Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó

: figuras, tablas

Autores:
Renteria Mena, Jackson Berney
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad Tecnológica de Pereira
Repositorio:
Repositorio Institucional UTP
Idioma:
eng
OAI Identifier:
oai:repositorio.utp.edu.co:11059/16492
Acceso en línea:
https://hdl.handle.net/11059/16492
https://repositorio.utp.edu.co/home
Palabra clave:
620 - Ingeniería y operaciones afines
2. Ingeniería y Tecnología
Modelado hidrológico
Predicción multivariante
Nivel del agua
Redes neuronales no lineales
Modelos autorregresivos
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id UTP2_9db0c86d6b0e513ef957ec2cbbac83de
oai_identifier_str oai:repositorio.utp.edu.co:11059/16492
network_acronym_str UTP2
network_name_str Repositorio Institucional UTP
repository_id_str
dc.title.spa.fl_str_mv Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
title Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
spellingShingle Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
620 - Ingeniería y operaciones afines
2. Ingeniería y Tecnología
Modelado hidrológico
Predicción multivariante
Nivel del agua
Redes neuronales no lineales
Modelos autorregresivos
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
title_short Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
title_full Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
title_fullStr Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
title_full_unstemmed Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
title_sort Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó
dc.creator.fl_str_mv Renteria Mena, Jackson Berney
dc.contributor.advisor.none.fl_str_mv Giraldo-Suárez, Eduardo
Plaza Guinglia, Douglas
dc.contributor.author.none.fl_str_mv Renteria Mena, Jackson Berney
dc.contributor.researchgroup.none.fl_str_mv Ingeniería Eléctrica::Grupo de Investigación Control Automático
dc.subject.ddc.none.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
2. Ingeniería y Tecnología
Modelado hidrológico
Predicción multivariante
Nivel del agua
Redes neuronales no lineales
Modelos autorregresivos
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.ocde.none.fl_str_mv 2. Ingeniería y Tecnología
dc.subject.proposal.spa.fl_str_mv Modelado hidrológico
Predicción multivariante
Nivel del agua
Redes neuronales no lineales
Modelos autorregresivos
dc.subject.ods.none.fl_str_mv ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
description : figuras, tablas
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-12-01T16:17:39Z
dc.date.available.none.fl_str_mv 2025-12-01T16:17:39Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Renteria Mena, J. (2025). Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó. Universidad Tecnológica de Pereira. Disponible en: https://hdl.handle.net/11059/16492
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11059/16492
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Pereira
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad Tecnológica de Pereira
dc.identifier.repourl.none.fl_str_mv https://repositorio.utp.edu.co/home
identifier_str_mv Renteria Mena, J. (2025). Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó. Universidad Tecnológica de Pereira. Disponible en: https://hdl.handle.net/11059/16492
Universidad Tecnológica de Pereira
Repositorio Universidad Tecnológica de Pereira
url https://hdl.handle.net/11059/16492
https://repositorio.utp.edu.co/home
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] K. G. M. Pacheco, “Con el agua al cuello”: Una historia de batallas perdidas contra el agua y desastres por inundaciones en colombia, 1950-2011,” Agua y territorio= Water and Landscape, no. 22, pp. 77–91, 2023.
[2] H. Ayala Mosquera, “Extractivismo minero y sus efectos sobre el cambio clim ́atico en el choc ́o biogeogr ́afico colombiano.,” Bolet ́ın de Antropolog ́ıa, vol. 37, no. 64, 2022.
[3] R. G ́omez, J. L ́opez, and P. Rodr ́ıguez, “Impacto de las inundaciones en la infraestructura y econom ́ıa local en colombia,” An ́alisis de Riesgos Naturales, vol. 22, no. 2, pp. 76–89, 2020.
[4] A. R ́ıos and M. P ́erez, Respuestas comunitarias a eventos clim ́aticos extremos. Editorial Acad ́emica, 2020.
[5] M. Alvarez and J. Vargas, ́ Gesti ́on de riesgos en comunidades ribere ̃nas. Editorial Universitaria, 2022.
[6] R. G ́omez, Sistemas de alerta temprana para desastres naturales. Editorial Cient ́ıfica, 2017.
[7] F. Jaramillo, Modelos predictivos en gesti ́on de inundaciones. Instituto Nacional de Meteorolog ́ıa, 2023.
[8] A. Castro, L. G ́omez, and P. Rodr ́ıguez, Tecnolog ́ıas de monitoreo hidrol ́ogico. Universidad de los Andes, 2019.
[9] J. M ́endez and E. Su ́arez, “Prevenci ́on y mitigaci ́on de riesgos de inundaci ́on,” Revista de Ciencias Ambientales, vol. 28, no. 1, pp. 12–25, 2020.
[10] D. Rojas and F. Mendoza, “Adaptaci ́on al cambio clim ́atico en comunidades ribere ̃nas,” Revista de Gesti ́on de Riesgos, vol. 30, no. 3, pp. 78–91, 2021.
[11] C. P ́erez, Planificaci ́on y respuesta ante emergencias clim ́aticas. Editorial Universitaria, 2019.
[12] R. L. Bras and I. Rodriguez-Iturbe, Random functions and hydrology. Courier Corporation, 1993.
[13] K. I. Mart ́ınez Calder ́on et al., “Cr ́onicas de viaje al choc ́o,” 2018.
[14] E. E. Cossio Roma ̃na, “Fortalecimiento de la infraestructura en salud e integraci ́on social en la zona rural y urbana de quibd ́o, choc ́o,” 2020.
[15] S. P. Nore ̃na Garc ́ıa, “Responsabilidad del estado por el desplazamiento de comunidades por causas asociadas al cambio clim ́atico en los departamentos de risaralda y choc ́o durante la ola invernal de 2010-2011.,” 2019.
[16] M. Institute of Hydrology and E. Studies, Consulta descarga datos Meterol ́ogicos - 2021. Bogot ́a:: IDEAM dhime,, 2021.
