Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección

Incluye índice de figuras y de tablas

Autores:
Arrieta A, Yeison
Tipo de recurso:
Book
Fecha de publicación:
2025
Institución:
Universidad de la Guajira
Repositorio:
Repositorio Uniguajira
Idioma:
spa
OAI Identifier:
oai:repositoryinst.uniguajira.edu.co:uniguajira/1688
Acceso en línea:
https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1688
Palabra clave:
Caribe colombiano
Erosión de playas
Eventos de tormenta
Modelación numérica
Estructuras de protección
Colombian Caribbean, protection structures.
Beach erosion
Storm events
Numerical modeling
Protection structures
Rights
openAccess
License
Derechos Reservados Universidad de La Guajira
id Uniguajra2_4df3463bf4e9c343d350a30552e0148d
oai_identifier_str oai:repositoryinst.uniguajira.edu.co:uniguajira/1688
network_acronym_str Uniguajra2
network_name_str Repositorio Uniguajira
repository_id_str
dc.title.spa.fl_str_mv Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
title Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
spellingShingle Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
Caribe colombiano
Erosión de playas
Eventos de tormenta
Modelación numérica
Estructuras de protección
Colombian Caribbean, protection structures.
Beach erosion
Storm events
Numerical modeling
Protection structures
title_short Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
title_full Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
title_fullStr Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
title_full_unstemmed Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
title_sort Morfodinámica de la costa de Riohacha. Análisis y estrategias de protección
dc.creator.fl_str_mv Arrieta A, Yeison
dc.contributor.author.none.fl_str_mv Arrieta A, Yeison
dc.subject.proposal.spa.fl_str_mv Caribe colombiano
Erosión de playas
Eventos de tormenta
Modelación numérica
Estructuras de protección
topic Caribe colombiano
Erosión de playas
Eventos de tormenta
Modelación numérica
Estructuras de protección
Colombian Caribbean, protection structures.
Beach erosion
Storm events
Numerical modeling
Protection structures
dc.subject.proposal.eng.fl_str_mv Colombian Caribbean, protection structures.
Beach erosion
Storm events
Numerical modeling
Protection structures
description Incluye índice de figuras y de tablas
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-06T16:34:25Z
dc.date.available.none.fl_str_mv 2025-11-06T16:34:25Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/book
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 978-628-7718-99-9
dc.identifier.uri.none.fl_str_mv https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1688
identifier_str_mv 978-628-7718-99-9
url https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1688
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aleman, N., Robin, N., Certain, R., Anthony, E. J. & Barusseau, J. P. (2015). Longshore variability of beach states and bar types in a microtidal, storm-influenced, low-energy environment. Geomorphology, 241, 175–191. https://doi. org/10.1016/j.geomorph.2015.03.029
Aleman, N., Robin, N., Certain, R., Barusseau, J.-P. & Gervais, M. (2013). Net offshore bar migration variability at a regional scale: Inter-site comparison (Languedoc- Roussillon, France). Journal of Coastal Research, (Fort Lauderdale 2.65), 1715–1720. https://doi.org/http://dx.doi. org/10.1108/17506200710779521
Almar, R., Castelle, B., Ruessink, B. G., Sénéchal, N., Bonneton, P. & Marieu, V. (2010). Two and three dimensional double sandbar system behaviour under intense wave forcing and a meso-macro tidal range. Continental Shelf Research, 30(7), 781–792. https://doi.org/10.1016/j.csr.2010.02.001
Angnuureng, D. B., Almar, R., Senechal, N., Castelle, B., Addo, K. A., Marieu, V. & Ranasinghe, R. (2017). Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology, 290(February), 265–276. https://doi.org/10.1016/j.geomorph.2017.04.007
Arifin, R. R. & Kennedy, A. B. (2011). The evolution of large scale crescentic bars on the northern Gulf of Mexico coast. Marine Geology, 285(1–4), 46–58. https:// doi.org/10.1016/j.margeo.2011.04.003
Armaroli, C. & Ciavola, P. (2011). Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification. Geomorphology, 126(1–2), 201–216. https://doi.org/10.1016/j.geomorph.2010.11.004
Bart, L. (2017). Long-term modelling with XBeach: Combining stationary and surfbeat mode in an integrated approach. Master Thesis Technical University of Delft, 1–108.
Bertoni, D. & Sarti, G. (2011). On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy. Geomorphology, 130(3–4), 244–254. https:// doi.org/10.1016/j.geomorph.2011.04.002
Berrio, Y. (2018). Evaluación morfodinámica con esquemas de protección costera en las playas de Riohacha, La Guajira. Tesis de maestría. Universidad del Norte
Birkemeier, B. W. A. & Asce, A. M. (1985). Field Data on Seaward Limit of Profile Change. Journal Waterway, Port, Coastal and Ocean Engineering, 111(3), 598–602.
Bodge, K. R. (2003). Design Aspects of Groins and Jetties. Advances in Coastal Structure Design, 181–199.
Booij, N., Ris, R. C. & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622
Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N. & Ferreira, S. (2015). Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135–148. https://doi. org/10.1016/j.geomorph.2015.03.006
Castillo, M. & Gamarra, E. (2014). Shoreline multi-temporal analysis on Tierra bomba island and flood map projection by mean sea level. Boletín Científico CIOH, 32, 163–177.
