Plasticity Model for Earthquake Engineering. (March).
Casagrande, A. (1965). The role of ‘Calculated Risk’ in Earthwork and Foundation Engineering. Journal of the Soil Mechanics and Foundations Division, 91(4), 1–40
Chen, J. L. (2010). Seismic Behaviour of Retaining Wall-Backfill Systems with Vegetation. IET Con ference Proceedings, 482-487(5). Retrieved from https://digitallibrary.theiet.org/con tent/conferences/10.1049/cp.2010.0475
Ching, J. & Chen, Y.-C. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics, 133(7)816832https://doi.org/10.1061/(ASCE)0733- (2007)133:7(816)
Ching, J. & Wang, J.-S. (2016). Application of the Transitional Markov Chain Monte Carlo Algorithm to Probabilistic Site Characterization. Engineering Geology, 203, 151–167. https://doi. org/10.1016/j.enggeo.2015.10.015
Dafalias, Y. F. & Manzari, M. T. (2004). Simple Plasticity Sand Model Accounting for Fabric Change Effects. Journal of Engineering Mechanics, 130(6), 622–63
Das, B. M. (2006). Principios de Ingeniería de Cimentaciones (5th ed.). México D.F.: Cengage Learning. Deodatis, G. (1996). Non-stationary Stochastic Vector Processes: Seismic Ground Motion Applica tions. Probabilistic Engineering Mechanics, 11(3), 149–167.
Diyaljee, V. A. & Raymond, G. P. (1982). Repetitive Load Deformation of Cohesionless Soil. Journal of the Geotechnical Engineering Division, 108(10), 1215–1229
Elgamal, A., Yang, Z. & Parra, E. (2002). Computational Modeling of Cyclic Mobility and Post-Li quefaction Site Response. Soil Dynamics and Earthquake Engineering, 22(4), 259–271. https://doi.org/10.1016/S0267-7261(02)00022-2
Elgamal, A., Yang, Z., Parra, E. & Ragheb, A. (2003). Modeling of Cyclic Mobility in Satura ted Cohesionless Soils. International Journal of Plasticity, 19(6), 883–905. https://doi. org/10.1016/S0749-6419(02)00010-4
Fuentes, W. & Triantafyllidis, T. (2015). ISA Model: A Constitutive Model for Soils with Yield Surfa ce in the Intergranular Strain Space. International Journal for Numerical and Analytical Methods in Geomechanics, 39(11), 1235–1254. https://doi.org/10.1002/nag.2370
Gras, J. P., Sivasithamparam, N., Karstunen, M. & Dijkstra, J. (2017). Strategy for Consistent Model Parameter Calibration for Soft Soils Using Multi-Objective Optimisation. Computers and Geotechnics, 90, 164–175. https://doi.org/10.1016/j.compgeo.2017.06.006
Groholski, D. R., Hashash, Y. M. A. & Matasovic, N. (2014). Learning of Pore Pressure Response and Dynamic Soil Behavior from Downhole Array Measurements. Soil Dynamics and Ear thquake Engineering, 61–62, 40–56. https://doi.org/10.1016/j.soildyn.2014.01.018
Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
Hettler, A. (1981). Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Institut Für Bodenmechanik Und Felsmechanik Der Universi tät Fridericiana, 90
Holzer, T. . L. ., Youd, T. . L. . & Hanks, T. . C. . (2016). Dynamics of Liquefaction during the 1987 Superstition Hills , California , Earthquake. American Association for the Advancement of Science Stable, 244(4900), 56–59.