[17] W. F. R. Mi ̃nope, P. V. R. V. Liz ́arraga, S. P. M. P ́erez, V. T. Monteza, and H. I. M. Cabrera, “Modelamiento de procesos hidrol ́ogicos aplicando t ́ecnicas de inteligencia artificial: una revisi ́on sistem ́atica de la literatura,” ITECKNE: Innovaci ́on e Investigaci ́on en Ingenier ́ıa, vol. 19, no. 1, p. 6, 2022.
[18] R. W. Farebrother, Linear least squares computations. Routledge, 2018.
[19] G. Pillonetto, T. Chen, A. Chiuso, G. D. Nicolao, and L. Ljung, “Regularized system identification: Learning dynamic models from data,” IEEE Control Systems Magazine, vol. 42, no. 1, pp. 24–48, 2022.
[20] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley & Sons, 2007.
[21] S. Theodoridis, Machine learning: a Bayesian and optimization perspective. Academic press, 2015.
[22] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.
[23] E. Palchevsky, V. Antonov, R. Enikeev, and T. Breikin, “A system based on an artificial neural network of the second generation for decision support in especially significant situations,” Journal of Hydrology, vol. 616, p. 128844, 2023.
[24] Z. LV, J. Zuo, and D. Rodriguez, “Predicting of runoff using an optimized swat-ann: A case study,” Journal of Hydrology: Regional Studies, vol. 29, p. 100688, 2020.
[25] Y. Abou Rjeily, O. Abbas, M. Sadek, I. Shahrour, and F. Hage Chehade, “Flood forecasting within urban drainage systems using narx neural network,” Water Science and Technology, vol. 76, no. 9, pp. 2401–2412, 2017.
[26] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long short-term memory (lstm) neural network for flood forecasting,” Water, vol. 11, no. 7, p. 1387, 2019.
[27] P. Mu ̃noz, J. Orellana-Alvear, J. Bendix, J. Feyen, and R. C ́elleri, “Flood early warning systems using machine learning techniques: The case of the tomebamba catchment at the southern andes of ecuador,” Hydrology, vol. 8, no. 4, p. 183, 2021.
[28] S. Bande and V. V. Shete, “Smart flood disaster prediction system using iot & neural networks,” in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 189–194, Ieee, 2017.
[29] A. Jabbari and D.-H. Bae, “Application of artificial neural networks for accuracy enhancements of real-time flood forecasting in the imjin basin,” Water, vol. 10, no. 11, p. 1626, 2018.
[30] R. Tabbussum and A. Q. Dar, “Comparative analysis of neural network training algorithms for the flood forecast modelling of an alluvial himalayan river,” Journal of Flood Risk Management, vol. 13, no. 4, p. e12656, 2020.
[31] F. Y. Dtissibe, A. A. A. Ari, C. Titouna, O. Thiare, and A. M. Gueroui, “Flood forecasting based on an artificial neural network scheme,” Natural Hazards, vol. 104, pp. 1211–1237, 2020.
[32] S. I. Abdullahi, M. H. Habaebi, and N. A. Malik, “Flood disaster warning system on the go,” in 2018 7th International Conference on Computer and Communication Engineering (ICCCE), pp. 258–263, IEEE, 2018.
[33] N. Kimura, I. Yoshinaga, K. Sekijima, I. Azechi, and D. Baba, “Convolutional neural network coupled with a transfer-learning approach for time-series flood predictions,” Water, vol. 12, no. 1, p. 96, 2019.
[34] M. Moishin, R. Deo, R. Prasad, and N. Raj, “Designing deep-based learning flood forecast model with convlstm hybrid algorithm,” IEEE Access, vol. 9, pp. 43364–43377, 2021.
[35] U. T. Khan, J. He, and C. Valeo, “River flood prediction using fuzzy neural networks: an investigation on automated network architecture,” Water Science and Technology, vol. 2017, no. 1, pp. 238–247, 2018.
[36] R. Tabbussum and A. Q. Dar, “Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction,” Environmental Science and Pollution Research, vol. 28, no. 20, pp. 25265–25282, 2021.
[37] S. Sankaranarayanan, M. Prabhakar, S. Satish, P. Jain, A. Ramprasad, and A. Krishnan, “Flood prediction based on weather parameters using deep learning,” Journal of Water and Climate Change, vol. 11, no. 4, pp. 1766–1783, 2020.
[38] P. Rodgers, Grey System Theory and Applications. Springer, 2000.
[39] W. Yang and S. Liu, “Grey models in time series prediction: Theory and applications,” Expert Systems with Applications, vol. 94, pp. 302–317, 2018.
[40] Z. Wan, W. Yu, J. Xu, X. Liu, and G. Zhang, “A review on flood forecasting technology based on deep learning models,” Journal of Hydrology, vol. 570, pp. 330–345, 2019.
[41] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. ??, no. ??, p. ??–??, 2019.
[42] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating physics-based modeling with machine learning: A survey,” arXiv preprint arXiv:2003.04919v4, pp. 1–34, 2020.
[43] K. Beven, Rainfall-runoff modelling: the primer. John Wiley & Sons, 2011.
[44] K. Beven, “How to make advances in hydrological modelling,” Hydrology Research, vol. 50, no. 6, pp. 1481–1494, 2019.
[45] K. Beven and P. Young, “A guide to good practice in modeling semantics for authors and referees,” Water Resources Research, vol. 49, no. 8, pp. 5092–5098, 2013.
[46] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007.
[47] B. Hadid, E. Duviella, and S. Lecoeuche, “Data-driven modeling for river flood forecasting based on a piecewise linear arx system identification,” Journal of Process Control, vol. 86, pp. 44–56, 2020.
[48] S. Nevo, E. Morin, A. Gerzi Rosenthal, A. Metzger, C. Barshai, D. Weitzner, D. Voloshin, F. Kratzert, G. Elidan, G. Dror, et al., “Flood forecasting with machine learning models in an operational framework,” Hydrology and Earth System Sciences, vol. 26, no. 15, pp. 4013–4032, 2022.
