Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria

Incluye índice de tablas y figuras

Autores:
FUENTES MOLINA, NATALIA
ARROYO DE LA OSSA, MIRYAM YORLENIS
Tipo de recurso:
Book
Fecha de publicación:
2025
Institución:
Universidad de la Guajira
Repositorio:
Repositorio Uniguajira
Idioma:
spa
OAI Identifier:
oai:repositoryinst.uniguajira.edu.co:uniguajira/1668
Acceso en línea:
https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668
Palabra clave:
Residuos poliméricos
Biodegradabilidad
Bio-compuestos
Policloruro de vinilo
Rights
openAccess
License
Derechos Reservados Universidad de La Guajira.
id Uniguajra2_097a4bd686fb18155dea5a98ef5eef68
oai_identifier_str oai:repositoryinst.uniguajira.edu.co:uniguajira/1668
network_acronym_str Uniguajra2
network_name_str Repositorio Uniguajira
repository_id_str
dc.title.spa.fl_str_mv Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
title Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
spellingShingle Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
Residuos poliméricos
Biodegradabilidad
Bio-compuestos
Policloruro de vinilo
title_short Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
title_full Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
title_fullStr Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
title_full_unstemmed Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
title_sort Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
dc.creator.fl_str_mv FUENTES MOLINA, NATALIA
ARROYO DE LA OSSA, MIRYAM YORLENIS
dc.contributor.author.none.fl_str_mv FUENTES MOLINA, NATALIA
ARROYO DE LA OSSA, MIRYAM YORLENIS
dc.subject.proposal.spa.fl_str_mv Residuos poliméricos
Biodegradabilidad
Bio-compuestos
Policloruro de vinilo
topic Residuos poliméricos
Biodegradabilidad
Bio-compuestos
Policloruro de vinilo
description Incluye índice de tablas y figuras
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-03T22:10:51Z
dc.date.available.none.fl_str_mv 2025-10-03T22:10:51Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/book
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.none.fl_str_mv 978-628-7718-49-4
dc.identifier.uri.none.fl_str_mv https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668
identifier_str_mv 978-628-7718-49-4
url https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aaliya, B; Sunooj, K; Lackner; M. (2021). Biopolymer composites: A review. International Journal of Biobased Plastics. 2021, 3, 40-84. https://doi.org/10.1080/24759651.2021.1881 214
Azman, M; Asyraf, M; Khalina, A; Petru, M; Ruzaidi, C; Sapuan, S; Wan Nik, W; Ishak, M; Ilyas, R; Suriani, M. (2021). Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polímers. 2021, 13 (12), 1917. https://doi.org/10.3390/polym13121917
Ganesan, C; Joanna, P. (2018). Fatigue Life and Residual Strength prediction of GFRP Composites: An Experimental and Theoretical approach. Lat. Am. j. solidsstruct. 2018, 15 (7), 72. https://doi.org/10.1590/1679-78255095
Roy, K; Debnath, S; Pongwisuthiruchte, A; Potiyaraj, P. (2021). Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. Appliepoly mer. 2021, 138 (35), 1-17. https://doi.org/10.1002/app.50866
Gowda, Y; Sanjay, M; Bhat, P; Madhu, P; Senthamaraikannan; Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering. 2018, 5 (1) 13. https:// doi.org/10.1080/23311916.2018.1446667
Thyavihalli, Y; Rangappa, S; Parameswaranpillai, J; Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Compre hensive Review. Front. Mater. 2019, 6, 226. https://doi.org/10.3389/fmats.2019.00226
Tri-Dung, Ngo. (2017). Natural Fibers for Sustainable Bio-Composites. Intechopen: Edmonton, Alberta, Canadá. 2017. http://dx.doi.org/10.5772/intechopen.71012
Sonar, T; Patil, S; Deshmukh, V; Acharya, R. (2015). Natural Fiber Reinforced Polymer Composite Material-A Review. Journal of Mechanical and Civil Engineering. 2015, 33, 142-147 https://api.semanticscholar.org/CorpusID:41129643
Mohamed, S; Zainudin, E; Sapuan, S; Azaman, M; Arifin, A. (2018). Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 2018, 1–25. https://doi.org/10.1016/B978-0 08-102160-6.00001-9
Nurazzi, N; Harussani, N; Aisyah, H; Ilyas, R; Norrrahim, M; Khalina, A; Abdullah, N. (2021). Treatments of natural fiber as reinforcement in polymer composites—a short review. IOP Conf. Ser.: Mater. Sci. Eng. Funct. Compos. Struct. 2021, 3 (2), 1047. https://doi. org/10.1088/2631-6331/abff36
Velásquez, M; Peláez, J; Giraldo, D. (2016). Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico 2016, 80 (1), 77-86. https://doi.org/10.23850/22565035.324
Athith, D; Sanjay, M; Gowda, T; Madhu, P; Arpitha, G; Yogesha, B; Omri, M. (2018). Ef fect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Engineering. 2018, 48, 713–737.https://doi. org/10.1177/1528083717740765
Díaz, G; Maradei, F; Vargas, G. (2019). Bagasse sugarcane fibers as reinforcement agents for natural composites: description and polymer composite applications. UIS Ing. 2019, 18 (4) 117-130. http://dx.doi.org/10.18273/revuin.v18n4-2019011
Chaquilla, G; Balandrán, R; Mendoza, A; Mercado, J. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. Biotecnología y ciencias agropecuarias. 2018, 12 (2), 137-147. http://dx.doi.org/10.29059/cienciauat.v12i2.883
Gómez, M; Zavala, R; Rivera, J; Mendoza, A; Díaz, N; Rangel, N. (2016). Compatibilidad de po liuretano modificado y poliácido acrílico en una red polimérica interpenetrada. Rev. Iberoam. Po límeros. 2016, 17 (3) 122-128 https://api.semanticscholar.org/CorpusID:192868624