INVIAS. (2013). Normas de ensayo para materiales de carreteras. Sección 100. 798. Retrieved from http://www.invias.gov.co/index.php/documentos-tecnicos-izq/139-documen to-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-nor mas-de-ensayo-para-materiales-de-carretera
Irigaray, C. (2012). Susceptibilidad a Licuefacción En La Vega De Granada (España). (January). Ismael, B. & Lombardi, D. (2019). Evaluation of Liquefaction Potential for Two Sites Due to the 2016 Kumamoto Earthquake Sequence. In N. Sundararajan, M. Eshagh, H. Saibi, M. Me
KOKUSHO, T. (1987). In-situ Dynamic Soil Properties and Their Evaluations. Proc. 8th Asian Re gional Conference on Soil Mechanics and Foundation Engineering. Retrieved from http://ci.nii.ac.jp/naid/80003882823/en
Kondner, R. L. (1963). Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 115--144.
Kutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., … Manzari, M. T. (2018). LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons. 113 (May 2017), 616–628.
Manzari, M. T., Kutter, B, L., Zeghal, M., Iai, S., Tobita, T., Madabhushi, S. . P. G., … Arm strong, R. J. and others. (2014). LEAP Projects: Concept and Challenges. In Proceedings, 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 109--116)
Markov, A. A. (1906). Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-Matematicheskogo Obschestva Pri Kazanskom Uni versitete, 15, 135–156.
MASING, G. (1926). Eigenspannumyen und verfeshungung beim messing. In Proc. Inter. Congress for Applied Mechanics (pp. 332–335).
Mercado, V., El-Sekelly, W., Zeghal, M., Abdoun, T., Dobry, R. & Thevanayagam, S. (2017). Characterization of the Contractive and Pore Pressure Behavior of Saturated Sand Deposits Under Seismic Loading. Computers and Geotechnics, 82, 223–236. https://doi.org/10.1016/j. compgeo.2016.10.015
Mercado, V., Ochoa-Cornejo, F., Astroza, R., El-Sekelly, W., Abdoun, T., Pastén, C. & Her nández, F. (2019). Uncertainty Quantification and Propagation in the Modeling of Liquefiable Sands. Soil Dynamics and Earthquake Engineering, 123(February), 217–229. https:// doi.org/10.1016/j.soildyn.2019.04.016
Meyerhof, G. G. (1974). Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay. Ca nadian Geotechnical Journal, 11(2), 223–229. https://doi.org/10.1139/t74-018
Montgomery, J. & Boulanger, R. W. (2017). Effects of Spatial Variability on Liquefaction-Induced Settlement and Lateral Spreading. Journal of Geotechnical and Geoenvironmental En gineering, 143(1), 04016086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001584
Mróz, Z. (1967). On the Description of Anisotropic Workhardening. Journal of the Mechanics and Physics of Solids, 15(3), 163–175. https://doi.org/10.1016/0022-5096(67)90030-0
Mróz, Z., Norris, V. A. & Zienkiewicz, O. C. (1979). Application of an Anisotropic Hardening Model in the Analysis of Elasto–Plastic Deformation of Soils. Géotechnique, 29(1), 1–34. https:// doi.org/10.1680/geot.1979.29.1.1
NEES (Network for Earthquake Engineering Simulation). (2015). Wildlife Liquefaction Array. Retrieved September 25, 2019, from http://www.nees.ucsb.edu/facilities/wla
Neil, R. (2003). Slice sampling (With discussion). The Annals of Statistics, 31(3), 705–767. Retrieved from http://www.jstor.org/stable/10.2307/3448413%5Cnhttp://scholar. google.com/scholar?hl=en&btnG=Search&q=intitle:Slice+sampling+(with+dis cussion)#6
Niemunis, A. & Herle, I. (1997). Hypoplastic Model for Cohesionless Soils with Elastic Strain Range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. https://doi.org/10.1002/ (SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
Patra, S. K. & Haldar, S. (2018). Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil. (December).
Popescu, R., Prevost, J. & Deodatis, G. (2007). 3D Effects in Seismic Liquefaction of Stochastically Variable Soil Deposits. In Risk and Variability in Geotechnical Engineering
Prevost, J. H. & Popescu, R. (1994). An assessment of VELACS "Class A" predictions. Buffalo, NY US.: US National Center for Earthquake Engineering Research (NCEER).