[49] F. Unduche, H. Tolossa, D. Senbeta, and E. Zhu, “Evaluation of four hydrological models for operational flood forecasting in a canadian prairie watershed,” Hydrological Sciences Journal, vol. 63, no. 8, pp. 1133–1149, 2018.
[50] M. Vel ́asquez-Restrepo and G. Poveda, “Estimaci ́on del balance h ́ıdrico de la regi ́on pac ́ıfica colombiana,” Dyna, vol. 86, no. 208, pp. 297–306, 2019.
[51] J. Chen, C. Li, F. P. Brissette, H. Chen, M. Wang, and G. R. Essou, “Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling,” Journal of Hydrology, vol. 560, pp. 326–341, 2018.
[52] K. Jafarzadegan, P. Abbaszadeh, and H. Moradkhani, “Sequential data assimilation for real-time probabilistic flood inundation mapping,” Hydrology and Earth System Sciences, vol. 25, no. 9, pp. 4995–5011, 2021.
[53] M. Acosta-Coll, F. Ballester-Merelo, M. Martinez-Peir ́o, and E. De la Hoz-Franco, “Real-time early warning system design for pluvial flash floods—a review,” Sensors, vol. 18, no. 7, p. 2255, 2018.
[54] Y. Li, S. Grimaldi, J. P. Walker, and V. R. Pauwels, “Application of remote sensing data to constrain operational rainfall-driven flood forecasting: A review,” Remote Sensing, vol. 8, no. 6, p. 456, 2016.
[55] E. A. Basha, S. Ravela, and D. Rus, “Model-based monitoring for early warning flood detection,” in Proceedings of the 6th ACM conference on Embedded network sensor systems, pp. 295–308, 2008.
[56] P. Khac-Tien Nguyen and L. Hock-Chye Chua, “The data-driven approach as an operational real-time flood forecasting model,” Hydrological Processes, vol. 26, no. 19, pp. 2878–2893, 2012.
[57] N. Ullah and P. Choudhury, “Flood flow modeling in a river system using adaptive neuro-fuzzy inference system,” Environ Manag Sustain Develop, vol. 2, no. 2, pp. 54–68, 2013.
[58] E. J. Plate, “Early warning and flood forecasting for large rivers with the lower mekong as example,” Journal of Hydro-environment Research, vol. 1, no. 2, pp. 80–94, 2007.
[59] J.-D. L ́opez-Garc ́ıa, Y. Carvajal-Escobar, and A.-M. Enciso-Arango, “Sistemas de alerta temprana con enfoque participativo: un desaf ́ıo para la gesti ́on del riesgo en colombia,” Luna azul, no. 44, pp. 231–246, 2017.
[60] A. McNally, K. Arsenault, S. Kumar, S. Shukla, P. Peterson, S. Wang, C. Funk, C. D. Peters-Lidard, and J. P. Verdin, “A land data assimilation system for sub-saharan africa food and water security applications,” Scientific Data, vol. 4, no. 1, 2017.
[61] X. Li, Z. Zhao, and F. Liu, “Latent variable iterative learning model predictive control for multivariable control of batch processes,” Journal of Process Control, vol. 94, pp. 1–11, 2020.
[62] J. Ding, Z. Cao, J. Chen, and G. Jiang, “Weighted parameter estimation for hammerstein nonlinear arx systems,” Circuits, Systems, and Signal Processing, vol. 39, no. 4, pp. 2178–2192, 2020.
[63] F. A. Ruslan, K. Haron, R. Adnan, et al., “Multiple input single output (miso) arx and armax model of flood prediction system: Case study pahang,” in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), pp. 179–184, IEEE, 2017.
[64] J. B. Renteria-Mena and E. Giraldo, “Real-time adaptive level control of a multivariable waste water treatment plant,” Engineering Letters, vol. 30, no. 2, 2022.
[65] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
[66] D. P. Solomatine and D. B. Dulal, “Data-driven modelling: some past experiences and new approaches,” Journal of Hydroinformatics, vol. 6, no. 3, pp. 207–214, 2004.
[67] V. P. Singh and D. A. Woolhiser, Hydrological modeling: theory and practice. Springer, 2017.
[68] D. Solomatine and K. Dulal, “Model trees as an alternative to neural networks in rainfall-runoff modelling,” in Proceedings of the 6th International Conference on Hydroinformatics, pp. 2023–2028, World Scientific, 2004.
[69] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007.
[70] S. Dingman, Physical Hydrology. Waveland Press, 3rd ed., 2015.
[71] W. Brutsaert, Hydrology: An Introduction. Cambridge University Press, 2005.
[72] K. Beven, Rainfall-Runoff Modelling: The Primer. John Wiley & Sons, 2nd ed., 2012.
[73] V. T. Chow, D. R. Maidment, and L. W. Mays, Applied Hydrology. New York: McGraw-Hill, 1988.
[74] K. Beven, Rainfall-Runoff Modelling: The Primer. Wiley-Blackwell, 2nd ed., 2012.
[75] V. P. Singh, Elementary Hydrology. New Jersey: Prentice Hall, 1992.
[76] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, 1998.
[77] P. C. Hansen, J. G. Nagy, and D. P. O’leary, Deblurring images: matrices, spectra, and filtering. SIAM, 2006.
[78] J. B. Renteria-Mena and E. Giraldo, “Multivariable ar data assimilation for level, flow and of precipitation data,” IAENG International Journal of Computer Science (IJCS), vol. 50, no. 1, pp. 263–273, 2023.
[79] J. B. Renteria-Mena and E. Giraldo, “Real-time adaptive level control of a multivariable waste water treatment plant,” Engineering Letters, vol. 30, no. 2, pp. 444–452, 2022.
[80] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariable narx based neural networks models for short-term water level forecasting,” Engineering Proceedings, vol. 39, no. 1, p. 60, 2023.
