Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores

: figuras, tablas

Autores:
García Ceballos, Carlos Alberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad Tecnológica de Pereira
Repositorio:
Repositorio Institucional UTP
Idioma:
spa
OAI Identifier:
oai:repositorio.utp.edu.co:11059/15762
Acceso en línea:
https://hdl.handle.net/11059/15762
https://repositorio.utp.edu.co/home
Palabra clave:
620 - Ingeniería y operaciones afines
Industrias eléctricas
Relés eléctricos
Distribución de energía eléctrica
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Distribución
Energía renovable
Inversores
Modelamiento
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id UTP2_580b02e436ed431bc677045fe129b2c5
oai_identifier_str oai:repositorio.utp.edu.co:11059/15762
network_acronym_str UTP2
network_name_str Repositorio Institucional UTP
repository_id_str
dc.title.spa.fl_str_mv Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
title Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
spellingShingle Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
620 - Ingeniería y operaciones afines
Industrias eléctricas
Relés eléctricos
Distribución de energía eléctrica
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Distribución
Energía renovable
Inversores
Modelamiento
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
title_short Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
title_full Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
title_fullStr Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
title_full_unstemmed Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
title_sort Análisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversores
dc.creator.fl_str_mv García Ceballos, Carlos Alberto
dc.contributor.advisor.none.fl_str_mv Mora Flórez, Juan José
Pérez Londoño, Sandra Milena
dc.contributor.author.none.fl_str_mv García Ceballos, Carlos Alberto
dc.subject.ddc.none.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Industrias eléctricas
Relés eléctricos
Distribución de energía eléctrica
2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
Distribución
Energía renovable
Inversores
Modelamiento
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
dc.subject.armarc.none.fl_str_mv Industrias eléctricas
Relés eléctricos
Distribución de energía eléctrica
dc.subject.ocde.none.fl_str_mv 2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática
dc.subject.proposal.spa.fl_str_mv Distribución
Energía renovable
Inversores
Modelamiento
dc.subject.ods.none.fl_str_mv ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
description : figuras, tablas
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-28T19:54:06Z
dc.date.available.none.fl_str_mv 2025-04-28T19:54:06Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11059/15762
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Pereira
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad Tecnológica de Pereira
dc.identifier.repourl.none.fl_str_mv https://repositorio.utp.edu.co/home
url https://hdl.handle.net/11059/15762
https://repositorio.utp.edu.co/home
identifier_str_mv Universidad Tecnológica de Pereira
Repositorio Universidad Tecnológica de Pereira
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] Sohad Abu-Elzait and Robert Parkin. Economic and environmental advantages of renewable-based microgrids over conventional microgrids. In 2019 IEEE Green Technologies Conference (GreenTech), pages 1–4. IEEE, 2019.
[2] Meiqin Mao, Peng Jin, Liuchen Chang, and Haibo Xu. Economic analysis and optimal design on microgrids with ss-pvs for industries. IEEE Transactions on Sustainable Energy, 5(4):1328–1336, 2014.
[3] Eltaib Said Elmubarak and Ali Mohamed Ali. Distributed generation: definitions, benefits, technologies & challenges. Int. J. Sci. Res.(IJSR), 5(7), 2016.
[4] Hanling Yi, Mohammad H Hajiesmaili, Ying Zhang, Minghua Chen, and Xiaojun Lin. Impact of the uncertainty of distributed renewable generation on deregulated electricity supply chain. IEEE Transactions on Smart Grid, 9(6):6183–6193, 2017.
[5] Seyed-Ehsan Razavi, Ehsan Rahimi, Mohammad Sadegh Javadi, Ali Esmaeel Nezhad, Mohamed Lotfi, Miadreza Shafie-khah, and Jo ̃ao PS Catal ̃ao. Impact of distributed generation on protection and voltage regulation of distribution sys- tems: A review. Renewable and Sustainable Energy Reviews, 105:157–167, 2019.
[6] JO Petinrin and Mohamed Shaabanb. Impact of renewable generation on volta- ge control in distribution systems. Renewable and Sustainable Energy Reviews, 65:770–783, 2016.
[7] Ahmed S Hassan, ElSaeed A Othman, Fahmy M Bendary, and Mohamed A Ebrahim. Optimal integration of distributed generation resources in active dis- tribution networks for techno-economic benefits. Energy Reports, 6:3462–3471, 2020.