González, Y; Salamanca, J; Vargas, J. (2018). The effect of potato starch modified as a coupling agent in polymer-wood fiber composites. Prospectiva. 2018, 16 (1), 107-113. https://doi. org/10.15665/rp.v16i1.1236
Manimaran, P; Saravanan, S; Sanjay, M; Siengchin, S; Jawaid, M; Khan, A. (2019). Char acterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater Res Technol. 2019, 8 (2): 1952-1963. https://doi.org/10.1016/j. jmrt.2018.12.015
Sanjay, M; Siengchin, S; Parameswaranpillai, J; Jawaid, M; Pruncu, C; Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Prepara tion, processing and characterization. Carbohidr. Polym. 2019, 207, 108-121. https://doi. org/10.1016/j.carbpol.2018.11.083
Azammi, A; Ilyas, R; Sapuan, S; Ibrahim, R; Atikah, M; Asrofi, M; Atiqah, A. (2020). Char acterization studies of biopolymeric matrix and cellulose fibres based composites related to func tionalized fibre-matrix interface. Interfaces in Particle and Fibre Reinforced Composites. 2020, 29–93. https://doi.org/10.1016/B978-0-08-102665-6.00003-0
Vinod, A; Sanjay, M; Suchart; S; Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Limpiar Prod. 2020. 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978
Maradiaga, A; Wagner, E; Sette, R; Alves, J; Fernandes, S. (2017). Production of briquettes with Jatropha curcas shell and sugar cane bagasse. Bosque (Valdivia) 2017, 38 (3): 527-533. http://dx.doi.org/10.4067/S0717-92002017000300010
Vargas, C; Urrego, W; Arbeláez, M; Sánchez, C. (2019). Physicochemical behaviour of natural rubber composites when adding agroindustrial wastes as reinforcing fillers. Revista EIA. 2019, 16 (32) 129–149. https://doi.org/10.24050/reia.v16i32.1214
Bonilla, H; Armijos, H; Calderón, B. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química. 2015, 10 (1), 79-82. https://www.redalyc.org/articulo.oa?id=93341009011
Fernandes, P; Rosa, M; Cioffidos, M; Beninidos, K; Milanesedos, A; Voorwalddos, H; Mu linari, D. (2015). Fibras vegetales en compuestos poliméricos: Una revisión. Polímeros. 2015, 25 (1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722
Gowthaman, S; Nakashima, K; Kawasaki, S. (2018). A State-of-the-Art Review on Soil Reinforce ment Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials. 2018, 11 (4), 553; https://doi.org/10.3390/ma11040553
Suárez, C; Restrepo, M; Quinchía, F; Mercado, A. (2017). Fibras vegetales colombianas como re fuerzo en compuestos de matriz polimérica. Revista Tecnura. 2017, 21 (51), 57-66. https:// doi.org/10.14483/udistrital.jour.tecnura.2017.1.a04
Megashah, L; Ariffin, H; Zakaria, M; Hassan, M. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 368, 012049. http://doi:10.1088/1757-899X/368/1/01204
Salas, N; Gutiérrez, F; Murillo, L; Ureña, Y; Johnson, S; Baudrit, J; Gonzales, R. (2017). Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources. Jour nal of Renewable Materials. 2017, 5 (3-4), 313–322. https://doi.org/10.7569/ JRM.2017.634122
Sadeghi, S; Dadashian, F; Eslahi, N. (2019). Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16 (2), 1119–1128. https:// doi.org/10.1007/s13762-018-1669-z
Syafri, E; Kasim, A.; Abral, H; Asben, A. (2018). Cellulose nanofibers isolation and characteri zation from ramie using a chemical-ultrasonic treatment. J. Nat. Fibras. 2018, 16, 1145 1155 https://doi.org/10.1080/15440478.2018.1455073
Naveen, J; Jawaid, M; Amuthakkannan, P; Chandrasekar, M. (2019). Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and Phys ical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Compos ites. 2019, 427-440. http://dx.doi.org/10.1016/B978-0-08-102292-4.00021-7
Varghese, A; Mittal, V. (2017). Surface modification of natural fibers. Biodegradable and Bio compatible Polymer Composites. 2017, 115-155. https://doi.org/10.1016/B978-0 08-100970-3.00005-5
Thakur, V. (2013). Green Composites from Natural Resources. 1st ed.; CRC Press: Boca Ratón, USA, 2013, Volumen 1, págs. 10. https://doi.org/10.1201/b16076
Naveda, R; Montalvo, P; Pino L; Figueroa, L. (2019). Lignine remotion from rice husk pretreat ment by steam explosion. Sociedad Química del Perú. 2019, 85 (3)352-361. http:// dx.doi.org/10.37761/rsqp.v85i3.245
Asim, M; Saba, N; Jawaid, M; Nasir, M. (2018). 12 - Potential of natural fiber/biomass filler-re inforced polymer composites in aerospace applications. Sustainable Composites for Aero space Applications. 2018, 253–268. https://doi.org/10.1016/B978-0-08-102131 6.00012-8
Dittenber, D; GangaRao, H. (2012). Critical review of recent publications on use of natural compos ites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012, 43 (8), 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019
Nagaraj, K; Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos Mater. 2016, 23 (2), 123–133. http://dx.doi.org/10.1515/secm-2014-0088
Pecas, P; Carvalho, H; Salman, H; Leite, M. (2018). Natural Fibre Composites and TheirAp plications: A Review. J. Compos. Sci. 2018, 2 (4), 66. http://dx.doi.org/10.3390/ jcs2040066
Asyraf, M; Ishak, S; Sapuan, S; Yidris, N; Ilyas, R; Rafidah, M; Razman, M. (2020). Po tential Application of Green Composites for Cross Arm Component in Transmission Tow er: A Brief Review. International Journal of Polymer Science. 2020, 15. https://doi. org/10.1155/2020/8878300
Keya, K; Kona, N; Koly, F; Maraz, K; Islam, M; Khan, R. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Mater Eng. Res. 2019, 1 (2): 69 85. https://doi.org/10.25082/MER.2019.02.006