Cobos, M., Chiapponi, L., Longo, S., Baquerizo, A. & Losada, M. A. (2017). Ripple and sandbar dynamics under mid-reflecting conditions with a porous vertical breakwater. Coastal Engineering, 125(December 2016), 95–118. https:// doi.org/10.1016/j.coastaleng.2017.04.006
Cooper, J. A. G. & Pilkey, O. H. (2004). Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Global and Planetary Change, 43(3–4), 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001
COPERNICUS. (2016). Obtenido de Marine Environment Monitoring Service: http://marine.copernicus.eu/web/69-interactive-catalogue.php?option=- com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_ PHYS_001_002.
Dabees, M. & Kamphuis, W. J. (1998). Oneline, a Numerical Model for Shoreline Change. 26th Coastal Engineering Conference, 2668–2681. https://doi.org/ http://dx.doi.org/10.1061/9780784404119.202
Daly, C. (2009). Low Frequency Waves in the Shoaling and Nearshore Zone A Validation of XBeach. M.Sc. Thesis Delft University of Technology Faculty, (June), 132.
Davidson-Arnott, R. G. D. (2005). Conceptual Model of the Effects of Sea Level Rise on Sandy Coasts. Journal of Coastal Research, 216(6), 1166–1172. https:// doi.org/10.2112/03-0051.1
Dean, R. (1977). Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Nerwark. Dept. of Civil Engineering and College of Marine Studies, University of Delaware
De Schipper, M. A., Reniers, A. J. H. M., Ranasinghe, R. & Stive, M. J. F. (2014). The influence of sea state on formation speed of alongshore variability in surf zone sand bars. Coastal Engineering, 91, 45–59. https://doi.org/10.1016/j. coastaleng.2014.05.001
Díaz, J. M., Barrios, L. & Gómez-López, D. (2003). Las praderas de pastos marinos en Colombia. Estructura y distribución de un ecosistema estratégico. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” INVEMAR. Serie Publicaciones Especiales – Nº 10
Dubarbier, B., Castelle, B., Marieu, V. & Ruessink, G. (2015). Process-based modeling of cross-shore sandbar behavior. Coastal Engineering, 95, 35–50. https:// doi.org/10.1016/j.coastaleng.2014.09.004
Falchetti, S., Conley, D. C., Brocchini, M. & Elgar, S. (2010). Nearshore bar migration and sediment-induced buoyancy effects. Continental Shelf Research, 30(2), 226–238. https://doi.org/10.1016/j.csr.2009.11.005
GIOC. Grupo de Ingeniería Oceanográfica y de Costas. (2000). Documento de referencia, volumen 2: Procesos litorales. Universidad de Cantabria
Grasso, F., Michallet, H. & Barthélemy, E. (2011). Experimental simulation of shoreface nourishments under storm events: A morphological, hydrodynamic, and sediment grain size analysis. Coastal Engineering, 58(2), 184–193. https:// doi.org/10.1016/j.coastaleng.2010.09.007
Grasso, F., Michallet, H., Certain, R. & Barthélemy, E. (2009). Experimental Flume Simulation of Sandbar Dynamics. Journal of Coastal Research, 54–58.
Hanson, H. (1989). Genesis: A Generalized Shoreline Change Numerical Model. Journal of Coastal Research, 5(1), 1–27. https://doi.org/10.2307/4297483
IDEAM & Instituto de Hidrológico Meteorología y Estudios Ambientales. (2008). Caracterización climática de variables océano-atmosféricas sobre el Caribe colombiano, 59–111. Retrieved from http://www.ideam.gov.co/documents/ 21021/23877/clima+caribe.pdf/be79801d-24f3-4544-bc79-6a20ef186cca
INVEMAR & CORPOGUAJIRA. (2008). Caracterización de la zona costera del departamento de La Guajira: Una aproximación para su manejo integrado, 48.
Karunarathna, H., Horrillo-Caraballo, J. M. & Reeve, D. E. (2012). Prediction of cross-shore beach profile evolution using a diffusion type model. Continental Shelf Research, 48, 157–166. https://doi.org/10.1016/j.csr.2012.08.004
Kolokythas, G. K., Silva, R. & Delgado Blanco, M. R. (2016). Morphological evolution of a bed profile induced by a storm event at the Belgian coast predicted by Xbeach model. The Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, June 26 - July 1, 2016, 1239.
Kumar, A. Arun and Kunte, Pravin, (2012), Coastal vulnerability assessment for Chennai, east coast of India Using Geospatial Techniques, Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 64, issue 1, p. 853-872.
Lanckriet, T., Trouw, K., Zimmermann, N., De Maerschalk, B. & Suzuki, T. (2015). The effect of wave directional spreading in morphological models: hindcast of the impact of the Saint Nicholas storm on the Belgian coast. NCK - Days 2015: Book of Abstracts, March 18-20, 2015, 56(2009), 69.