[8] Debadatta Amaresh Gadanayak. Protection algorithms of microgrids with in- verter interfaced distributed generation units—a review. Electric Power Systems Research, 192:106986, 2021.
[9] Rodney Kizito, Xueping Li, Kai Sun, and Shuai Li. Optimal distributed generator placement in utility-based microgrids during a large-scale grid disturbance. IEEE Access, 8:21333–21344, 2020.
[10] Yusuf Gupta, Suryanarayana Doolla, Kishore Chatterjee, and Bikash Chandra Pal. Optimal dg allocation and volt–var dispatch for a droop-based microgrid. IEEE Transactions on Smart Grid, 12(1):169–181, 2020.
[11] Ling Ai Wong, Vigna K Ramachandaramurthy, Sara L Walker, and Janaka B Eka- nayake. Optimal placement and sizing of battery energy storage system considering the duck curve phenomenon. IEEE Access, 8:197236–197248, 2020.
[12] Mostafa F Shaaban, Sayed Mohamed, Muhammad Ismail, Khalid A Qaraqe, and Erchin Serpedin. Joint planning of smart ev charging stations and dgs in eco- friendly remote hybrid microgrids. IEEE Transactions on Smart Grid, 10(5):5819– 5830, 2019.
[13] Po-Chen Chen, Reynaldo Salcedo, Qingcheng Zhu, Francisco De Leon, Dariusz Czarkowski, Zhong-Ping Jiang, Vitaly Spitsa, Zivan Zabar, and Resk Ebrahem Uosef. Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks. IEEE Transactions on Power Delivery, 27(4):2020–2028, 2012.
[14] Mostafa Farrokhabadi, Claudio A Ca ̃nizares, John W Simpson-Porco, Ehsan Nasr, Lingling Fan, Patricio A Mendoza-Araya, Reinaldo Tonkoski, Ujjwol Tamrakar, Nikos Hatziargyriou, Dimitris Lagos, et al. Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems, 35(1):13–29, 2019.
[15] Ali Hooshyar and Reza Iravani. Microgrid protection. Proceedings of the IEEE, 105(7):1332–1353, 2017.
[16] Shuang Xu, Yaosuo Xue, and Liuchen Chang. Review of power system support functions for inverter-based distributed energy resources-standards, control algo- rithms, and trends. IEEE open journal of Power electronics, 2:88–105, 2021.
[17] Luka V Strezoski, Nikola R Vojnovic, Vladimir C Strezoski, Predrag M Vidovic, Marija D Prica, and Kenneth A Loparo. Modeling challenges and potential solu- tions for integration of emerging ders in dms applications: power flow and short- circuit analysis. Journal of Modern Power Systems and Clean Energy, 7(6):1365– 1384, 2019.
[18] Hao Wen and Meghdad Fazeli. A low-voltage ride-through strategy using mixed potential function for three-phase grid-connected pv systems. Electric Power Sys- tems Research, 173:271–280, 2019.
[19] Alexandros G Paspatis, George C Konstantopoulos, and Josep M Guerrero. En- hanced current-limiting droop controller for grid-connected inverters to guarantee stability and maximize power injection under grid faults. IEEE Transactions on Control Systems Technology, 29(2):841–849, 2019.
[20] Gefei Kou, Le Chen, Philip VanSant, Francisco Velez-Cedeno, and Yilu Liu. Fault characteristics of distributed solar generation. IEEE Transactions on Power Deli- very, 35(2):1062–1064, 2019.
[21] Nikolay Nikolaev, Kiril Dimitrov, and Yulian Rangelov. A comprehensive review of small-signal stability and power oscillation damping through photovoltaic inverters. Energies, 14(21):7372, 2021.
[22] Simone Negri, Enrico Tironi, Gabrio Superti-Furga, and Marco Carminati. Vsc- based lvdc distribution network with ders: Equivalent circuits for leakage and ground fault currents evaluation. Renewable Energy, 177:1133–1146, 2021.
[23] Hamid Reza Baghaee, Mojtaba Mirsalim, Gevork B Gharehpetian, and Heidar Ali Talebi. A new current limiting strategy and fault model to improve fault ride- through capability of inverter interfaced ders in autonomous microgrids. Sustaina- ble Energy Technologies and Assessments, 24:71–81, 2017.
[24] UPME Unidad de Planeaci ́on Minero Energ ́etica. Estudio: Smart grids colom- bia visi ́on 2030 - mapa de ruta para la implementaci ́on de redes inteligentes en colombia, 2016.