Vaisanen, T; Das, O; Tomppo, I. (2017). A review on new bio-based constituents for natural fi ber-polymer composites. Journal of Cleaner Production. 2017, 149, 582-596. http://dx. doi.org/10.1016/j.jclepro.2017.02.132
Maslinda, AB; Majid, MSA; Ridzuan, MJM; Afendi, M.; Gibson, AG. (2017). Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237 https://doi.org/10.1016/j.com pstruct.2017.02.023
Gurunathan, T; Mohanty, S; Sanjay K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Parte A: Appl. Sci. Ma nuf. 2015, 77, 1–25 http://dx.doi.org/10.1016%2Fj.compositesa.2015.06.007
Bordoloi, S; Garg, A; Sekharan, S. (2017). A Review of Physio-Biochemical Properties of Nat ural Fibers and Their Application in Soil Reinforcement. Adv. Civ. Ing. Mater. 2017, 6 (1), 323–359. https://doi.org/10.1520/ACEM20160076
Pickering, K; Efendy, M; Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Compos. Parte A- Solicitud Sci. 2016, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
Preneron, AL; Aubert, JE; Magniont, C; Tribout, C; Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials. 2016, 111, 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119
Kumar, A; Vlach, T; Laiblova, L; Hrouda, M; Kasal, B; Tywoniak, J; Hajek, P. (2016). Engi neered bamboo scrimber: Influence of density on the mechanical and water absorp tion properties. Construction and Building Materials. 2016, 127, 815–827. https:// doi.org/10.1016/j.conbuildmat.2016.10.069
Chen, Y; Su, N; Zhang, K; Zhu, S; Zhu, Z; Qin, W; Yang, Y; Shi, Y; Fan, S; Wang, Z; Guo, Y. (2018). Effect of fiber surface treatment on structure, moisture absorption and mechanical prop erties of luffa sponge fiber bundles. Industrial Crops and Products. 2018 123, 341–352 https://doi.org/10.1016/j.indcrop.2018.06.079
Debeli, D; Qin, Z; Guo, J. (2018). Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite. Journal of Natural Fibers. 2018, 15, 596–610. https://doi.org/10.1080/15440478.2017.1349711
Senthilkumar, K; Saba, N; Jawaid, M; Siengchin, S. (2019). Effect of Alkali Treatment on Me chanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J. Polym. Reinar. 2019, 27, 1191–1201. https://doi.org/10.1007/s10924-019-01418-x
Yu, H; Wang, X; Petru, M. (2019). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Construir. Mater. 2019, 208, 220-227. https://doi.org/10.1016/j.conbuildmat.2019.03.001
Halip, J; Hua, L; Ashaari, Z; Tahir, P; Chen, L; Uyup, M. (2018). 8 - Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. 2018, 6, 141-156. https://doi.org/10.1016/B978-0-08-102292-4.00008-4
Dolez, P; Arfaoui, M; Dube, M; David, É. (2017). Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proc. Ing. 2017, 200, 81-88. https://doi. org/10.1016/j.proeng.2017.07.013
Preet Singh, J; Dhawan, V; Singh, S; Jangid, K. (2017). Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Hoy Proc. 2017, 4, 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158
Senthilkumar, K; Saba, N; Rajini, N; Chandrasekar, M; Jawaid, M; Siengchin, S; Othman, Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Construir. Mater. 2018, 174, 713–729. https://doi.org/10.1016/j.conbuild mat.2018.04.143
Saravanakumaar, A; Senthilkumar, A; Saravanakumar, S; Sanjay, M. (2018). Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. IPAC. 2018, 23, 529–536. https://doi.org/10.1080/1023666X.2018.1501931
Atiqah, A; Jawaid, M; Ishak, M; Sapuan, S. (2018). Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyure thane. Journal of Na
Sepe, R; Bollino, F; Boccarusso, L; Caputo, F. (2018). Influence of chemical treatments on me chanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030
Bodur, M; Bakkal, M; Sonmez, H. (2016). The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016, 50, 3817–3830. https://doi.org/10.1177/0021998315626256
Masłowski, M; Miedzianowska, J; Strzelec, K. (2018). Influence of wheat, rye, and tritica le straw on the properties of natural rubber composites. Adv. Polym. Technol. 2018, 37, 2866. https://doi.org/10.1002/adv.21958
Ali, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 2016, 66 (321), 073. http://dx.doi.org/10.3989/ mc.2016.01015
Moonart, U; Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose. 2019, 26, 7271-7295. https://doi. org/10.1007/s10570-019-02611-w
Suwanruji, P; Thuechart, T; Smitthipong, W; Chollakup, R. (2016). Modification of pine apple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Jour nal of Thermoplastic Composite Materials. 2016, 30 (10), 1344-1360. http://dx.doi. org/10.1177/0892705716632860
Hosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications. 2020, 279–299. https://doi.org/10.1016/B978-0 12-819904-6.00013-X
Adekunle, K. (2015). Surface Treatments of Natural Fibres—A. Open Journal of Polymer Chem istry. 2015, 05 (3): 41–46. http://dx.doi.org/10.4236/ojpchem.2015.53005
Balakrishnan, P; John, M; Pothen, L; Sreekala, M; Thomas, S. (2016). 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced Compos ite Materials for Aerospace Engineering. 2016, 365–383. https://doi.org/10.1016/ B978-0-08-100037-3.00012-2
Hassani, F; Merbahi, N; Oushabi, A; Elfadili, M; Kammouni, A; Oueldna, N. (2020). Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater Today Proc. 2020, 24, 46–51. https://doi.org/10.1016/j.matpr.2019.07.527
Azad, N; Asril, M; Shah, M. (2021). A Review on Development of Natural Fibre Composites for Con struction Applications. Journal of Materials Science and Chemical Engineering. 2021, 9, 1-9. https://doi.org/10.4236/msce.2021.97001