Prevost, Jean H. (1985). A Simple Plasticity Theory for Frictional Cohesionless Soils. Internatio nal Journal of Soil Dynamics and Earthquake Engineering, 4(1), 9–17. https://doi. org/10.1016/0261-7277(85)90030-0
Puzrin, A. M. (2012). Small Strain Nonlinearity. In Constitutive Modelling in Geomechanics: Introduction (pp. 155–166). https://doi.org/10.1007/978-3-642-27395-7
Seed, B. (1979). Soil Liquefaction and Cyclic Mobility Evalution gfor Level Ground During Earth quakes. Journal of Geotechnical and Geoenvironmental Engineering, 105.
Sivasithamparam, N., Karstunen, M. & Bonnier, P. (2015). Modelling Creep Behaviour of Ani sotropic Soft Soils. Computers and Geotechnics, 69, 46–57. https://doi.org/10.1016/j. compgeo.2015.04.015
Taiebat, M. & Dafalias, Y. F. (2008). SANISAND: Simple Anisotropic Sand Plasticity Model. In ternational Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915–948. https://doi.org/10.1002/nag.651
Tang, C., Phoon, K.-K., Zhang, L. & Li, D.-Q. (2017). Model Uncertainty for Predicting the Bea ring Capacity of Sand Overlying Clay. International Journal of Geomechanics, 17(7), 04017015.https://doi.org/10.1061/(asce)gm.1943-5622.0000898
Whitman, R. V. (2000). Organizing and Evaluating Uncertainty in Geotechnical Engineering. Jour nal of Geotechnical and Geoenvironmental Engineering, 126(7), 583–593. https://doi. org/10.1061/(ASCE)1090-0241(2000)126:7(583)
Wichtmann, T. & Triantafyllidis, T. (2004). Influence of a Cyclic and Dynamic Loading History on Dynamic Properties of Dry Sand, part I: Cyclic and dynamic torsional prestraining. Soil
Wichtmann, Torsten. (n.d.). Torsten wichtmann. Retrieved September 28, 2019, from Bau haus-Universität Weimar website: http://www.torsten-wichtmann.de/
Wichtmann, Torsten. (2005). Explicit Accumulation Model for Non-Cohesive Soils Under Cy clic Loading. Institut Für Grundbau Und Bodenmechanik, Phd, 274. https://doi. org/10.1.556.209
Wichtmann, Torsten & Triantafyllidis, T. (2016). An Experimental Database for the Development, Calibration and Verification of Constitutive Models for Sand with Focus to Cyclic Loading: Part II—Tests With Strain Cycles and Combined Loading. Acta Geotechnica, 11(4), 763–774. https://doi.org/10.1007/s11440-015-0412-x
Yang, Z., Elgamal, A. & Parra, E. (2003). Computational Model for Cyclic Mobility and Associa ted Shear Deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1119–1127. https://doi.org/10.1103/PhysRevB.94.045417
Yang, Z., Lu, J. & Elgamal, A. (2008). Opensees Soil Models and Solid-Fluid Fully Coupled Elements: User’s Manual, Version 1. San Diego: University of California, (October). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenSees+ Soil+Models+and+Solid-+Fluid+Fully+Coupled+Elements+User+?+s+Ma nual#0
Youd, T. L. & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance Of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. ht tps://doi.org/10.1061/(asce)1090-0241(2001)127
Youd, T. Leslie. & Holzer, T. L. (1994). Piezometer Performance At Wildlife. Journal of GeoEngi neering, 120(6), 975–995.
Zeghal, M, Manzari, M., Kutter, B. & Abdoun, T. (2014). LEAP: Selected Data for Class C Ca librations and Class A Validations. In Safety and Reliability: Methodology and Applica tions (p. 117).