[25] Reddipalli Bhargav, Bhavesh R Bhalja, and Chandra P Gupta. A new impedance relay for the protection of low voltage dc microgrid. In 2020 IEEE Power & Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2020.
[26] Yujie Yin, Yong Fu, Zhiying Zhang, and Amin Zamani. Protection of microgrid in- terconnection lines using distance relay with residual voltage compensation. IEEE Transactions on Power Delivery, 2021.
[27] Seyed Fariborz Zarei and Saeed Khankalantary. Protection of active distribution networks with conventional and inverter-based distributed generators. Internatio- nal Journal of Electrical Power & Energy Systems, 129:106746, 2021.
[28] Aristotelis M Tsimtsios, Anastasia S Safigianni, and Vassilis C Nikolaidis. Gene- ralized distance-based protection design for dg integrated mv radial distribution networks—part i: Guidelines. Electric Power Systems Research, 176:105949, 2019.
[29] Zhi Chen, Xuejun Pei, Min Yang, Li Peng, and Puxin Shi. A novel protection scheme for inverter-interfaced microgrid (iim) operated in islanded mode. IEEE Transactions on Power Electronics, 33(9):7684–7697, 2017.
[30] Kexing Lai, Mahesh S Illindala, and Mohammed A Haj-ahmed. Comprehensive protection strategy for an islanded microgrid using intelligent relays. In 2015 IEEE Industry Applications Society Annual Meeting, pages 1–11. IEEE, 2015.
[31] Mao Yang, Jinxin Wang, and Jun An. Day-ahead optimization scheduling for islan- ded microgrid considering units frequency regulation characteristics and demand response. IEEE Access, 8:7093–7102, 2019.
[32] Moslem Uddin, MF Romlie, MF Abdullah, ChiaKwang Tan, GM Shafiullah, and Ab Halim Abu Bakar. A novel peak shaving algorithm for islanded microgrid using battery energy storage system. Energy, 196:117084, 2020.
[33] Ashutosh K Giri, Sabha Raj Arya, Rakesh Maurya, and B Chittibabu. Control of VSC for enhancement of power quality in off-grid distributed power generation. IET Renewable Power Generation, 14(5):771–778, 2020.
[34] V Naresh Kumar and Sanjoy Kumar Parida. Parameter optimization of universal droop and internal model controller for multi inverter-fed dgs based on accurate small-signal model. IEEE Access, 7:101928–101940, 2019.
[35] Quazi Nafees Ul Islam, Ashik Ahmed, and Saad Mohammad Abdullah. Optimi- zed controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (nswoa). Ain Shams Engineering Journal, 2021.
[36] Sara Yazdani, Mehdi Ferdowsi, and Pourya Shamsi. Internal model based smooth transition of a three-phase inverter between islanded and grid-connected modes. IEEE Transactions on Energy Conversion, 35(1):405–415, 2019.
[37] Mohammed H Qais, Hany M Hasanien, and Saad Alghuwainem. A grey wolf optimizer for optimum parameters of multiple pi controllers of a grid-connected pmsg driven by variable speed wind turbine. IEEE Access, 6:44120–44128, 2018.
[38] Farheen Chishti, Shadab Murshid, and Bhim Singh. Natural genetics adapted control for an autonomous wind-battery based microgrid. IEEE Transactions on Industry Applications, 56(6):7156–7165, 2020.
[39] Hossein Karimi, Mohammad TH Beheshti, Amin Ramezani, and Hamidreza Zarei- pour. Intelligent control of islanded ac microgrids based on adaptive neuro-fuzzy inference system. International
[40] Muhammad Usama, Hazlie Mokhlis, Mahmoud Moghavvemi, Nurulafiqah Nadzi- rah Mansor, Majed A Alotaibi, Munir Azam Muhammad, and Abdullah Akram Bajwa. A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access, 2021.
[41] Bhaskar Patnaik, Manohar Mishra, Ramesh C Bansal, and Ranjan Kumar Jena. Ac microgrid protection–a review: Current and future prospective. Applied Energy, 271:115210, 2020.
[42] Ali Hooshyar and Reza Iravani. A new directional element for microgrid protection. IEEE Transactions on Smart Grid, 9(6):6862–6876, 2017.
[43] Giovanni Mu ̃noz-Arango, Juan Mora-Fl ́orez, and Sandra P ́erez-Londo ̃no. A power- based fault direction estimation method for active distribution networks. Results in Engineering, 21:101754, 2024.