López, D; Rojas, A. (2018). Factors that influence the mechanical, physical and thermal properties of wood-plastic composite materials. Between Science and Engineering. 2018, 12 (23), 93 102. http://dx.doi.org/10.31908/19098367.3708
Wahab, R; Samsi, H; Mustafa, M; Mat Razat, M; Yusof, M. (2016). Physical, mechanical and morphological studies on Bio-composite mixture of oil palm frond and Kenaf Bast Fibers. Journal of Plant Sciences. 2016, 11 (1-3), 22-30. https://dx.doi.org/10.3923/jps.2016.22.30
Ramamoorthy, S; Skrifvars, M; Persson, A. (2015). A Review of Natural Fibers Used in Biocom posites: Plant, Animal and Regenerated Cellulose Fibers. Polym Rev. 2015, 55 (1) 107–162. https://doi.org/10.1080/15583724.2014.971124
Ilyas, R; Sapuan, S; Ibrahim, R; Abral, H; Ishak, M; Zainudin, E; Atiqah, A; Atikah, M; Syafri, E; Asrofi, M; Jumaidin, R. (2020). Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. Journal of Biobased Materials and Bioenergy. 2020, 14 (2), 234–248. https://doi.org/10.1166/jbmb.2020.1951
Nurazzi, N; Asyraf, M; Khalina, A; Abdullah, N; Aisyah, H; Rafiqah, S; Sabaruddin, F; Kamarudin, S; Norrrahim, M; Ilyas, R; Sapuan, S. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021, 13 (4), 646. https://doi.org/10.3390/polym13040646
Monteiro, S; Pereira, A; Ferreira, C; Pereira, E; Ponde, R; Salgado, F. (2018). Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System. Polymers. 2018, 10 (3), 230. http://doi.org/10.3390/polym10030230
Sapuan, S; Purushothman, K; Sanyang, M; Mansor, M. (2018). Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table. Lignocellulosic Composite Materials. 2018, 323–356. https://doi.org/10.1007/978-3-319-68696-7_8
Rohit, K; Dixit, S. (2016). A Review - Future Aspect of Natural Fiber Reinforced Compos ite. Polymers from Renewable Resources. 2016, 7, 43-59. http://dx.doi.org/ 10.1177/204124791600700202
Gupta, G; Kumar, A; Tyagi, R; Kumar, S. Application and Future of Composite Materials: A Review. IJIRSET. 2016, 5 (5): 6907-6911. DOI:10.15680/IJIRSET.2016.0505041
Zin, M; Abdan, K; Norizan, M; Mazlan, N. (2018). The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. J. Sci. Tech nol. 2018, 26, 161-176. http://dx.doi.org/10.1088/1757-899X/368/1/012035
Dhakal, H. (2015). Mechanical performance of PC-based biocomposites. Biocomposites - De sign and Mechanical Performance. 2015 303-317. https://doi.org/10.1016/B978-1 78242-373-7.00004-4
Jariwala, H; Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer com posites and its applications. Journal of Reinforced Plastics and Composites. 2019, 38 (10), 441-453 https://doi.org/10.1177%2F0731684419828524
Demelo, R; Marques, M; Navard, P; Duque, N. (2017). Degradation studies and mechanical proper ties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. J. Com pos. Mater. 2017, 51 (25), 3481–3489. https://doi.org/10.1177/0021998317690446
dc.rights.none.fl_str_mv Derechos Reservados Universidad de La Guajira.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
rights_invalid_str_mv Derechos Reservados Universidad de La Guajira.
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 71 Páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Departamento de La Guajira
dc.publisher.none.fl_str_mv Universidad de La Guajira
dc.publisher.place.none.fl_str_mv Distrito Especial, Turístico y Cultural de Riohacha
publisher.none.fl_str_mv Universidad de La Guajira
institution Universidad de la Guajira
bitstream.url.fl_str_mv https://repositoryinst.uniguajira.edu.co/bitstreams/cae26879-bdce-47e4-b2ac-1df5b9a8a833/download
https://repositoryinst.uniguajira.edu.co/bitstreams/23f47ab1-006d-4c59-93ea-4556bce8b86e/download
https://repositoryinst.uniguajira.edu.co/bitstreams/000f3e75-8892-41bb-b8b2-a389a1997a00/download
https://repositoryinst.uniguajira.edu.co/bitstreams/607763da-2af3-4f5e-a7b2-d0b186ad82e4/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
85c28a4dd01b2c8909f85b5153fb95ac
a0d42c82109fbc23721dc0a47853b5ec
48f3f7ae2f7925678adc47ad42b7ac15
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de la Guajira
repository.mail.fl_str_mv repositorio@uniguajira.edu.co
_version_ 1851051062001139712
spelling FUENTES MOLINA, NATALIAvirtual::809-1ARROYO DE LA OSSA, MIRYAM YORLENISvirtual::810-1Departamento de La Guajira2025-10-03T22:10:51Z2025-10-03T22:10:51Z2025978-628-7718-49-4https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668Incluye índice de tablas y figurasLa transformación de los residuos poliméricos en productos comercialmente via bles con diversas aplicaciones ingenieriles viene avanzando en forma significati va los últimos años, siendo una alternativa ecológica innovadora que plantea el aprovechamiento de las fibras residuales de la agroindustria, como elemento de refuerzo en las matrices de residuos poliméricos, por su fácil accesibilidad, reno vabilidad, no toxicidad, baja densidad, reducción de costos, biodegradabilidad y propiedades mecánicas satisfactorias, convirtiéndolos en cambios sostenibles. De manera particular, en este libro se analizan aspectos claves de los bio-com puestos emergentes de materiales poliméricos residuales y fibras naturales via bles; exploramos, además, la composición química, así como las propiedades físicas, mecánicas y térmicas de las matrices poliméricos reforzados con las fibras resultantes, para finalmente proponer el reciclaje como una estrategia innovado