[81] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.
[82] F.-C. Chen, “Back-propagation neural networks for nonlinear self-tuning adaptive control,” IEEE control systems Magazine, vol. 10, no. 3, pp. 44–48, 1990.
[83] A. T. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial intelligence in engineering, vol. 9, no. 3, pp. 143–151, 1995.
[84] M. Salarijazi, I. Ahmadianfar, and Z. M. Yaseen, “Prediction enhancement for surface water sodium adsorption ratio using limited inputs: Implementation of hybridized stacked ensemble model with feature selection algorithm,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 134, p. 103561, 2024.
[85] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariable narx based neural networks models for short-term water level forecasting,” Engineering Proceedings, vol. 39, no. 1, 2023.
[86] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Comparative analysis of nonlinear methods for multivariable water level prediction: The case study of the atrato river,” Journal of Electrical and Computer Engineering, vol. 2024, no. 1, p. 2894031, 2024.
[87] V. Atashi, H. T. Gorji, S. M. Shahabi, R. Kardan, and Y. H. Lim, “Water level forecasting using deep learning time-series analysis: A case study of red river of the north,” Water, vol. 14, no. 12, p. 1971, 2022.
[88] R. D. Pinzon Morales and Y. Hirata, “Bi-hemispherical neuronal network of the cerebellum with realistic climbing fiber reproduces asymmetrical motor learning during robot control,” Frontiers in Neural Circuits, vol. 8, 2014.
[89] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional lstm and other neural network architectures,” Neural networks, vol. 18, no. 5-6, pp. 602–610, 2005.
[90] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[91] M. Cho, C. Kim, K. Jung, and H. Jung, “Water level prediction model applying a long short-term memory (lstm)–gated recurrent unit (gru) method for flood prediction,” Water, vol. 14, no. 14, p. 2221, 2022.
[92] S. Gillijns, O. B. Mendoza, J. Chandrasekar, B. L. R. D. Moor, D. S. Bernstein, and A. Ridley, “What is the ensemble kalman filter and how well does it work?,” in 2006 American Control Conference, pp. 6 pp.–, June 2006.
[93] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariate hydrological modeling based on long short-term memory networks for water level forecasting,” Information, vol. 15, no. 6, p. 358, 2024.
[94] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Water-level forecasting based on an ensemble kalman filter with a narx neural network model,” in Engineering Proceedings, vol. 101, p. 2, 2025.
[95] J. B. Renteria-Mena and E. Giraldo, “Predictive modeling of water level in the san juan river using hybrid neural networks integrated with kalman smoothing methods,” Information, vol. 15, no. 12, p. 754, 2024. Submission received: 22 Oct 2024; Revised: 20 Nov 2024; Accepted: 22 Nov 2024; Published: 26 Nov 2024.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 137 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Pereira, Risaralda, Colombia
dc.publisher.none.fl_str_mv Universidad Tecnológica de Pereira
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
dc.publisher.place.none.fl_str_mv Pereira
publisher.none.fl_str_mv Universidad Tecnológica de Pereira
institution Universidad Tecnológica de Pereira
bitstream.url.fl_str_mv https://repositorio.utp.edu.co/bitstreams/76fd042e-d7d1-41b4-9078-3ba25fb3c3fe/download
https://repositorio.utp.edu.co/bitstreams/af705685-a2f0-42b1-a2a1-21a1d108fd15/download
https://repositorio.utp.edu.co/bitstreams/bc7dbaf1-7dfc-410a-8695-8c3d6746c566/download
https://repositorio.utp.edu.co/bitstreams/70df8eaa-6b06-4d76-aceb-851c8909ef1a/download
https://repositorio.utp.edu.co/bitstreams/87a28b44-e7e2-4f49-9c0e-1b4ccfdf87ad/download
bitstream.checksum.fl_str_mv b9b175f19400ac7ee83f24f78ed77c99
73a5432e0b76442b22b026844140d683
aedd7c4c0e87e2a479e00ff608e075a1
c59edac6e6d03c31c9cbc7ce22f7a3f5
61b3ed4749cf8735b40d7b5976fd737c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica de Pereira
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1851051511845486592
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessGiraldo-Suárez, EduardoPlaza Guinglia, DouglasRenteria Mena, Jackson BerneyIngeniería Eléctrica::Grupo de Investigación Control Automático2025-12-01T16:17:39Z2025-12-01T16:17:39Z2025Renteria Mena, J. (2025). Sistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del Chocó. Universidad Tecnológica de Pereira. Disponible en: https://hdl.handle.net/11059/16492https://hdl.handle.net/11059/16492Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/home: figuras, tablasEsta investigación doctoral se centra en el desarrollo, la implementación y el análisis de modelos avanzados para la predicción multivariante a corto y largo plazo del nivel del agua en los sistemas hidrológicos del departamento del Chocó, Colombia, una región caracterizada por sus elevadas precipitaciones y su vulnerabilidad a las inundaciones. El estudio combina técnicas de redes neuronales no lineales y métodos lineales tradicionales para abordar la complejidad de la dinámica hidrológica de la región y mejorar la precisión de las predicciones en distintos horizontes temporales.This doctoral research focuses on the development, implementation, and analysis of advanced models for short- and long-term