[44] Mohammad Hamidieh and Mona Ghassemi. Microgrids and resilience: A review. IEEE Access, 2022.
[45] Paul M Anderson and Paul Anderson. Power system protection, volume 1307. Wiley-Interscience, 1999.
[46] J Lewis Blackburn and Thomas J Domin. Protective relaying: principles and ap- plications. CRC press, 2006.
[47] Kartika Dubey and Premalata Jena. Impedance angle-based differential protection scheme for microgrid feeders. IEEE Systems Journal, 2020.
[48] Aristotelis M Tsimtsios and Vassilis C Nikolaidis. Setting zero-sequence compensa- tion factor in distance relays protecting distribution systems. IEEE Transactions on Power Delivery, 33(3):1236–1246, 2017.
[49] Nikhil Kumar Sharma and Subhransu Ranjan Samantaray. Pmu assisted integrated impedance angle-based microgrid protection scheme. IEEE Transactions on Power Delivery, 35(1):183–193, 2019.
[50] Khalil El-Arroudi and Geza Joos. Performance of interconnection protection based on distance relaying for wind power distributed generation. IEEE Transactions on Power Delivery, 33(2):620–629, 2017.
[51] Khaled A. Saleh and Mahmoud A. Allam. Synthetic harmonic distance relaying for inverter-based islanded microgrids. IEEE Open Access Journal of Power and Energy, 8:258–267, 2021.
[52] Ankan Chandra, GK Singh, and Vinay Pant. Protection of ac microgrid integrated with renewable energy sources–a research review and future trends. Electric Power Systems Research, 193:107036, 2021.
[53] Vassilis C Nikolaidis, Aristotelis M Tsimtsios, and Anastasia S Safigianni. In- vestigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with dg. IEEE Access, 6:11301–11312, 2018.
[54] Nima Rezaei and M Nasir Uddin. State-of-the-art microgrid power protective rela- ying and coordination techniques. In Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pages 1–8, 2020.
[55] Taoufik Qoria, Fran ̧cois Gruson, Fr ́ederic Colas, Xavier Kestelyn, and Xavier Gui- llaud. Current limiting algorithms and transient stability analysis of grid-forming vscs. Electric Power Systems Research, 189:106726, 2020.
[56] Shuren Wang, Grain Adam, Khaled H Ahmed, and Barry Williams. Comparative evaluation of converter-based compensation schemes for vsc systems to achieve full- range active power transfer in very weak grids. Electric Power Systems Research, 210:108135, 2022.
[57] Pengfei Hu, Weitong Jiang, Yanxue Yu, Daozhuo Jiang, and Josep M Guerre- ro. Transient stability improvement of grid-forming voltage source converters con- sidering current limitation. Sustainable Energy Technologies and Assessments, 54:102839, 2022.
[58] Ebrahim Rokrok, Taoufik Qoria, Antoine Bruyere, Bruno Francois, and Xavier Guillaud. Transient stability assessment and enhancement of grid-forming con- verters embedding current reference saturation as current limiting strategy. IEEE Transactions on Power Systems, 37(2):1519–1531, 2021.
[59] Kamran Zeb, Saif Ul Islam, Imran Khan, Waqar Uddin, M Ishfaq, Tiago Davi Curi Busarello, SM Muyeen, Iftikhar Ahmad, and HJ Kim. Faults and fault ride th- rough strategies for grid-connected photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews, 158:112125, 2022.
[60] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Fault current limitation approaches for grid-following controlled ders in microgrid environments. Ain Shams Engineering Journal, page 102891, 2024.
[61] Linbin Huang, Huanhai Xin, Zhen Wang, Leiqi Zhang, Kuayu Wu, and Jiabing Hu. Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation. IEEE Transactions on Smart Grid, 10(1):578–591, 2017.
[62] Vivek Nikam and Vaiju Kalkhambkar. A review on control strategies for microgrids with distributed energy resources, energy storage systems, and electric vehicles. International Transactions on Electrical Energy Systems, 31(1):e12607, 2021.
[63] Daniela Yassuda Yamashita, Ionel Vechiu, and Jean-Paul Gaubert. A review of hierarchical control for building microgrids. Renewable and Sustainable Energy Reviews, 118:109523, 2020.
[64] KS Rajesh, SS Dash, Ragam Rajagopal, and R Sridhar. A review on control of ac microgrid. Renewable and sustainable energy reviews, 71:814–819, 2017.