ra para la valorización de estos residuos en el sector agrícola e industrial. En términos generales, se abordan aspectos técnicos claves para: i. Establecer la composición y características de los residuos poliméricos recuperados que permitan obtener buenas interfases en las matrices; ii. Analizar el efecto que con fieren los refuerzos naturales a las matrices elaboradas, logrando finalmente; iii. Validar los posibles usos en la elaboración de productos agrícolas e industriales. En este libro, se crea un marco para el reciclaje de los polímeros residuales y las fibras naturales en la elaboración de productos con aplicaciones agrícolas e industriales que consideran las posibles formas de poner en funcionamiento la innovación sostenible y la conciencia ambiental, como camino para avanzar en la implementación de acciones con un direccionamiento estratégico, en el que se explican las diferentes metodologías, seguidos por estudios de casos, con los hallazgos, limitaciones y perspectivas futuras, como alternativa económicamente viable y socialmente segura.Presentación Introducción Avances de los polímeros residuales reforzados Tendencias del aprovechamiento de los polímeros residuales reforzados Experiencias investigativas de los refuerzos naturales en matrices de residuos poliméricos Desafíos emergentes del reciclaje de los poliméros residuales Generalidades de los poliméros residuales Residuos poliméricos Clasificación de los residuos poliméricos Reciclaje de polímeros residuales Métodos y técnicas de reciclaje de polímeros residuales Reciclaje mecánico Reciclaje químico Reciclaje térmico Análisis de la fibras naturales residuales Fibras naturales alternativas sostenibles Composición química de las fibras naturales Propiedades de las fibras naturales Posibles tratamientos aplicados a las fibras naturales residuales Materiales compuestos propiedades y perspectivas Materiales compuestos Materiales compuestos de polímeros residuales reforzados con fibras naturales y sus propiedades Refuerzos de matrices poliméricas Investigaciones de los refuerzos con hallazgos importantes como alternativa viable y efectiva de reciclaje Investigaciones de matrices poliméricas con fibras sintéticas Investigaciones de matrices poliméricas con fibras naturales Aplicaciones viables del reciclaje de los polímeros residuales reforzados Prototipo de las bandejas para plántulas Prototipo de película de protección de suelos Prototipo de pantallas especiales para cubiertas de invernaderos Prototipo de los contenedores flexibles Prototipo de mangueras flexibles para riego con acoples Prototipo de tuberías flexibles para riego con acoples Prototipo de contenedores de sustancias químicas Prototipo de comederos y bebederos de animales Prototipo de vallas espaciadoras Prototipo de geo-membranas Prototipo de carpa o cobertizo Prototipo de las mantas de protección de frutos Consideraciones finales Referencias bibliográficasPrimera edición71 Páginasapplication/pdfspaUniversidad de La GuajiraDistrito Especial, Turístico y Cultural de RiohachaDerechos Reservados Universidad de La Guajira.https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)http://purl.org/coar/access_right/c_abf2Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustriaLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aaliya, B; Sunooj, K; Lackner; M. (2021). Biopolymer composites: A review. International Journal of Biobased Plastics. 2021, 3, 40-84. https://doi.org/10.1080/24759651.2021.1881 214Azman, M; Asyraf, M; Khalina, A; Petru, M; Ruzaidi, C; Sapuan, S; Wan Nik, W; Ishak, M; Ilyas, R; Suriani, M. (2021). Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polímers. 2021, 13 (12), 1917. https://doi.org/10.3390/polym13121917Ganesan, C; Joanna, P. (2018). Fatigue Life and Residual Strength prediction of GFRP Composites: An Experimental and Theoretical approach. Lat. Am. j. solidsstruct. 2018, 15 (7), 72. https://doi.org/10.1590/1679-78255095Roy, K; Debnath, S; Pongwisuthiruchte, A; Potiyaraj, P. (2021). Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. Appliepoly mer. 2021, 138 (35), 1-17. https://doi.org/10.1002/app.50866Gowda, Y; Sanjay, M; Bhat, P; Madhu, P; Senthamaraikannan; Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering. 2018, 5 (1) 13. https:// doi.org/10.1080/23311916.2018.1446667Thyavihalli, Y; Rangappa, S; Parameswaranpillai, J; Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Compre hensive Review. Front. Mater. 2019, 6, 226. https://doi.org/10.3389/fmats.2019.00226Tri-Dung, Ngo. (2017). Natural Fibers for Sustainable Bio-Composites. Intechopen: Edmonton, Alberta, Canadá. 2017. http://dx.doi.org/10.5772/intechopen.71012Sonar, T; Patil, S; Deshmukh, V; Acharya, R. (2015). Natural Fiber Reinforced Polymer Composite Material-A Review. Journal of Mechanical and Civil Engineering. 2015, 33, 142-147 https://api.semanticscholar.org/CorpusID:41129643Mohamed, S; Zainudin, E; Sapuan, S; Azaman, M; Arifin, A. (2018). Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 2018, 1–25. https://doi.org/10.1016/B978-0 08-102160-6.00001-9Nurazzi, N; Harussani, N; Aisyah, H; Ilyas, R; Norrrahim, M; Khalina, A; Abdullah, N. (2021). Treatments of natural fiber as reinforcement in polymer composites—a short review. IOP Conf. Ser.: Mater. Sci. Eng. Funct. Compos. Struct. 2021, 3 (2), 1047. https://doi. org/10.1088/2631-6331/abff36Velásquez, M; Peláez, J; Giraldo, D. (2016). Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico 2016, 80 (1), 77-86. https://doi.org/10.23850/22565035.324Athith, D; Sanjay, M; Gowda, T; Madhu, P; Arpitha, G; Yogesha, B; Omri, M. (2018). Ef fect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Engineering. 2018, 48, 713–737.https://doi. org/10.1177/1528083717740765Díaz, G; Maradei, F; Vargas, G. (2019). Bagasse sugarcane fibers as reinforcement agents for natural composites: description and polymer composite applications. UIS Ing. 2019, 18 (4) 117-130. http://dx.doi.org/10.18273/revuin.v18n4-2019011Chaquilla, G; Balandrán, R; Mendoza, A; Mercado, J. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. Biotecnología y ciencias agropecuarias. 2018, 12 (2), 137-147. http://dx.doi.org/10.29059/cienciauat.v12i2.883Gómez, M; Zavala, R; Rivera, J; Mendoza, A; Díaz, N; Rangel, N. (2016). Compatibilidad de po liuretano modificado y poliácido acrílico en una red polimérica interpenetrada. Rev. Iberoam. Po límeros. 2016, 17 (3) 122-128 https://api.semanticscholar.org/CorpusID:192868624González, Y; Salamanca, J; Vargas, J. (2018). The effect of potato starch modified as a coupling agent in polymer-wood fiber composites. Prospectiva. 2018, 16 (1), 107-113. https://doi. org/10.15665/rp.v16i1.1236Manimaran, P; Saravanan, S; Sanjay, M; Siengchin, S; Jawaid, M; Khan, A. (2019). Char acterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater Res Technol. 2019, 8 (2): 1952-1963. https://doi.org/10.1016/j. jmrt.2018.12.015Sanjay, M; Siengchin, S; Parameswaranpillai, J; Jawaid, M; Pruncu, C; Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Prepara tion, processing and characterization. Carbohidr. Polym. 2019, 207, 108-121. https://doi. org/10.1016/j.carbpol.2018.11.083Azammi, A; Ilyas, R; Sapuan, S; Ibrahim, R; Atikah, M; Asrofi, M; Atiqah, A. (2020). Char acterization studies of biopolymeric matrix and cellulose fibres based composites related to func tionalized fibre-matrix interface. Interfaces in Particle and Fibre Reinforced Composites. 2020, 29–93. https://doi.org/10.1016/B978-0-08-102665-6.00003-0Vinod, A; Sanjay, M; Suchart; S; Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Limpiar Prod. 2020. 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978Maradiaga, A; Wagner, E; Sette, R; Alves, J; Fernandes, S. (2017). Production of briquettes with Jatropha curcas shell and sugar cane bagasse. Bosque (Valdivia) 2017, 38 (3): 527-533. http://dx.doi.org/10.4067/S0717-92002017000300010Vargas, C; Urrego, W; Arbeláez, M; Sánchez, C. (2019). Physicochemical behaviour of natural rubber composites when adding agroindustrial wastes as reinforcing fillers. Revista EIA. 2019, 16 (32) 129–149. https://doi.org/10.24050/reia.v16i32.1214Bonilla, H; Armijos, H; Calderón, B. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química. 2015, 10 (1), 79-82. https://www.redalyc.org/articulo.oa?id=93341009011Fernandes, P; Rosa, M; Cioffidos, M; Beninidos, K; Milanesedos, A; Voorwalddos, H; Mu linari, D. (2015). Fibras vegetales en compuestos poliméricos: Una revisión. Polímeros. 2015, 25 (1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722Gowthaman, S; Nakashima, K; Kawasaki, S. (2018). A State-of-the-Art Review on Soil Reinforce ment Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials. 2018, 11 (4), 553; https://doi.org/10.3390/ma11040553Suárez, C; Restrepo, M; Quinchía, F; Mercado, A. (2017). Fibras vegetales colombianas como re fuerzo en compuestos de matriz polimérica. Revista Tecnura. 2017, 21 (51), 57-66. https:// doi.org/10.14483/udistrital.jour.tecnura.2017.1.a04Megashah, L; Ariffin, H; Zakaria, M; Hassan, M. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 368, 012049. http://doi:10.1088/1757-899X/368/1/01204Salas, N; Gutiérrez, F; Murillo, L; Ureña, Y; Johnson, S; Baudrit, J; Gonzales, R. (2017). Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources. Jour nal of Renewable Materials. 2017, 5 (3-4), 313–322. https://doi.org/10.7569/ JRM.2017.634122Sadeghi, S; Dadashian, F; Eslahi, N. (2019). Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16 (2), 1119–1128. https:// doi.org/10.1007/s13762-018-1669-zSyafri, E; Kasim, A.; Abral, H; Asben, A. (2018). Cellulose nanofibers isolation and characteri zation from ramie using a chemical-ultrasonic treatment. J. Nat. Fibras. 2018, 16, 1145 1155 https://doi.org/10.1080/15440478.2018.1455073Naveen, J; Jawaid, M; Amuthakkannan, P; Chandrasekar, M. (2019). Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and Phys ical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Compos ites. 2019, 427-440. http://dx.doi.org/10.1016/B978-0-08-102292-4.00021-7Varghese, A; Mittal, V. (2017). Surface modification of natural fibers. Biodegradable and Bio compatible Polymer Composites. 2017, 115-155. https://doi.org/10.1016/B978-0 08-100970-3.00005-5Thakur, V. (2013). Green Composites from Natural Resources. 1st ed.; CRC Press: Boca Ratón, USA, 2013, Volumen 1, págs. 10. https://doi.org/10.1201/b16076Naveda, R; Montalvo, P; Pino L; Figueroa, L. (2019). Lignine remotion from rice husk pretreat ment by steam explosion. Sociedad Química del Perú. 2019, 85 (3)352-361. http:// dx.doi.org/10.37761/rsqp.v85i3.245Asim, M; Saba, N; Jawaid, M; Nasir, M. (2018). 12 - Potential of natural fiber/biomass filler-re inforced polymer composites in aerospace applications. Sustainable Composites for Aero space Applications. 