Larson, M. & Nicholas, K. (1989). DTIC. Coastal Engineering Research Center, 2(90 06 15 010), 1–108. Lavalle, C., Gómez, C. R., Baranzelli
Lippmann, T. C. & Holman, R. a. (1990). The spatial and temporal variability of sand bar morphology. Journal of Geophysical Research, 95(C7), 11575. https:// doi.org/10.1029/JC095iC07p11575
Losada, I., Medina, R., Losada, M. & Vidal, C. (1995). Modelos hidrodinámicos y de transporte de sedimentos. Ingeniería Del Agua, 2(Extra), 99–118.
Márquez, E. & Rosado, J. R. (2011). Clasificación e impacto ambiental de los residuos sólidos generados en las playas de Riohacha, La Guajira, Colombia. Revista Facultad de Ingeniería, (60), 118–128.
Morang, A. & Parson, L. (2008). Coastal terminology and geologic environments. Coastal Engineering Manual, IV (Coastal Geology of Engineer Manual 1110- 2-1100, chapter IV-1. U.S. Army Corps of Engineers, Washington, DC.).
National Hurricane Center. (2017). Atlantic Tropical Cyclones and Disturbances. Retrieved from https://www.nodc.noaa.gov/gocd/index.html
NOAA. (2015). NCDI Standard Online Product: Global Ocean Currents Database (GOCD) (NCEI Accession 0093183). NOAA National Centers for Environmental Information. Dataset. Retrieved from http://www.nhc.noaa.gov/
NOAA - NCEP. (2016). NCEP North American Regional Reanalysis: NARR. Recuperado el 05 de 01 de 2016
Pape, L. & Ruessink, B. G. (2011). Neural-network predictability experiments for nearshore sandbar migration. Continental Shelf Research, 31(9), 1033– 1042. https://doi.org/10.1016/j.csr.2011.03.009
Phillips, M. S., Harley, M. D., Turner, I. L., Splinter, K. D. & Cox, R. J. (2017). Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Marine Geology, 385, 146–159. https://doi.org/10.1016/j.margeo.2017.01.005
Price, T. D. & Ruessink, B. G. (2011). State dynamics of a double sandbar system. Continental Shelf Research, 31(6), 659–674. https://doi.org/10.1016/j. csr.2010.12.018
Ranasinghe, R. & Turner, I. L. (2006). Shoreline response to submerged structures: A review. Coastal Engineering, 53(1), 65–79. https://doi.org/10.1016/j. coastaleng.2005.08.003
Rangel-Buitrago, N. & Posada-Posada, B. (2005). Geomorfología y procesos del departamento de Córdoba, Caribe colombiano (Sector paso Nuevo -Cristo Rey. Boletín No 895 Del Instituto de Investigaciones Marinas y Costeras - INVEMAR, 34(0122–9761), 101–119
Rangel, N. (2009). Contribución Antropogénica a Los Cambios Geomorfológicos y Evolución Reciente de la Costa Caribe Colombiana. Revista Gestión y Ambiente, 12(2), 43–56.
Rangel-Buitrago, N. & Anfuso, G. (2013). Erosion and morphological impacts in the Caribbean coast of Colombia.
Ribas, F., de Swart, H. E., Calvete, D. & Falqués, A. (2011). Modeling waves, currents and sandbars on natural beaches: The effect of surface rollers. Journal of Marine Systems, 88(1), 90–101. https://doi.org/10.1016/j.jmarsys. 2011.02.016
Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R. & Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11–12), 1133–1152. https://doi.org/ 10.1016/j.coastaleng.2009.08.006
Roelvink, J. A., Walstra, D. J. R., & Chen, Z. (1994). Morphological modelling of Keta Lagoon case. Proceedings of the Coastal Engineering Conference, (1994), 3223–3236
Ruessink, B. G., Kuriyama, Y., Reniers, A. J. H. M., Roelvink, J. A. & Walstra, D. J. R. (2007). Modeling cross-shore sandbar behavior on the timescale of weeks, 112, 1–15. https://doi.org/10.1029/2006JF000730
Ruessink, B. G., Pape, L. & Turner, I. L. (2009). Daily to interannual cross-shore sandbar migration: Observations from a multiple sandbar system. Continental Shelf Research, 29(14), 1663–1677. https://doi.org/10.1016/j. csr.2009.05.011
Ruiz-Martínez, G., Rivillas-Ospina, G. D., Mariño-Tapia, I. & Posada-Vanegas, G. (2016). SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis. Computers and Geosciences, 92, 104–116. https:// doi.org/10.1016/j.cageo.2016.04.010
Senechal, N., Coco, G., Castelle, B. & Marieu, V. (2015). Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology, 228, 448–461. https://doi.org/10.1016/j. geomorph.2014.09.025
Stokes, C., Davidson, M. & Russell, P. (2015). Observation and prediction of three-dimensional morphology at a high-energy macrotidal beach. Geomorphology, 243, 1–13. https://doi.org/10.1016/j.geomorph.2015.04.024
Thiébot, J., Idier, D., Garnier, R., Falqués, A. & Ruessink, B. G. (2012). The influence of wave direction on the morphological response of a double sandbar system. Continental Shelf Research, 32, 71–85. https://doi.org/10.1016/j. csr.2011.10.014
Trouw, K. J. M., Zimmermann, N., Mathys, M., Delgado, R. & Roelvink, D. (2012). Numerical Modelling of Hydrodynamics and Sediment Transport in the Surf Zone: a Sensitivity Study With Different Types of Numerical Models. Coastal Engineering Proceedings, 1(33), 23. https://doi.org/10.9753/icce. v33.sediment.23
US Army Corps of Engineers. (1992). Coastal Groins and Nearshore Breakwaters. Engineer Manual, 90.