multivariate prediction of water levels in the hydrological systems of the department of Chocó, Colombia, a region characterized by high rainfall and vulnerability to flooding. The study combines nonlinear neural network techniques and traditional linear methods to address the complexity of the region's hydrological dynamics and improve the accuracy of predictions over different time horizons.Acknowledgments iii Abstract iv 1 Introduction 1 1.1 Problem statement -- 2 1.2 Justification -- 5 1.3 Objectives -- 8 1.3.1 General Objective -- 8 1.3.2 Specific Objectives -- 8 1.4 Study Area -- 9 1.4.1 Hydrological station measurements --12 1.5 Hydrologic Modeling -- 13 1.5.1 Hydrologic Cycle -- 15 1.5.2 Processes of the hydrological cycle -- 15 1.5.3 Hydrologic Model -- 16 1.6 Thesis Structure -- 17 1.7 Contributions -- 17 1.7.1 Chapter 2 Contributions -- 18 1.7.2 Chapter 3 Contributions -- 18 1.7.3 Chapter 4 Contributions -- 19 1.7.4 Chapter 5 Contributions -- 20 vi 2 Linear models for water level forecasting: implementation and analysis 21 2.1 Multivariable AR Data Assimilation for Water Level, Flow, and Precipitation Data -- 22 2.1.1 AR multivariable model -- 22 2.1.2 Multivarible AR Regularized Solution -- 23 2.1.3 AR Hydrological model -- 25 2.1.4 Experimental setup -- 26 2.1.5 Regularized AR multivariable estimation results -- 32 2.2 Multivariable ARX based forecasting for an early warning flood system 36 2.2.1 ARX multivariable model -- 37 2.2.2 Recursive Data Forecasting -- 38 2.2.3 Experimental setup ARX data forecasting -- 39 2.3 Academic discussion -- 43 2.4 Summary -- 43 2.5 Partial conclusions -- 43 3 Nonlinear models for water level forecasting: implementation and analysis 45 3.1 Multivariable NARX-based neural network models for short-term water level forecasting -- 46 3.1.1 Hydrological Variables -- 46 3.1.2 NARX Based Neural Network Structure -- 47 3.1.3 Experimental Setup -- 48 3.1.4 Estimation Results -- 48 3.2 Comparative Analysis of Nonlinear Methods for Multivariable Water Level Prediction: The Case Study of the Atrato River -- 52 3.2.1 Theoretical framework -- 52 3.2.2 Back-Propagation Nonlinear based Neural Network Structure -- 54 3.2.3 Regression metrics for the estimation of the quadratic error -- 56 3.2.4 Experimental setup -- 57 vii 3.2.5 Estimation results -- 58 3.3 Academic discussion -- 62 3.4 Summary -- 62 3.5 Partial conclusions -- 62 4 Water Level forecasting by Hybrid Models 64 4.1 Multivariate Hydrological Modeling Based on Long Short Term Memory Networks for Water Level Forecasting -- 65 4.1.1 Experimental setup -- 66 4.1.2 LSTM (Long Short-Term Memory) Network -- 66 4.1.3 Estimation Results -- 69 4.1.4 Forecasting Future Time Steps Based on Predictions and Forecasting Future Time Steps Based on Measurements -- 71 4.2 Water Level Forecasting based on an Ensemble Kalman Filter with NARX Neural Network Model -- 75 4.2.1 NARX neural network model for hydrologycal level forecasting -- 76 4.2.2 EnKF forecasting -- 78 4.2.3 Novelty of the proposed model NARX-EnKF -- 79 4.2.4 Experiment setup -- 80 4.2.5 NARX-EnKF Neural Network Validation Results -- 81 4.3 Academic discussion -- 92 4.4 Summary -- 92 4.5 Partial conclusions -- 92 5 Mechanism of Social Appropriation and Knowledge Transfer for the Riverside Communities of Choc ́o through a web platform and Virtual Environment 94 5.1 Choc ́o Early Warning Web Estimation System (SEAT-Web) -- 95 5.1.1 SEAT-Web Key Functionalities -- 95 5.1.2 Elements of SEAT-Web -- 95 5.2 Virtual Environment of an Early Warning System to Mitigate Flood Risks in the Department of Chocó -- 99 viii 5.2.1 Design and Construction of the 3D Model of the Hydrological Station -- 100 5.2.2 General aspect of the environment -- 107 5.3 Software registration -- 108 5.4 Summary -- 109 5.5 Partial conclusions -- 109 6 Conclusions and Final Remarks 110 6.1 Conclusions -- 110 6.2 Future works -- 111 6.3 Academic Discussion -- 113 References -- 114PregradoDoctor(a) en IngenieríaInverse dynamic problems137 páginasapplication/pdfengUniversidad Tecnológica de PereiraDoctorado en IngenieríaFacultad de IngenieríasPereira620 - Ingeniería y operaciones afines2. Ingeniería y TecnologíaModelado hidrológicoPredicción multivarianteNivel del aguaRedes neuronales no linealesModelos autorregresivosODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosSistema de estimación del nivel del agua de alerta temprana para mitigar riesgos por inundaciones en comunidades ribereñas del departamento del ChocóTrabajo de grado - Doctoradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesisPereira, Risaralda, Colombia[1] K. G. M. Pacheco, “Con el agua al cuello”: Una historia de batallas perdidas contra el agua y desastres por inundaciones en colombia, 1950-2011,” Agua y territorio= Water and Landscape, no. 22, pp. 77–91, 2023.[2] H. Ayala Mosquera, “Extractivismo minero y sus efectos sobre el cambio clim ́atico en el choc ́o biogeogr ́afico colombiano.,” Bolet ́ın de Antropolog ́ıa, vol. 37, no. 64, 2022.[3] R. G ́omez, J. L ́opez, and P. Rodr ́ıguez, “Impacto de las inundaciones en la infraestructura y econom ́ıa local en colombia,” An ́alisis de Riesgos Naturales, vol. 22, no. 2, pp. 76–89, 2020.[4] A. R ́ıos and M. P ́erez, Respuestas comunitarias a eventos clim ́aticos extremos. Editorial Acad ́emica, 2020.