2018, 253–268. https://doi.org/10.1016/B978-0-08-102131 6.00012-8Dittenber, D; GangaRao, H. (2012). Critical review of recent publications on use of natural compos ites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012, 43 (8), 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019Nagaraj, K; Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos Mater. 2016, 23 (2), 123–133. http://dx.doi.org/10.1515/secm-2014-0088Pecas, P; Carvalho, H; Salman, H; Leite, M. (2018). Natural Fibre Composites and TheirAp plications: A Review. J. Compos. Sci. 2018, 2 (4), 66. http://dx.doi.org/10.3390/ jcs2040066Asyraf, M; Ishak, S; Sapuan, S; Yidris, N; Ilyas, R; Rafidah, M; Razman, M. (2020). Po tential Application of Green Composites for Cross Arm Component in Transmission Tow er: A Brief Review. International Journal of Polymer Science. 2020, 15. https://doi. org/10.1155/2020/8878300Keya, K; Kona, N; Koly, F; Maraz, K; Islam, M; Khan, R. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Mater Eng. Res. 2019, 1 (2): 69 85. https://doi.org/10.25082/MER.2019.02.006Vaisanen, T; Das, O; Tomppo, I. (2017). A review on new bio-based constituents for natural fi ber-polymer composites. Journal of Cleaner Production. 2017, 149, 582-596. http://dx. doi.org/10.1016/j.jclepro.2017.02.132Maslinda, AB; Majid, MSA; Ridzuan, MJM; Afendi, M.; Gibson, AG. (2017). Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237 https://doi.org/10.1016/j.com pstruct.2017.02.023Gurunathan, T; Mohanty, S; Sanjay K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Parte A: Appl. Sci. Ma nuf. 2015, 77, 1–25 http://dx.doi.org/10.1016%2Fj.compositesa.2015.06.007Bordoloi, S; Garg, A; Sekharan, S. (2017). A Review of Physio-Biochemical Properties of Nat ural Fibers and Their Application in Soil Reinforcement. Adv. Civ. Ing. Mater. 2017, 6 (1), 323–359. https://doi.org/10.1520/ACEM20160076Pickering, K; Efendy, M; Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Compos. Parte A- Solicitud Sci. 2016, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038Preneron, AL; Aubert, JE; Magniont, C; Tribout, C; Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials. 2016, 111, 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119Kumar, A; Vlach, T; Laiblova, L; Hrouda, M; Kasal, B; Tywoniak, J; Hajek, P. (2016). Engi neered bamboo scrimber: Influence of density on the mechanical and water absorp tion properties. Construction and Building Materials. 2016, 127, 815–827. https:// doi.org/10.1016/j.conbuildmat.2016.10.069Chen, Y; Su, N; Zhang, K; Zhu, S; Zhu, Z; Qin, W; Yang, Y; Shi, Y; Fan, S; Wang, Z; Guo, Y. (2018). Effect of fiber surface treatment on structure, moisture absorption and mechanical prop erties of luffa sponge fiber bundles. Industrial Crops and Products. 2018 123, 341–352 https://doi.org/10.1016/j.indcrop.2018.06.079Debeli, D; Qin, Z; Guo, J. (2018). Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite. Journal of Natural Fibers. 2018, 15, 596–610. https://doi.org/10.1080/15440478.2017.1349711Senthilkumar, K; Saba, N; Jawaid, M; Siengchin, S. (2019). Effect of Alkali Treatment on Me chanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J. Polym. Reinar. 2019, 27, 1191–1201. https://doi.org/10.1007/s10924-019-01418-xYu, H; Wang, X; Petru, M. (2019). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Construir. Mater. 2019, 208, 220-227. https://doi.org/10.1016/j.conbuildmat.2019.03.001Halip, J; Hua, L; Ashaari, Z; Tahir, P; Chen, L; Uyup, M. (2018). 8 - Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. 2018, 6, 141-156. https://doi.org/10.1016/B978-0-08-102292-4.00008-4Dolez, P; Arfaoui, M; Dube, M; David, É. (2017). Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proc. Ing. 2017, 200, 81-88. https://doi. org/10.1016/j.proeng.2017.07.013Preet Singh, J; Dhawan, V; Singh, S; Jangid, K. (2017). Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Hoy Proc. 2017, 4, 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158Senthilkumar, K; Saba, N; Rajini, N; Chandrasekar, M; Jawaid, M; Siengchin, S; Othman, Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Construir. Mater. 2018, 174, 713–729. https://doi.org/10.1016/j.conbuild mat.2018.04.143Saravanakumaar, A; Senthilkumar, A; Saravanakumar, S; Sanjay, M. (2018). Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. IPAC. 2018, 23, 529–536. https://doi.org/10.1080/1023666X.2018.1501931Atiqah, A; Jawaid, M; Ishak, M; Sapuan, S. (2018). Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyure thane. Journal of NaSepe, R; Bollino, F; Boccarusso, L; Caputo, F. (2018). Influence of chemical treatments on me chanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030Bodur, M; Bakkal, M; Sonmez, H. (2016). The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016, 50, 3817–3830. https://doi.org/10.1177/0021998315626256Masłowski, M; Miedzianowska, J; Strzelec, K. (2018). Influence of wheat, rye, and tritica le straw on the properties of natural rubber composites. Adv. Polym. Technol. 2018, 37, 2866. https://doi.org/10.1002/adv.21958Ali, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 2016, 66 (321), 073. http://dx.doi.org/10.3989/ mc.2016.01015Moonart, U; Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose. 2019, 26, 7271-7295. https://doi. org/10.1007/s10570-019-02611-wSuwanruji, P; Thuechart, T; Smitthipong, W; Chollakup, R. (2016). Modification of pine apple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Jour nal of Thermoplastic Composite Materials. 