Van de Lageweg, W. I., Bryan, K. R., Coco, G. & Ruessink, B. G. (2013). Observations of shoreline-sandbar coupling on an embayed beach. Marine Geology, 344, 101–114. https://doi.org/10.1016/j.margeo.2013.07.018
Van Rijn, L. C. (1998). Principles of Coastal Morpholigy. Aguc Publications, Amsterdam.
van Rijn, L. C., Wasltra, D. J. R., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3), 295–327. https://doi.org/10.1016/S0378- 3839(02)00120-5
Van Thiel de Vries, J., Van Dongeren, A., McCall, R., & Reniers, A. (2008). THE EFFECT OF THE LONGSHORE DIMENSION ON DUNE EROSION, 1–13.
Vousdoukas, M., Almeida, L., & Ferreira, Ó. (2011). Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. Journal of Coastal Research, (SPEC. ISSUE 64), 1916–1920. Retrieved from http:// www.scopus.com/inward/record.url?eid=2-s2.0-84857407278&partnerID= 40&md5=283b926e2bb94cbb39b85ea91282b683%5Cnhttp://www. ics2011.pl/artic/SP64_1916-1920_M.I.Vousdoukas.pdf
Wise, R. A., Smith, J., & Larson, M. (1996). SBEACH: Report 4 - Cross-Shore Transport Under Random Waves and Model Validation with SUPERTANK and Field Data, (April), 140. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord& metadataPrefix=html&identifier=ADA267191
Wolman G. & Miller J. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. The Journal of Geology, 68, 54–74.
Wright, L. D., Short, A. D. (1984). Morphodynamic variability of surf zone and beaches: a synthesis. Marine Geology, 56, 93–118.
Zimmermann, N. ., Trouw, K. ., De Maerschalck, B. ., Toro, F.; Delgado, R. ., Verwaest, T. ., & Mostaert, F. (2015). Scienti_c support regarding hydrodynamics and sand transport in the coastal zone; evaluation of XBeach for long term cross-shore modelling. Technical Report, Flanders Hydraulic Research., 57
dc.rights.spa.fl_str_mv Derechos Reservados Universidad de La Guajira
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv Derechos Reservados Universidad de La Guajira
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 122 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Distrito Especial, Turístico y Cultural de Riohacha
dc.publisher.none.fl_str_mv Universidad de La Guajira
dc.publisher.place.none.fl_str_mv Distrito Especial, Turístico y Cultural de Riohacha
publisher.none.fl_str_mv Universidad de La Guajira
institution Universidad de la Guajira
bitstream.url.fl_str_mv https://repositoryinst.uniguajira.edu.co/bitstreams/dc24cd1c-f07d-46ce-872f-afdbbbb1f6d7/download
https://repositoryinst.uniguajira.edu.co/bitstreams/f3243d99-b147-437a-bcfb-6833cd86d430/download
https://repositoryinst.uniguajira.edu.co/bitstreams/634c8254-25f0-49f9-a085-a8b6e3cf2f74/download
https://repositoryinst.uniguajira.edu.co/bitstreams/0786f017-a22c-4fad-b38b-72e1e3d4fa04/download
bitstream.checksum.fl_str_mv 43bfdf23d7101209b53443d45818c705
73a5432e0b76442b22b026844140d683
5e3d5b49378d9d9b48fed68656abaa5a
16e90a0d695f9ce25caf04df1c0958f8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de la Guajira
repository.mail.fl_str_mv repositorio@uniguajira.edu.co
_version_ 1851051074378530816
spelling Arrieta A, Yeisonvirtual::854-1Distrito Especial, Turístico y Cultural de Riohacha2025-11-06T16:34:25Z2025-11-06T16:34:25Z2025978-628-7718-99-9https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1688Incluye índice de figuras y de tablasEl propósito de este estudio es analizar y describir el desarrollo morfológico de las playas en el Caribe colombiano, con un enfoque particular en el departamento de La Guajira, y evaluar los efectos de las estructuras implementadas para la protección y recuperación costera ante los procesos erosivos. Se busca demostrar que las estructuras implementadas no son efectivas para mitigar la erosión en la zona. En Colombia, el uso de soluciones de protección costera es muy común pero aún no se han realizado análisis exhaustivos que permitan predecir con precisión la respuesta de los perfiles de playa frente a estas estructuras durante eventos de oleaje extremo. Para abordar esta problemática, se utilizó el modelo XBeach, que permite estudiar la evolución morfológica de playas y estructuras costeras bajo condiciones extremas. Los resultados de la simulación numérica revelan que el modelo puede predecir con alta precisión el desarrollo de los perfiles de playa durante tormentas, alcanzando una puntuación de error promedio de 0.96. Los modelos bidimensionales (2DH) predicen acumulación de sedimentos en condiciones extremas al este de la Estructura 1, cerca de la desembocadura del río Ranchería, mientras que la zona oeste experimenta erosión. Este fenómeno está estrechamente relacionado con el patrón de transporte de sedimentos hacia el suroeste en el área de estudio. Se concluye que las estructuras existentes en la zona de estudio no son las apropiadas, dado que interfieren con el movimiento natural de sedimentos, exacerban los procesos de erosión en las costas adyacentes, aumentan las tasas de erosión y promueven el desplazamiento de sedimentos desde las dunas de playa hacia áreas de mar adentro.Prólogo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Resumen/Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Introducción. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CAPÍTULO I Desafíos y estrategias en la erosión costera. . . . . . . . . . . . . . . . . . . . . 19 Antecedentes en la zona de estudio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Estado del arte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 CAPÍTULO II Fundamentos y dinámica de la morfología costera. . . . . . . . . . . . . . . 27 Morfología de playas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Modelos matemáticos de perfiles de playa. . . . . . . . . . . . . . . . . . . . . . . . 38 Descripción del modelo Xbeach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 CAPÍTULO III Simulación numérica en protección costera. . . . . . . . . . . . . . . . . . . . . 45 Generalidades de la zona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Levantamiento de información . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Clima marítimo aguas intermedias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Modelo numérico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Forzamientos de oleaje. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Calibración del modelo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Análisis de la condición actual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Estrategias de solución propuestas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 CAPÍTULO IV Evaluación de protección costera con modelación numérica . . . . . . 83 Calibración y validación del modelo numérico . . . . . . . . . . . . . . . . . . . .83 Análisis de la condición actual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Estrategias de solución propuestas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Conclusiones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Referencias bibliográficas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111The purpose of this study is to analyze and describe the morphological development of beaches in the Colombian Caribbean, with a particular focus on the department of La Guajira, and to assess the effects of structures implemented for coastal protection and recovery against erosive processes. The aim is to demonstrate that the implemented structures are not effective in mitigating erosion in the area. In Colombia, the use of coastal protection solutions is very common, but comprehensive analyses that accurately predict the response of beach profiles to these structures during extreme wave events have not yet been conducted. To address this issue, the XBeach model was used, which allows for the study of the morphological evolution of beaches and coastal structures under extreme conditions. The results of the numerical simulation reveal that the model can predict with high accuracy the development of beach profiles during storms, achieving an average error score of 0.96. The two-dimensional (2DH) models predict sediment accumulation under extreme conditions to the east of Structure 1, near the mouth of the Ranchería River, while the western area experiences erosion. This phenomenon is closely related to the pattern of sediment transport to the southwest in the study area. It is concluded that the existing structures in the study area are not appropriate, as they interfere with the natural movement of sediments, exacerbate erosion processes on adjacent coasts, increase erosion rates, and promote the displacement of sediments from beach dunes to offshore areas.Primera ediciónIncluye imágenes a color122 páginasapplication/pdfspaUniversidad de La GuajiraDistrito Especial, Turístico y Cultural de RiohachaDerechos Reservados Universidad de La Guajirahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2Morfodinámica de la costa de Riohacha. Análisis y estrategias de protecciónLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aleman, N., Robin, N., Certain, R., Anthony, E. J. & Barusseau, J. P. (2015). Longshore variability of beach states and bar types in a microtidal, storm-influenced, low-energy environment. Geomorphology, 241, 175–191. https://doi. org/10.1016/j.geomorph.2015.03.029Aleman, N., Robin, N., Certain, R., Barusseau, J.-P. & Gervais, M. (2013). Net offshore bar migration variability at a regional scale: Inter-site comparison (Languedoc- Roussillon, France). Journal of Coastal Research, (Fort Lauderdale 2.65), 1715–1720. https://doi.org/http://dx.doi. org/10.1108/17506200710779521Almar, R., Castelle, B., Ruessink, B. G., Sénéchal, N., Bonneton, P. & Marieu, V. (2010). Two and three dimensional double sandbar system behaviour under intense wave forcing and a meso-macro tidal range. Continental Shelf Research, 30(7), 781–792. https://doi.org/10.1016/j.csr.2010.02.001Angnuureng, D. B., Almar, R., Senechal, N., Castelle, B., Addo, K. A., Marieu, V. & Ranasinghe, R. (2017). Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology, 290(February), 265–276. https://doi.org/10.1016/j.geomorph.2017.04.007Arifin, R. R. & Kennedy, A. B. (2011). The evolution of large scale crescentic bars on the northern Gulf of Mexico coast. Marine Geology, 285(1–4), 46–58. https:// doi.org/10.1016/j.margeo.2011.04.003Armaroli, C. & Ciavola, P. (2011). Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification. Geomorphology, 126(1–2), 201–216. https://doi.org/10.1016/j.geomorph.2010.11.004Bart, L. (2017). Long-term modelling with XBeach: Combining stationary and surfbeat mode in an integrated approach. Master Thesis Technical University of Delft, 1–108.Bertoni, D. & Sarti, G. (2011). On the profile evolution of three artificial pebble beaches at Marina di Pisa, Italy. Geomorphology, 130(3–4), 244–254. https:// doi.org/10.1016/j.geomorph.2011.04.002Berrio, Y. (2018). Evaluación morfodinámica con esquemas de protección costera en las playas de Riohacha, La Guajira. Tesis de maestría. Universidad del NorteBirkemeier, B. W. A. & Asce, A. M. (1985). Field Data on Seaward Limit of Profile Change. Journal Waterway, Port, Coastal and Ocean Engineering, 111(3), 598–602.Bodge, K. R. (2003). Design Aspects of Groins and Jetties. Advances in Coastal Structure Design, 181–199.Booij, N., Ris, R. C. & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N. & Ferreira, S. (2015). Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology, 238, 135–148. https://doi. org/10.1016/j.geomorph.2015.03.006Castillo, M. & Gamarra, E. (2014). Shoreline multi-temporal analysis on Tierra bomba island and flood map projection by mean sea level. Boletín Científico CIOH, 32, 163–177.Cobos, M., Chiapponi, L., Longo, S., Baquerizo, A. & Losada, M. A. (2017). Ripple and sandbar dynamics under mid-reflecting conditions with a porous vertical breakwater. Coastal Engineering, 125(December 2016), 95–118. https:// doi.org/10.1016/j.coastaleng.2017.04.006Cooper, J. A. G. & Pilkey, O. H. (2004). Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Global and Planetary Change, 43(3–4), 157–171. https://doi.org/10.1016/j.gloplacha.2004.07.001COPERNICUS. (2016). Obtenido de Marine Environment Monitoring Service: http://marine.copernicus.eu/web/69-interactive-catalogue.php?option=- com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_ PHYS_001_002.Dabees, M. & Kamphuis, W. J. (1998). Oneline, a Numerical Model for Shoreline Change. 26th Coastal Engineering Conference, 2668–2681. https://doi.org/ http://dx.doi.org/10.1061/9780784404119.202Daly, C. (2009). Low Frequency Waves in the Shoaling and Nearshore Zone A Validation of XBeach. M.Sc. Thesis Delft University of Technology Faculty, (June), 132.Davidson-Arnott, R. G. D. (2005). Conceptual Model of the Effects of Sea Level Rise on Sandy Coasts. Journal of Coastal Research, 216(6), 1166–1172. https:// doi.org/10.2112/03-0051.1Dean, R. (1977). Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Nerwark. Dept. of Civil Engineering and College of Marine Studies, University of DelawareDe Schipper, M. A., Reniers, A. J. H. M., Ranasinghe, R. & Stive, M. J. F. (2014). The influence of sea state on formation speed of alongshore variability in surf zone sand bars. Coastal Engineering, 91, 45–59. https://doi.org/10.1016/j. coastaleng.2014.05.001Díaz, J. M., Barrios, L. & Gómez-López, D. (2003). Las praderas de pastos marinos en Colombia. Estructura y distribución de un ecosistema estratégico. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” INVEMAR. Serie Publicaciones Especiales – Nº 10Dubarbier, B., Castelle, B., Marieu, V. & Ruessink, G. (2015). Process-based modeling of cross-shore sandbar behavior. Coastal Engineering, 95, 35–50. https:// doi.org/10.1016/j.coastaleng.2014.09.004Falchetti, S., Conley, D. C., Brocchini, M. & Elgar, S. (2010). Nearshore bar migration and sediment-induced buoyancy effects. Continental Shelf Research, 30(2), 226–238. https://doi.org/10.1016/j.csr.2009.11.005GIOC. Grupo de Ingeniería Oceanográfica y de Costas. (2000). Documento de referencia, volumen 2: Procesos litorales. Universidad de CantabriaGrasso, F., Michallet, H. & Barthélemy, E. (2011). Experimental simulation of shoreface nourishments under storm events: A morphological, hydrodynamic, and sediment grain size analysis. Coastal Engineering, 58(2), 184–193. https:// doi.org/10.1016/j.coastaleng.2010.09.007Grasso, F., Michallet, H., Certain, R. & Barthélemy, E. (2009). Experimental Flume Simulation of Sandbar Dynamics. Journal of Coastal Research, 54–58.Hanson, H. (1989). Genesis: A Generalized Shoreline Change Numerical Model. Journal of Coastal Research, 5(1), 1–27. https://doi.org/10.2307/4297483IDEAM & Instituto de Hidrológico Meteorología y Estudios