[5] M. Alvarez and J. Vargas, ́ Gesti ́on de riesgos en comunidades ribere ̃nas. Editorial Universitaria, 2022.[6] R. G ́omez, Sistemas de alerta temprana para desastres naturales. Editorial Cient ́ıfica, 2017.[7] F. Jaramillo, Modelos predictivos en gesti ́on de inundaciones. Instituto Nacional de Meteorolog ́ıa, 2023.[8] A. Castro, L. G ́omez, and P. Rodr ́ıguez, Tecnolog ́ıas de monitoreo hidrol ́ogico. Universidad de los Andes, 2019.[9] J. M ́endez and E. Su ́arez, “Prevenci ́on y mitigaci ́on de riesgos de inundaci ́on,” Revista de Ciencias Ambientales, vol. 28, no. 1, pp. 12–25, 2020.[10] D. Rojas and F. Mendoza, “Adaptaci ́on al cambio clim ́atico en comunidades ribere ̃nas,” Revista de Gesti ́on de Riesgos, vol. 30, no. 3, pp. 78–91, 2021.[11] C. P ́erez, Planificaci ́on y respuesta ante emergencias clim ́aticas. Editorial Universitaria, 2019.[12] R. L. Bras and I. Rodriguez-Iturbe, Random functions and hydrology. Courier Corporation, 1993.[13] K. I. Mart ́ınez Calder ́on et al., “Cr ́onicas de viaje al choc ́o,” 2018.[14] E. E. Cossio Roma ̃na, “Fortalecimiento de la infraestructura en salud e integraci ́on social en la zona rural y urbana de quibd ́o, choc ́o,” 2020.[15] S. P. Nore ̃na Garc ́ıa, “Responsabilidad del estado por el desplazamiento de comunidades por causas asociadas al cambio clim ́atico en los departamentos de risaralda y choc ́o durante la ola invernal de 2010-2011.,” 2019.[16] M. Institute of Hydrology and E. Studies, Consulta descarga datos Meterol ́ogicos - 2021. Bogot ́a:: IDEAM dhime,, 2021.[17] W. F. R. Mi ̃nope, P. V. R. V. Liz ́arraga, S. P. M. P ́erez, V. T. Monteza, and H. I. M. Cabrera, “Modelamiento de procesos hidrol ́ogicos aplicando t ́ecnicas de inteligencia artificial: una revisi ́on sistem ́atica de la literatura,” ITECKNE: Innovaci ́on e Investigaci ́on en Ingenier ́ıa, vol. 19, no. 1, p. 6, 2022.[18] R. W. Farebrother, Linear least squares computations. Routledge, 2018.[19] G. Pillonetto, T. Chen, A. Chiuso, G. D. Nicolao, and L. Ljung, “Regularized system identification: Learning dynamic models from data,” IEEE Control Systems Magazine, vol. 42, no. 1, pp. 24–48, 2022.[20] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley & Sons, 2007.[21] S. Theodoridis, Machine learning: a Bayesian and optimization perspective. Academic press, 2015.[22] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006.[23] E. Palchevsky, V. Antonov, R. Enikeev, and T. Breikin, “A system based on an artificial neural network of the second generation for decision support in especially significant situations,” Journal of Hydrology, vol. 616, p. 128844, 2023.[24] Z. LV, J. Zuo, and D. Rodriguez, “Predicting of runoff using an optimized swat-ann: A case study,” Journal of Hydrology: Regional Studies, vol. 29, p. 100688, 2020.[25] Y. Abou Rjeily, O. Abbas, M. Sadek, I. Shahrour, and F. Hage Chehade, “Flood forecasting within urban drainage systems using narx neural network,” Water Science and Technology, vol. 76, no. 9, pp. 2401–2412, 2017.[26] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long short-term memory (lstm) neural network for flood forecasting,” Water, vol. 11, no. 7, p. 1387, 2019.[27] P. Mu ̃noz, J. Orellana-Alvear, J. Bendix, J. Feyen, and R. C ́elleri, “Flood early warning systems using machine learning techniques: The case of the tomebamba catchment at the southern andes of ecuador,” Hydrology, vol. 8, no. 4, p. 183, 2021.[28] S. Bande and V. V. Shete, “Smart flood disaster prediction system using iot & neural networks,” in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 189–194, Ieee, 2017.[29] A. Jabbari and D.-H. Bae, “Application of artificial neural networks for accuracy enhancements of real-time flood forecasting in the imjin basin,” Water, vol. 10, no. 11, p. 1626, 2018.[30] R. Tabbussum and A. Q. Dar, “Comparative analysis of neural network training algorithms for the flood forecast modelling of an alluvial himalayan river,” Journal of Flood Risk Management, vol. 13, no. 4, p. e12656, 2020.[31] F. Y. Dtissibe, A. A. A. Ari, C. Titouna, O. Thiare, and A. M. Gueroui, “Flood forecasting based on an artificial neural network scheme,” Natural Hazards, vol. 104, pp. 1211–1237, 2020.[32] S. I. Abdullahi, M. H. Habaebi, and N. A. Malik, “Flood disaster warning system on the go,” in 2018 7th International Conference on Computer and Communication Engineering (ICCCE), pp. 258–263, IEEE, 2018.[33] N. Kimura, I. Yoshinaga, K. Sekijima, I. Azechi, and D. Baba, “Convolutional neural network coupled with a transfer-learning approach for time-series flood predictions,” Water, vol. 12, no. 1, p. 96, 2019.[34] M. Moishin, R. Deo, R. Prasad, and N. Raj, “Designing deep-based learning flood forecast model with convlstm hybrid algorithm,” IEEE Access, vol. 9, pp. 43364–43377, 2021.[35] U. T. Khan, J. He, and C. Valeo, “River flood prediction using fuzzy neural networks: an investigation on automated network architecture,” Water Science and Technology, vol. 2017, no. 1, pp. 238–247, 2018.[36] R. Tabbussum and A. Q. Dar, “Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction,” Environmental Science and Pollution Research, vol. 28, no. 20, pp. 25265–25282, 2021.[37] S. Sankaranarayanan, M. Prabhakar, S. Satish, P. Jain, A. Ramprasad, and A. Krishnan, “Flood prediction based on weather parameters using deep learning,” Journal of Water and Climate Change, vol. 11, no. 4, pp. 1766–1783, 2020.