Zeghal, Mourad, Goswami, N., Kutter, B. L., Manzari, M. T., Abdoun, T., Arduino, P., … Ziotopoulou, K. (2018). Stress-Strain Response of the LEAP-2015 Centrifuge Tests and Nu merical Predictions. Soil Dynamics and Earthquake Engineering, 113, 804–818. https:// doi.org/10.1016/j.soildyn.2017.10.014
Zhang, J., Tang, W. H., Zhang, L. M. & Huang, H. W. (2012). Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Computers and Geotechnics, 43, 26–36. https://doi.org/10.1016/j.compgeo.2012.02.002
dc.rights.none.fl_str_mv Derechos Reservados Universidad de La Guajira
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv Derechos Reservados Universidad de La Guajira
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 81 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de La Guajira
dc.publisher.place.none.fl_str_mv Distrito Especial, Turístico y Cultural de Riohacha
publisher.none.fl_str_mv Universidad de La Guajira
institution Universidad de la Guajira
bitstream.url.fl_str_mv https://repositoryinst.uniguajira.edu.co/bitstreams/9a3ffd23-ec53-4afe-b6b5-1df63ad0488e/download
https://repositoryinst.uniguajira.edu.co/bitstreams/27e28745-dd54-4209-8b2f-089d583d23f7/download
https://repositoryinst.uniguajira.edu.co/bitstreams/d9adef39-7ca6-4293-ae05-4e9b4f2cd25e/download
https://repositoryinst.uniguajira.edu.co/bitstreams/3001eae0-764f-44ce-b14f-6c7317ade0db/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
8f2d174195860c85c03ee8fc33fd3e83
7ec7c9b882c731f7076bb241d26bc261
7cd7bea0a1912935c349243d9d35cb34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de la Guajira
repository.mail.fl_str_mv repositorio@uniguajira.edu.co
_version_ 1851051060607582208
spelling Castillo, Luis Manuelvirtual::818-1Pimienta Barros, Roger Davidvirtual::820-1Redondo Mosquera, Jesús David2025-10-03T22:40:07Z2025-10-03T22:40:07Z2023978-628-7718-89-0https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1672Incluye índice de tablas y figurasEste trabajo se centra en la calibración de un modelo constitutivo formulado para reproducir el comportamiento de los suelos granulares ante cargas cíclicas, uti lizando para ello un enfoque de análisis bayesiano. La estrategia metodológica adoptada considera el empleo de datos experimentales derivados de ensayos triaxiales cíclicos isotrópicamente consolidados y no drenados, realizados bajo condiciones controladas de laboratorio, complementados con herramientas de modelación numérica. El propósito principal consiste en determinar los paráme tros óptimos del modelo mediante la técnica de Slice Sampling aplicada dentro del marco del análisis bayesiano, lo cual permite cuantificar la incertidumbre asociada a dicho modelo. Se decide una serie de parámetros de entre los asociados en el modelo para el proceso de calibración, para cada uno se obtiene una distribución de probabilidad aplicando de Markov. Las propiedades estadísticas fundamentales, como la media y la desviación estándar de estas distribuciones, son evaluadas en contraste con los resultados procedentes de los ensayos de laboratorio. Para ello, se recurre a la simulación de múltiples ensayos triaxiales cíclicos isotrópicos consolidados y no drenados, implementando un modelo numérico específico ajustado a un ya cimiento que reproduce las condiciones estratigráficas características del sitio de Wildlife. El modelo calibrado refleja una coincidencia destacada con los datos experimen tales observados, acompañada de un análisis detallado de la incertidumbre inhe rente al modelo formulado. Los conceptos clave vinculados a esta investigación comprenden licuefacción, incertidumbre, calibración del modelo, arena fina de Karlsruhe