Ambientales. (2008). Caracterización climática de variables océano-atmosféricas sobre el Caribe colombiano, 59–111. Retrieved from http://www.ideam.gov.co/documents/ 21021/23877/clima+caribe.pdf/be79801d-24f3-4544-bc79-6a20ef186ccaINVEMAR & CORPOGUAJIRA. (2008). Caracterización de la zona costera del departamento de La Guajira: Una aproximación para su manejo integrado, 48.Karunarathna, H., Horrillo-Caraballo, J. M. & Reeve, D. E. (2012). Prediction of cross-shore beach profile evolution using a diffusion type model. Continental Shelf Research, 48, 157–166. https://doi.org/10.1016/j.csr.2012.08.004Kolokythas, G. K., Silva, R. & Delgado Blanco, M. R. (2016). Morphological evolution of a bed profile induced by a storm event at the Belgian coast predicted by Xbeach model. The Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, June 26 - July 1, 2016, 1239.Kumar, A. Arun and Kunte, Pravin, (2012), Coastal vulnerability assessment for Chennai, east coast of India Using Geospatial Techniques, Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 64, issue 1, p. 853-872.Lanckriet, T., Trouw, K., Zimmermann, N., De Maerschalk, B. & Suzuki, T. (2015). The effect of wave directional spreading in morphological models: hindcast of the impact of the Saint Nicholas storm on the Belgian coast. NCK - Days 2015: Book of Abstracts, March 18-20, 2015, 56(2009), 69.Larson, M. & Nicholas, K. (1989). DTIC. Coastal Engineering Research Center, 2(90 06 15 010), 1–108. Lavalle, C., Gómez, C. R., BaranzelliLippmann, T. C. & Holman, R. a. (1990). The spatial and temporal variability of sand bar morphology. Journal of Geophysical Research, 95(C7), 11575. https:// doi.org/10.1029/JC095iC07p11575Losada, I., Medina, R., Losada, M. & Vidal, C. (1995). Modelos hidrodinámicos y de transporte de sedimentos. Ingeniería Del Agua, 2(Extra), 99–118.Márquez, E. & Rosado, J. R. (2011). Clasificación e impacto ambiental de los residuos sólidos generados en las playas de Riohacha, La Guajira, Colombia. Revista Facultad de Ingeniería, (60), 118–128.Morang, A. & Parson, L. (2008). Coastal terminology and geologic environments. Coastal Engineering Manual, IV (Coastal Geology of Engineer Manual 1110- 2-1100, chapter IV-1. U.S. Army Corps of Engineers, Washington, DC.).National Hurricane Center. (2017). Atlantic Tropical Cyclones and Disturbances. Retrieved from https://www.nodc.noaa.gov/gocd/index.htmlNOAA. (2015). NCDI Standard Online Product: Global Ocean Currents Database (GOCD) (NCEI Accession 0093183). NOAA National Centers for Environmental Information. Dataset. Retrieved from http://www.nhc.noaa.gov/NOAA - NCEP. (2016). NCEP North American Regional Reanalysis: NARR. Recuperado el 05 de 01 de 2016Pape, L. & Ruessink, B. G. (2011). Neural-network predictability experiments for nearshore sandbar migration. Continental Shelf Research, 31(9), 1033– 1042. https://doi.org/10.1016/j.csr.2011.03.009Phillips, M. S., Harley, M. D., Turner, I. L., Splinter, K. D. & Cox, R. J. (2017). Shoreline recovery on wave-dominated sandy coastlines: The role of sandbar morphodynamics and nearshore wave parameters. Marine Geology, 385, 146–159. https://doi.org/10.1016/j.margeo.2017.01.005Price, T. D. & Ruessink, B. G. (2011). State dynamics of a double sandbar system. Continental Shelf Research, 31(6), 659–674. https://doi.org/10.1016/j. csr.2010.12.018Ranasinghe, R. & Turner, I. L. (2006). Shoreline response to submerged structures: A review. Coastal Engineering, 53(1), 65–79. https://doi.org/10.1016/j. coastaleng.2005.08.003Rangel-Buitrago, N. & Posada-Posada, B. (2005). Geomorfología y procesos del departamento de Córdoba, Caribe colombiano (Sector paso Nuevo -Cristo Rey. Boletín No 895 Del Instituto de Investigaciones Marinas y Costeras - INVEMAR, 34(0122–9761), 101–119Rangel, N. (2009). Contribución Antropogénica a Los Cambios Geomorfológicos y Evolución Reciente de la Costa Caribe Colombiana. Revista Gestión y Ambiente, 12(2), 43–56.Rangel-Buitrago, N. & Anfuso, G. (2013). Erosion and morphological impacts in the Caribbean coast of Colombia.Ribas, F., de Swart, H. E., Calvete, D. & Falqués, A. (2011). Modeling waves, currents and sandbars on natural beaches: The effect of surface rollers. Journal of Marine Systems, 88(1), 90–101. https://doi.org/10.1016/j.jmarsys. 2011.02.016Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R. & Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11–12), 1133–1152. https://doi.org/ 10.1016/j.coastaleng.2009.08.006Roelvink, J. A., Walstra, D. J. R., & Chen, Z. (1994). Morphological modelling of Keta Lagoon case. Proceedings of the Coastal Engineering Conference, (1994), 3223–3236Ruessink, B. G., Kuriyama, Y., Reniers, A. J. H. M., Roelvink, J. A. & Walstra, D. J. R. (2007). Modeling cross-shore sandbar behavior on the timescale of weeks, 112, 1–15. https://doi.org/10.1029/2006JF000730Ruessink, B. G., Pape, L. & Turner, I. L. (2009). Daily to interannual cross-shore sandbar migration: Observations from a multiple sandbar system. Continental Shelf Research, 29(14), 1663–1677. https://doi.org/10.1016/j. csr.2009.05.011Ruiz-Martínez, G., Rivillas-Ospina, G. D., Mariño-Tapia, I. & Posada-Vanegas, G. (2016). SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis. Computers and Geosciences, 92, 104–116. https:// doi.org/10.1016/j.cageo.2016.04.010Senechal, N., Coco, G., Castelle, B. & Marieu, V. (2015). Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology, 228, 448–461. https://doi.org/10.1016/j. geomorph.2014.09.025Stokes, C., Davidson, M. & Russell, P. (2015). Observation and prediction of three-dimensional morphology at a high-energy macrotidal beach. Geomorphology, 243, 1–13. https://doi.org/10.1016/j.geomorph.2015.04.024Thiébot, J., Idier, D., Garnier, R., Falqués, A. & Ruessink, B. G. (2012). The influence of wave direction on the morphological response of a double sandbar system. Continental Shelf Research, 32, 71–85. https://doi.org/10.1016/j. csr.2011.10.014Trouw, K. J. M., Zimmermann, N., Mathys, M., Delgado, R. & Roelvink, D. (2012). Numerical Modelling of Hydrodynamics and Sediment Transport in the Surf Zone: a Sensitivity Study With Different Types of Numerical Models. Coastal Engineering Proceedings, 1(33), 23. https://doi.org/10.9753/icce. v33.sediment.23US Army Corps of Engineers. (1992). Coastal Groins and Nearshore Breakwaters. Engineer Manual, 90.Van de Lageweg, W. I., Bryan, K. R., Coco, G. & Ruessink, B. G. (2013). Observations of shoreline-sandbar coupling on an embayed beach. Marine Geology, 344, 101–114. https://doi.org/10.1016/j.margeo.2013.07.018Van Rijn, L. C. (1998). Principles of Coastal Morpholigy. Aguc Publications, Amsterdam.van Rijn, L. C., Wasltra, D. J. R., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3), 295–327. https://doi.org/10.1016/S0378- 3839(02)00120-5Van Thiel de Vries, J., Van Dongeren, A., McCall, R., & Reniers, A. (2008). THE EFFECT OF THE LONGSHORE DIMENSION ON DUNE EROSION, 1–13.Vousdoukas, M., Almeida, L., & Ferreira, Ó. (2011). Modelling storm-induced beach morphological change in a meso-tidal, reflective beach using XBeach. Journal of Coastal Research, (SPEC. ISSUE 64), 1916–1920. Retrieved from http:// www.scopus.com/inward/record.url?eid=2-s2.0-84857407278&partnerID= 40&md5=283b926e2bb94cbb39b85ea91282b683%5Cnhttp://www. ics2011.pl/artic/SP64_1916-1920_M.I.Vousdoukas.pdfWise, R. A., Smith, J., & Larson, M. (1996). SBEACH: Report 4 - Cross-Shore Transport Under Random Waves and Model Validation with SUPERTANK and Field Data, (April), 140. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord& metadataPrefix=html&identifier=ADA267191Wolman G. & Miller J. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. The Journal of Geology, 68, 54–74.Wright, L. D., Short, A. D. (1984). Morphodynamic variability of surf zone and beaches: a synthesis. Marine Geology, 56, 93–118.Zimmermann, N. ., Trouw, K. ., De Maerschalck, B. ., Toro, F.; Delgado, R. ., Verwaest, T. ., & Mostaert, F. (2015). Scienti_c support regarding hydrodynamics and sand transport in the coastal zone; evaluation of XBeach for long term cross-shore modelling. Technical Report, Flanders Hydraulic Research., 57Caribe colombianoErosión de playasEventos de tormentaModelación numéricaEstructuras de protecciónColombian Caribbean, protection structures.Beach erosionStorm eventsNumerical modelingProtection structuresPublication4d0737d8-b9b2-4358-a2d7-b9f66594713avirtual::854-14d0737d8-b9b2-4358-a2d7-b9f66594713avirtual::854-10009-0004-5621-8233virtual::854-1ORIGINAL2. Análisis de la morfodinamica -FINAL-.pdf2. Análisis de la morfodinamica -FINAL-.pdfapplication/pdf13903302https://repositoryinst.uniguajira.edu.co/bitstreams/dc24cd1c-f07d-46ce-872f-afdbbbb1f6d7/download43bfdf23d7101209b53443d45818c705MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositoryinst.uniguajira.edu.co/bitstreams/f3243d99-b147-437a-bcfb-6833cd86d430/download73a5432e0b76442b22b026844140d683MD52TEXT2. Análisis de la morfodinamica -FINAL-.pdf.txt2. Análisis de la morfodinamica -FINAL-.pdf.txtExtracted texttext/plain104180https://repositoryinst.uniguajira.edu.co/bitstreams/634c8254-25f0-49f9-a085-a8b6e3cf2f74/download5e3d5b49378d9d9b48fed68656abaa5aMD53THUMBNAIL2. Análisis de la morfodinamica -FINAL-.pdf.jpg2. Análisis de la morfodinamica -FINAL-.pdf.jpgGenerated Thumbnailimage/jpeg15811https://repositoryinst.uniguajira.edu.co/bitstreams/0786f017-a22c-4fad-b38b-72e1e3d4fa04/download16e90a0d695f9ce25caf04df1c0958f8MD54uniguajira/1688oai:repositoryinst.uniguajira.edu.co:uniguajira/16882025-11-07 03:01:07.565https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad de La Guajiraopen.accesshttps://repositoryinst.uniguajira.edu.coBiblioteca Digital Universidad de la Guajirarepositorio@uniguajira.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K