[38] P. Rodgers, Grey System Theory and Applications. Springer, 2000.[39] W. Yang and S. Liu, “Grey models in time series prediction: Theory and applications,” Expert Systems with Applications, vol. 94, pp. 302–317, 2018.[40] Z. Wan, W. Yu, J. Xu, X. Liu, and G. Zhang, “A review on flood forecasting technology based on deep learning models,” Journal of Hydrology, vol. 570, pp. 330–345, 2019.[41] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. ??, no. ??, p. ??–??, 2019.[42] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating physics-based modeling with machine learning: A survey,” arXiv preprint arXiv:2003.04919v4, pp. 1–34, 2020.[43] K. Beven, Rainfall-runoff modelling: the primer. John Wiley & Sons, 2011.[44] K. Beven, “How to make advances in hydrological modelling,” Hydrology Research, vol. 50, no. 6, pp. 1481–1494, 2019.[45] K. Beven and P. Young, “A guide to good practice in modeling semantics for authors and referees,” Water Resources Research, vol. 49, no. 8, pp. 5092–5098, 2013.[46] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007.[47] B. Hadid, E. Duviella, and S. Lecoeuche, “Data-driven modeling for river flood forecasting based on a piecewise linear arx system identification,” Journal of Process Control, vol. 86, pp. 44–56, 2020.[48] S. Nevo, E. Morin, A. Gerzi Rosenthal, A. Metzger, C. Barshai, D. Weitzner, D. Voloshin, F. Kratzert, G. Elidan, G. Dror, et al., “Flood forecasting with machine learning models in an operational framework,” Hydrology and Earth System Sciences, vol. 26, no. 15, pp. 4013–4032, 2022.[49] F. Unduche, H. Tolossa, D. Senbeta, and E. Zhu, “Evaluation of four hydrological models for operational flood forecasting in a canadian prairie watershed,” Hydrological Sciences Journal, vol. 63, no. 8, pp. 1133–1149, 2018.[50] M. Vel ́asquez-Restrepo and G. Poveda, “Estimaci ́on del balance h ́ıdrico de la regi ́on pac ́ıfica colombiana,” Dyna, vol. 86, no. 208, pp. 297–306, 2019.[51] J. Chen, C. Li, F. P. Brissette, H. Chen, M. Wang, and G. R. Essou, “Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling,” Journal of Hydrology, vol. 560, pp. 326–341, 2018.[52] K. Jafarzadegan, P. Abbaszadeh, and H. Moradkhani, “Sequential data assimilation for real-time probabilistic flood inundation mapping,” Hydrology and Earth System Sciences, vol. 25, no. 9, pp. 4995–5011, 2021.[53] M. Acosta-Coll, F. Ballester-Merelo, M. Martinez-Peir ́o, and E. De la Hoz-Franco, “Real-time early warning system design for pluvial flash floods—a review,” Sensors, vol. 18, no. 7, p. 2255, 2018.[54] Y. Li, S. Grimaldi, J. P. Walker, and V. R. Pauwels, “Application of remote sensing data to constrain operational rainfall-driven flood forecasting: A review,” Remote Sensing, vol. 8, no. 6, p. 456, 2016.[55] E. A. Basha, S. Ravela, and D. Rus, “Model-based monitoring for early warning flood detection,” in Proceedings of the 6th ACM conference on Embedded network sensor systems, pp. 295–308, 2008.[56] P. Khac-Tien Nguyen and L. Hock-Chye Chua, “The data-driven approach as an operational real-time flood forecasting model,” Hydrological Processes, vol. 26, no. 19, pp. 2878–2893, 2012.[57] N. Ullah and P. Choudhury, “Flood flow modeling in a river system using adaptive neuro-fuzzy inference system,” Environ Manag Sustain Develop, vol. 2, no. 2, pp. 54–68, 2013.[58] E. J. Plate, “Early warning and flood forecasting for large rivers with the lower mekong as example,” Journal of Hydro-environment Research, vol. 1, no. 2, pp. 80–94, 2007.[59] J.-D. L ́opez-Garc ́ıa, Y. Carvajal-Escobar, and A.-M. Enciso-Arango, “Sistemas de alerta temprana con enfoque participativo: un desaf ́ıo para la gesti ́on del riesgo en colombia,” Luna azul, no. 44, pp. 231–246, 2017.[60] A. McNally, K. Arsenault, S. Kumar, S. Shukla, P. Peterson, S. Wang, C. Funk, C. D. Peters-Lidard, and J. P. Verdin, “A land data assimilation system for sub-saharan africa food and water security applications,” Scientific Data, vol. 4, no. 1, 2017.[61] X. Li, Z. Zhao, and F. Liu, “Latent variable iterative learning model predictive control for multivariable control of batch processes,” Journal of Process Control, vol. 94, pp. 1–11, 2020.[62] J. Ding, Z. Cao, J. Chen, and G. Jiang, “Weighted parameter estimation for hammerstein nonlinear arx systems,” Circuits, Systems, and Signal Processing, vol. 39, no. 4, pp. 2178–2192, 2020.[63] F. A. Ruslan, K. Haron, R. Adnan, et al., “Multiple input single output (miso) arx and armax model of flood prediction system: Case study pahang,” in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), pp. 179–184, IEEE, 2017.[64] J. B. Renteria-Mena and E. Giraldo, “Real-time adaptive level control of a multivariable waste water treatment plant,” Engineering Letters, vol. 30, no. 2, 2022.[65] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.[66] D. P. Solomatine and D. B. Dulal, “Data-driven modelling: some past experiences and new approaches,” Journal of Hydroinformatics, vol. 6, no. 3, pp. 207–214, 2004.[67] V. P. Singh and D. A. Woolhiser, Hydrological modeling: theory and practice. Springer, 2017.[68] D. Solomatine and K. Dulal, “Model trees as an alternative to neural networks in rainfall-runoff modelling,” in Proceedings of the 6th International Conference on Hydroinformatics, pp. 2023–2028, World Scientific, 2004.