y el modelo constitutivo PDMY.Resumen Introducción Información general Modelos de suelo Calibración de modelos Incertidumbre Propósitos de la investigación General Específicos Descripción del suelo y ensayo triaxial Descripción del suelo Montaje experimental de Torsten Wichtmann Ensayo triaxial cíclico consolidado isotrópicamente no drenado Modelo constitutivo del suelo Esfuerzo-deformación Regla de flujo Regla de endurecimiento Inferencia Bayesiana Algoritmo de muestreo Slice Sample Calibración del modelo Descripción de los ensayos Resultados de la calibración Calibración de parámetros Análisis de resultados Análisis de las pruebas TUI10, TUI13 y TUI16 Análisis de los ensayos TCUI10, TCUI13, TCUI16 calibrando los parámetros de manera simultánea Análisis de los valores posteriores para cada parámetro Análisis de sensibilidad Verificación de los resultados Verificación de los parámetros del modelo ajustados mediante el uso de ensayos adicionales Verificación de los efectos de la variabilidad en la respuesta dinámica de un yacimiento licuable Resumen y conclusion ReferenciasIncluye figuras a colorPrimera edición81 páginasapplication/pdfspaUniversidad de La GuajiraDistrito Especial, Turístico y Cultural de RiohachaDerechos Reservados Universidad de La Guajirahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2Calibración de modelos de suelos: Principios y aplicaciones de la modelación automáticaLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttp://purl.org/coar/version/c_970fb48d4fbd8a85Andrus, R. D. & Stokoe, K. H. (2000). Liquefaction Resistance of Soils from Shear-Wave Velo city. 126(11)(FEBRUARY 2000), 1015–1025. https://doi.org/10.1061/(ASCE)1090 0241(2000)126ASTM. (2011). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. Norm. https://doi.org/10.1520/D7181STM. (2013). D5311 - Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. Astm D5311M-13, 92(Reapproved), 1–11. https://doi.org/10.1520/D5311Baecher, G. B. & Christian, J. T. (2005). Reliability and Statistics in Geotechnical Engineering. Chicester, UK: John Wiley & Sons. Boulanger, R., & Idriss, I. (2014). CpPT and SPT Based Liquefaction Triggering. (April). Boulanger, R. W., & Ziotopoulou, K. (2015). PM4Sand (Version 3): a Sand Plasticity Model for Earthquake Engineering. (March).Casagrande, A. (1965). The role of ‘Calculated Risk’ in Earthwork and Foundation Engineering. Journal of the Soil Mechanics and Foundations Division, 91(4), 1–40Chen, J. L. (2010). Seismic Behaviour of Retaining Wall-Backfill Systems with Vegetation. IET Con ference Proceedings, 482-487(5). Retrieved from https://digitallibrary.theiet.org/con tent/conferences/10.1049/cp.2010.0475Ching, J. & Chen, Y.-C. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics, 133(7)816832https://doi.org/10.1061/(ASCE)0733- (2007)133:7(816)Ching, J. & Wang, J.-S. (2016). Application of the Transitional Markov Chain Monte Carlo Algorithm to Probabilistic Site Characterization. Engineering Geology, 203, 151–167. https://doi. org/10.1016/j.enggeo.2015.10.015Dafalias, Y. F. & Manzari, M. T. (2004). Simple Plasticity Sand Model Accounting for Fabric Change Effects. Journal of Engineering Mechanics, 130(6), 622–63Das, B. M. (2006). Principios de Ingeniería de Cimentaciones (5th ed.). México D.F.: Cengage Learning. Deodatis, G. (1996). Non-stationary Stochastic Vector Processes: Seismic Ground Motion Applica tions. Probabilistic Engineering Mechanics, 11(3), 149–167.Diyaljee, V. A. & Raymond, G. P. (1982). Repetitive Load Deformation of Cohesionless Soil. Journal of the Geotechnical Engineering Division, 108(10), 1215–1229Elgamal, A., Yang, Z. & Parra, E. (2002). Computational