2016, 30 (10), 1344-1360. http://dx.doi. org/10.1177/0892705716632860Hosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications. 2020, 279–299. https://doi.org/10.1016/B978-0 12-819904-6.00013-XAdekunle, K. (2015). Surface Treatments of Natural Fibres—A. Open Journal of Polymer Chem istry. 2015, 05 (3): 41–46. http://dx.doi.org/10.4236/ojpchem.2015.53005Balakrishnan, P; John, M; Pothen, L; Sreekala, M; Thomas, S. (2016). 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced Compos ite Materials for Aerospace Engineering. 2016, 365–383. https://doi.org/10.1016/ B978-0-08-100037-3.00012-2Hassani, F; Merbahi, N; Oushabi, A; Elfadili, M; Kammouni, A; Oueldna, N. (2020). Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater Today Proc. 2020, 24, 46–51. https://doi.org/10.1016/j.matpr.2019.07.527Azad, N; Asril, M; Shah, M. (2021). A Review on Development of Natural Fibre Composites for Con struction Applications. Journal of Materials Science and Chemical Engineering. 2021, 9, 1-9. https://doi.org/10.4236/msce.2021.97001López, D; Rojas, A. (2018). Factors that influence the mechanical, physical and thermal properties of wood-plastic composite materials. Between Science and Engineering. 2018, 12 (23), 93 102. http://dx.doi.org/10.31908/19098367.3708Wahab, R; Samsi, H; Mustafa, M; Mat Razat, M; Yusof, M. (2016). Physical, mechanical and morphological studies on Bio-composite mixture of oil palm frond and Kenaf Bast Fibers. Journal of Plant Sciences. 2016, 11 (1-3), 22-30. https://dx.doi.org/10.3923/jps.2016.22.30Ramamoorthy, S; Skrifvars, M; Persson, A. (2015). A Review of Natural Fibers Used in Biocom posites: Plant, Animal and Regenerated Cellulose Fibers. Polym Rev. 2015, 55 (1) 107–162. https://doi.org/10.1080/15583724.2014.971124Ilyas, R; Sapuan, S; Ibrahim, R; Abral, H; Ishak, M; Zainudin, E; Atiqah, A; Atikah, M; Syafri, E; Asrofi, M; Jumaidin, R. (2020). Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. Journal of Biobased Materials and Bioenergy. 2020, 14 (2), 234–248. https://doi.org/10.1166/jbmb.2020.1951Nurazzi, N; Asyraf, M; Khalina, A; Abdullah, N; Aisyah, H; Rafiqah, S; Sabaruddin, F; Kamarudin, S; Norrrahim, M; Ilyas, R; Sapuan, S. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021, 13 (4), 646. https://doi.org/10.3390/polym13040646Monteiro, S; Pereira, A; Ferreira, C; Pereira, E; Ponde, R; Salgado, F. (2018). Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System. Polymers. 2018, 10 (3), 230. http://doi.org/10.3390/polym10030230Sapuan, S; Purushothman, K; Sanyang, M; Mansor, M. (2018). Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table. Lignocellulosic Composite Materials. 2018, 323–356. https://doi.org/10.1007/978-3-319-68696-7_8Rohit, K; Dixit, S. (2016). A Review - Future Aspect of Natural Fiber Reinforced Compos ite. Polymers from Renewable Resources. 2016, 7, 43-59. http://dx.doi.org/ 10.1177/204124791600700202Gupta, G; Kumar, A; Tyagi, R; Kumar, S. Application and Future of Composite Materials: A Review. IJIRSET. 2016, 5 (5): 6907-6911. DOI:10.15680/IJIRSET.2016.0505041Zin, M; Abdan, K; Norizan, M; Mazlan, N. (2018). The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. J. Sci. Tech nol. 2018, 26, 161-176. http://dx.doi.org/10.1088/1757-899X/368/1/012035Dhakal, H. (2015). Mechanical performance of PC-based biocomposites. Biocomposites - De sign and Mechanical Performance. 2015 303-317. https://doi.org/10.1016/B978-1 78242-373-7.00004-4Jariwala, H; Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer com posites and its applications. Journal of Reinforced Plastics and Composites. 2019, 38 (10), 441-453 https://doi.org/10.1177%2F0731684419828524Demelo, R; Marques, M; Navard, P; Duque, N. (2017). Degradation studies and mechanical proper ties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. J. Com pos. Mater. 2017, 51 (25), 3481–3489. https://doi.org/10.1177/0021998317690446Residuos poliméricosBiodegradabilidadBio-compuestosPolicloruro de viniloPublication160388cd-d0d9-4a27-a1a0-b689892d8b18virtual::809-11cb62011-f4e2-48c5-bce6-88db843cea48virtual::810-1160388cd-d0d9-4a27-a1a0-b689892d8b18virtual::809-11cb62011-f4e2-48c5-bce6-88db843cea48virtual::810-10000-0001-6082-5651virtual::809-10000-0002-3426-2098virtual::810-1LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositoryinst.uniguajira.edu.co/bitstreams/cae26879-bdce-47e4-b2ac-1df5b9a8a833/download73a5432e0b76442b22b026844140d683MD51ORIGINAL86. Polímeros sostenibles.pdf86. Polímeros sostenibles.pdfapplication/pdf5647225https://repositoryinst.uniguajira.edu.co/bitstreams/23f47ab1-006d-4c59-93ea-4556bce8b86e/download85c28a4dd01b2c8909f85b5153fb95acMD52TEXT86. Polímeros sostenibles.pdf.txt86. Polímeros sostenibles.pdf.txtExtracted texttext/plain101581https://repositoryinst.uniguajira.edu.co/bitstreams/000f3e75-8892-41bb-b8b2-a389a1997a00/downloada0d42c82109fbc23721dc0a47853b5ecMD53THUMBNAIL86. Polímeros sostenibles.pdf.jpg86. Polímeros sostenibles.pdf.jpgGenerated Thumbnailimage/jpeg16208https://repositoryinst.uniguajira.edu.co/bitstreams/607763da-2af3-4f5e-a7b2-d0b186ad82e4/download48f3f7ae2f7925678adc47ad42b7ac15MD54uniguajira/1668oai:repositoryinst.uniguajira.edu.co:uniguajira/16682025-10-04 03:00:34.628https://creativecommons.org/licenses/by-nc-sa/4.0/Derechos Reservados Universidad de La Guajira.open.accesshttps://repositoryinst.uniguajira.edu.coBiblioteca Digital Universidad de la Guajirarepositorio@uniguajira.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K