[69] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007.[70] S. Dingman, Physical Hydrology. Waveland Press, 3rd ed., 2015.[71] W. Brutsaert, Hydrology: An Introduction. Cambridge University Press, 2005.[72] K. Beven, Rainfall-Runoff Modelling: The Primer. John Wiley & Sons, 2nd ed., 2012.[73] V. T. Chow, D. R. Maidment, and L. W. Mays, Applied Hydrology. New York: McGraw-Hill, 1988.[74] K. Beven, Rainfall-Runoff Modelling: The Primer. Wiley-Blackwell, 2nd ed., 2012.[75] V. P. Singh, Elementary Hydrology. New Jersey: Prentice Hall, 1992.[76] P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM, 1998.[77] P. C. Hansen, J. G. Nagy, and D. P. O’leary, Deblurring images: matrices, spectra, and filtering. SIAM, 2006.[78] J. B. Renteria-Mena and E. Giraldo, “Multivariable ar data assimilation for level, flow and of precipitation data,” IAENG International Journal of Computer Science (IJCS), vol. 50, no. 1, pp. 263–273, 2023.[79] J. B. Renteria-Mena and E. Giraldo, “Real-time adaptive level control of a multivariable waste water treatment plant,” Engineering Letters, vol. 30, no. 2, pp. 444–452, 2022.[80] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariable narx based neural networks models for short-term water level forecasting,” Engineering Proceedings, vol. 39, no. 1, p. 60, 2023.[81] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.[82] F.-C. Chen, “Back-propagation neural networks for nonlinear self-tuning adaptive control,” IEEE control systems Magazine, vol. 10, no. 3, pp. 44–48, 1990.[83] A. T. Goh, “Back-propagation neural networks for modeling complex systems,” Artificial intelligence in engineering, vol. 9, no. 3, pp. 143–151, 1995.[84] M. Salarijazi, I. Ahmadianfar, and Z. M. Yaseen, “Prediction enhancement for surface water sodium adsorption ratio using limited inputs: Implementation of hybridized stacked ensemble model with feature selection algorithm,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 134, p. 103561, 2024.[85] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariable narx based neural networks models for short-term water level forecasting,” Engineering Proceedings, vol. 39, no. 1, 2023.[86] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Comparative analysis of nonlinear methods for multivariable water level prediction: The case study of the atrato river,” Journal of Electrical and Computer Engineering, vol. 2024, no. 1, p. 2894031, 2024.[87] V. Atashi, H. T. Gorji, S. M. Shahabi, R. Kardan, and Y. H. Lim, “Water level forecasting using deep learning time-series analysis: A case study of red river of the north,” Water, vol. 14, no. 12, p. 1971, 2022.[88] R. D. Pinzon Morales and Y. Hirata, “Bi-hemispherical neuronal network of the cerebellum with realistic climbing fiber reproduces asymmetrical motor learning during robot control,” Frontiers in Neural Circuits, vol. 8, 2014.[89] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional lstm and other neural network architectures,” Neural networks, vol. 18, no. 5-6, pp. 602–610, 2005.[90] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.[91] M. Cho, C. Kim, K. Jung, and H. Jung, “Water level prediction model applying a long short-term memory (lstm)–gated recurrent unit (gru) method for flood prediction,” Water, vol. 14, no. 14, p. 2221, 2022.[92] S. Gillijns, O. B. Mendoza, J. Chandrasekar, B. L. R. D. Moor, D. S. Bernstein, and A. Ridley, “What is the ensemble kalman filter and how well does it work?,” in 2006 American Control Conference, pp. 6 pp.–, June 2006.[93] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Multivariate hydrological modeling based on long short-term memory networks for water level forecasting,” Information, vol. 15, no. 6, p. 358, 2024.[94] J. B. Renteria-Mena, D. Plaza, and E. Giraldo, “Water-level forecasting based on an ensemble kalman filter with a narx neural network model,” in Engineering Proceedings, vol. 101, p. 2, 2025.[95] J. B. Renteria-Mena and E. Giraldo, “Predictive modeling of water level in the san juan river using hybrid neural networks integrated with kalman smoothing methods,” Information, vol. 15, no. 12, p. 754, 2024. Submission received: 22 Oct 2024; Revised: 20 Nov 2024; Accepted: 22 Nov 2024; Published: 26 Nov 2024.Comunidad académica y científica, Estudiantes, Docentes, InvestigadoresPublicationORIGINALTrabajo_de_grado.pdfTrabajo_de_grado.pdfapplication/pdf14954431https://repositorio.utp.edu.co/bitstreams/76fd042e-d7d1-41b4-9078-3ba25fb3c3fe/downloadb9b175f19400ac7ee83f24f78ed77c99MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.utp.edu.co/bitstreams/af705685-a2f0-42b1-a2a1-21a1d108fd15/download73a5432e0b76442b22b026844140d683MD52THUMBNAILImagen2.pngimage/png58647https://repositorio.utp.edu.co/bitstreams/bc7dbaf1-7dfc-410a-8695-8c3d6746c566/downloadaedd7c4c0e87e2a479e00ff608e075a1MD53Trabajo_de_grado.pdf.jpgTrabajo_de_grado.pdf.jpgGenerated Thumbnailimage/jpeg6931https://repositorio.utp.edu.co/bitstreams/70df8eaa-6b06-4d76-aceb-851c8909ef1a/downloadc59edac6e6d03c31c9cbc7ce22f7a3f5MD55TEXTTrabajo_de_grado.pdf.txtTrabajo_de_grado.pdf.txtExtracted texttext/plain101637https://repositorio.utp.edu.co/bitstreams/87a28b44-e7e2-4f49-9c0e-1b4ccfdf87ad/download61b3ed4749cf8735b40d7b5976fd737cMD5411059/16492oai:repositorio.utp.edu.co:11059/164922025-12-02 05:00:12.404https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K