Modeling of Cyclic Mobility and Post-Li quefaction Site Response. Soil Dynamics and Earthquake Engineering, 22(4), 259–271. https://doi.org/10.1016/S0267-7261(02)00022-2Elgamal, A., Yang, Z., Parra, E. & Ragheb, A. (2003). Modeling of Cyclic Mobility in Satura ted Cohesionless Soils. International Journal of Plasticity, 19(6), 883–905. https://doi. org/10.1016/S0749-6419(02)00010-4Fuentes, W. & Triantafyllidis, T. (2015). ISA Model: A Constitutive Model for Soils with Yield Surfa ce in the Intergranular Strain Space. International Journal for Numerical and Analytical Methods in Geomechanics, 39(11), 1235–1254. https://doi.org/10.1002/nag.2370Gras, J. P., Sivasithamparam, N., Karstunen, M. & Dijkstra, J. (2017). Strategy for Consistent Model Parameter Calibration for Soft Soils Using Multi-Objective Optimisation. Computers and Geotechnics, 90, 164–175. https://doi.org/10.1016/j.compgeo.2017.06.006Groholski, D. R., Hashash, Y. M. A. & Matasovic, N. (2014). Learning of Pore Pressure Response and Dynamic Soil Behavior from Downhole Array Measurements. Soil Dynamics and Ear thquake Engineering, 61–62, 40–56. https://doi.org/10.1016/j.soildyn.2014.01.018Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)Hettler, A. (1981). Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Institut Für Bodenmechanik Und Felsmechanik Der Universi tät Fridericiana, 90Holzer, T. . L. ., Youd, T. . L. . & Hanks, T. . C. . (2016). Dynamics of Liquefaction during the 1987 Superstition Hills , California , Earthquake. American Association for the Advancement of Science Stable, 244(4900), 56–59.INVIAS. (2013). Normas de ensayo para materiales de carreteras. Sección 100. 798. Retrieved from http://www.invias.gov.co/index.php/documentos-tecnicos-izq/139-documen to-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-nor mas-de-ensayo-para-materiales-de-carreteraIrigaray, C. (2012). Susceptibilidad a Licuefacción En La Vega De Granada (España). (January). Ismael, B. & Lombardi, D. (2019). Evaluation of Liquefaction Potential for Two Sites Due to the 2016 Kumamoto Earthquake Sequence. In N. Sundararajan, M. Eshagh, H. Saibi, M. MeKOKUSHO, T. (1987). In-situ Dynamic Soil Properties and Their Evaluations. Proc. 8th Asian Re gional Conference on Soil Mechanics and Foundation Engineering. Retrieved from http://ci.nii.ac.jp/naid/80003882823/enKondner, R. L. (1963). Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 115--144.Kutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., … Manzari, M. T. (2018). LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons. 113 (May 2017), 616–628.Manzari, M. T., Kutter, B, L., Zeghal, M., Iai, S., Tobita, T., Madabhushi, S. . P. G., … Arm strong, R. J. and others. (2014). LEAP Projects: Concept and Challenges. In Proceedings, 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 109--116)Markov, A. A. (1906). Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-Matematicheskogo Obschestva Pri Kazanskom Uni versitete, 15, 135–156.MASING, G. (1926). Eigenspannumyen und verfeshungung beim messing. In Proc. Inter. Congress for Applied Mechanics (pp. 332–335).Mercado, V., El-Sekelly, W., Zeghal, M., Abdoun, T., Dobry, R. & Thevanayagam, S. (2017). Characterization of the Contractive and Pore Pressure Behavior of Saturated Sand Deposits Under Seismic Loading. Computers and Geotechnics, 82, 223–236. https://doi.org/10.1016/j. compgeo.2016.10.015Mercado, V., Ochoa-Cornejo, F., Astroza, R., El-Sekelly, W., Abdoun, T., Pastén, C. & Her nández, F. (2019). Uncertainty Quantification and Propagation in the Modeling of Liquefiable Sands. Soil Dynamics and Earthquake Engineering, 123(February), 217–229. https:// doi.org/10.1016/j.soildyn.2019.04.016Meyerhof, G. G. (1974). Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay. Ca nadian Geotechnical Journal, 11(2), 223–229. https://doi.org/10.1139/t74-018Montgomery, J. & Boulanger, R. W. (2017). Effects of Spatial Variability on Liquefaction-Induced Settlement and Lateral Spreading. Journal of Geotechnical and Geoenvironmental En gineering, 143(1), 04016086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001584Mróz, Z. (1967). On the Description of Anisotropic Workhardening. Journal of the Mechanics and Physics of Solids, 15(3), 163–175. https://doi.org/10.1016/0022-5096(67)90030-0Mróz, Z., Norris, V. A. & Zienkiewicz, O. C. (1979). Application of an Anisotropic Hardening Model in the Analysis of Elasto–Plastic Deformation of Soils. Géotechnique, 29(1), 1–34. https:// doi.org/10.1680/geot.1979.29.1.1NEES (Network for Earthquake Engineering Simulation). (2015). Wildlife Liquefaction Array. Retrieved September 25, 2019, from http://www.nees.ucsb.edu/facilities/wlaNeil, R. (2003). Slice sampling (With discussion). The Annals of Statistics, 31(3), 705–767. Retrieved from http://www.jstor.org/stable/10.2307/3448413%5Cnhttp://scholar. google.com/scholar?hl=en&btnG=Search&q=intitle:Slice+sampling+(with+dis cussion)#6Niemunis, A. & Herle, I. (1997). Hypoplastic Model for Cohesionless Soils with Elastic Strain Range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. https://doi.org/10.1002/ (SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8Patra, S. K. & Haldar, S. (2018). Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil. (December).Popescu, R., Prevost, J. & Deodatis, G. (2007). 3D Effects in Seismic Liquefaction of Stochastically Variable Soil Deposits. In Risk and Variability in Geotechnical EngineeringPrevost, J. H. & Popescu, R. (1994). An assessment of VELACS "Class A" predictions. Buffalo, NY US.: US National Center for Earthquake Engineering Research (NCEER).Prevost, Jean H. (1985). A Simple Plasticity Theory for Frictional Cohesionless Soils. Internatio nal Journal of Soil Dynamics and Earthquake Engineering, 4(1), 9–17. https://doi. org/10.1016/0261-7277(85)90030-0Puzrin, A. M. (2012). Small Strain Nonlinearity. In Constitutive Modelling in Geomechanics: Introduction (pp. 155–166). https://doi.org/10.1007/978-3-642-27395-7Seed, B. (1979). Soil Liquefaction and Cyclic Mobility Evalution gfor Level Ground During Earth quakes. Journal of Geotechnical and Geoenvironmental Engineering, 105.Sivasithamparam, N., Karstunen, M. & Bonnier, P. (2015). Modelling Creep Behaviour of Ani sotropic Soft Soils. Computers and Geotechnics, 69, 46–57. https://doi.org/10.1016/j. compgeo.2015.04.015Taiebat, M. & Dafalias, Y. F. (2008). SANISAND: Simple Anisotropic Sand Plasticity Model. In ternational Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915–948. https://doi.org/10.1002/nag.651Tang, C., Phoon, K.-K., Zhang, L. & Li, D.-Q. (2017). Model Uncertainty for Predicting the Bea ring Capacity of Sand Overlying Clay. International Journal of Geomechanics, 17(7), 04017015.https://doi.org/10.1061/(asce)gm.1943-5622.0000898Whitman, R. V. (2000). Organizing and Evaluating Uncertainty in Geotechnical Engineering. Jour nal of Geotechnical and Geoenvironmental Engineering, 126(7), 583–593. https://doi. org/10.1061/(ASCE)1090-0241(2000)126:7(583)Wichtmann, T. & Triantafyllidis, T. (2004). Influence of a Cyclic and Dynamic Loading History on Dynamic Properties of Dry Sand, part I: Cyclic and dynamic torsional prestraining. SoilWichtmann, Torsten. (n.d.). Torsten wichtmann. Retrieved September 28, 2019, from Bau haus-Universität Weimar website: http://www.torsten-wichtmann.de/Wichtmann, Torsten. (2005). Explicit Accumulation Model for Non-Cohesive Soils Under Cy clic Loading. Institut Für Grundbau Und Bodenmechanik, Phd, 274. https://doi. org/10.1.556.209Wichtmann, Torsten & Triantafyllidis, T. (2016). An Experimental Database for the Development, Calibration and Verification of Constitutive Models for Sand with Focus to Cyclic Loading: Part II—Tests With Strain Cycles and Combined Loading. Acta Geotechnica, 11(4), 763–774. https://doi.org/10.1007/s11440-015-0412-xYang, Z., Elgamal, A. & Parra, E. (2003). Computational Model for Cyclic Mobility and Associa ted Shear Deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1119–1127. https://doi.org/10.1103/PhysRevB.94.045417Yang, Z., Lu, J. & Elgamal, A. (2008). Opensees Soil Models and Solid-Fluid Fully Coupled Elements: User’s Manual, Version 1. San Diego: University of California, (October). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenSees+ Soil+Models+and+Solid-+Fluid+Fully+Coupled+Elements+User+?+s+Ma nual#0Youd, T. L. & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance Of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. ht tps://doi.org/10.1061/(asce)1090-0241(2001)127Youd, T. Leslie. & Holzer, T. L. (1994). Piezometer Performance At Wildlife. Journal of GeoEngi neering, 120(6), 975–995.Zeghal, M, Manzari, M., Kutter, B. & Abdoun, T. (2014). LEAP: Selected Data for Class C Ca librations and Class A Validations. In Safety and Reliability: Methodology and Applica tions (p. 117).Zeghal, Mourad, Goswami, N., Kutter, B. L., Manzari, M. T., Abdoun, T., Arduino, P., … Ziotopoulou, K. (2018). Stress-Strain Response of the LEAP-2015 Centrifuge Tests and Nu merical Predictions. Soil Dynamics and Earthquake Engineering, 113, 804–818. https:// doi.org/10.1016/j.soildyn.2017.10.014Zhang, J., Tang, W. H., Zhang, L. M. & Huang, H. W. (2012). Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Computers and Geotechnics, 43, 26–36. https://doi.org/10.1016/j.compgeo.2012.02.002Calibración de módelosSuelos granularesCargas cíclicasPublication9ebef0cb-3288-4ab6-a976-12d1232d8299virtual::818-120288ac7-d183-45bf-a24e-e44dde395312virtual::820-19ebef0cb-3288-4ab6-a976-12d1232d8299virtual::818-120288ac7-d183-45bf-a24e-e44dde395312virtual::820-10000-0003-3866-4438virtual::818-10000-0002-7921-1673virtual::820-1LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositoryinst.uniguajira.edu.co/bitstreams/9a3ffd23-ec53-4afe-b6b5-1df63ad0488e/download73a5432e0b76442b22b026844140d683MD51ORIGINAL110. Calibración de modelos de suelo.pdf110. Calibración de modelos de suelo.pdfapplication/pdf19068418https://repositoryinst.uniguajira.edu.co/bitstreams/27e28745-dd54-4209-8b2f-089d583d23f7/download8f2d174195860c85c03ee8fc33fd3e83MD52TEXT110. Calibración de modelos de suelo.pdf.txt110. Calibración de modelos de suelo.pdf.txtExtracted texttext/plain107604https://repositoryinst.uniguajira.edu.co/bitstreams/d9adef39-7ca6-4293-ae05-4e9b4f2cd25e/download7ec7c9b882c731f7076bb241d26bc261MD53THUMBNAIL110. Calibración de modelos de suelo.pdf.jpg110. Calibración de modelos de suelo.pdf.jpgGenerated Thumbnailimage/jpeg14885https://repositoryinst.uniguajira.edu.co/bitstreams/3001eae0-764f-44ce-b14f-6c7317ade0db/download7cd7bea0a1912935c349243d9d35cb34MD54uniguajira/1672oai:repositoryinst.uniguajira.edu.co:uniguajira/16722025-10-04 03:00:31.391https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad de La Guajiraopen.accesshttps://repositoryinst.uniguajira.edu.coBiblioteca Digital Universidad de la Guajirarepositorio@uniguajira.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K