[65] Ali Bidram and Ali Davoudi. Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4):1963–1976, 2012.
[66] Daniel E Olivares, Ali Mehrizi-Sani, Amir H Etemadi, Claudio A Ca ̃nizares, Reza Iravani, Mehrdad Kazerani, Amir H Hajimiragha, Oriol Gomis-Bellmunt, Maryam Saeedifard, Rodrigo Palma-Behnke, et al. Trends in microgrid control. IEEE Transactions on smart grid, 5(4):1905–1919, 2014.
[67] Tine L Vandoorn, Juan C Vasquez, Jeroen De Kooning, Josep M Guerrero, and Lieven Vandevelde. Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE industrial electronics magazine, 7(4):42– 55, 2013.
[68] Anders Bergheim Holvik. Virtual impedance techniques for power sharing control in ac islanded microgrids. Master’s thesis, NTNU, 2018.
[69] P Kanakasabapathy et al. Control strategy for inverter based micro-grid. In 2014 POWER AND ENERGY SYSTEMS: TOWARDS SUSTAINABLE ENERGY, pa- ges 1–6. IEEE, 2014.
[70] Mingzhang Li, Lihui Yang, Xikui Ma, and Mengqi Li. Generalised average mode- lling of grid-connected three-phase vsc with closed-loop vector control and regular- sampled modulation. IET Power Electronics, 13(12):2481–2491, 2020.
[71] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Florez. Iterative approach for tuning multiple converter-integrated der in microgrids. International Transactions on Electrical Energy Systems, 2022, 2022.
[72] C Garc ́ıa-Ceballos, K Ruiz-Gaviria, and J Mora-Fl ́orez. Implementation analysis for grid-forming converter considering primary energy source effect. In 2022 IEEE ANDESCON, pages 1–6. IEEE, 2022.
[73] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Stability analysis frame- work for isolated microgrids with energy resources integrated using voltage source converters. Results in Engineering, 19:101252, 2023.
[74] D Osorio-V ́asquez, C Garc ́ıa-Ceballos, and J Mora-Fl ́orez. Enhanced distance- based protection for high impedance faults considering dynamic load modelling. Results in Engineering, 22:102278, 2024.
[75] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Compensated fault im- pedance estimation for distance-based protection in active distribution networks. International Journal of Electrical Power & Energy Systems, 151:109114, 2023.
[76] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Integration of distributed energy resource models in the vsc control for microgrid applications. Electric Power Systems Research, 196:107278, 2021.
[77] Ali Hooshyar, Maher A Azzouz, and Ehab F El-Saadany. Distance protec- tion of lines emanating from full-scale converter-interfaced renewable energy po- wer plants—part i: Problem statement. IEEE Transactions on Power Delivery, 30(4):1770–1780, 2014.
[78] Authors James O. Owuor, Josiah L. Munda, and Adisa A. Jimoh. The ieee 34 node radial test feeder as a simulation testbench for distributed generation. In IEEE Africon ’11, pages 1–6, 2011.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 94 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Pereira, Risaralda, Colombia
dc.publisher.none.fl_str_mv Universidad Tecnológica de Pereira
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías
dc.publisher.place.none.fl_str_mv Pereira
publisher.none.fl_str_mv Universidad Tecnológica de Pereira
institution Universidad Tecnológica de Pereira
bitstream.url.fl_str_mv https://repositorio.utp.edu.co/bitstreams/ace3e4f3-aa1c-4b6b-8b66-3d904fc8dab8/download
https://repositorio.utp.edu.co/bitstreams/c89e6ac3-2917-4b4a-84be-31a092abe415/download
https://repositorio.utp.edu.co/bitstreams/6c57962b-ecf4-4fbe-8d82-8ca6de3b049d/download
https://repositorio.utp.edu.co/bitstreams/392a713b-f7b5-47c7-ac91-78a6ed06ab2b/download
https://repositorio.utp.edu.co/bitstreams/e85cce2d-f950-4bae-ac62-c8615f6b1dee/download
bitstream.checksum.fl_str_mv 3d76f4d1b97f333ddc57562c35139e38
73a5432e0b76442b22b026844140d683
02a44fbb536890841616446ec1674aaa
a81c840690145984d2df12a91665419e
dcb09b361ec00e04c2779db43a26d96f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica de Pereira
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1831930644152713216
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessMora Flórez, Juan JoséPérez Londoño, Sandra MilenaGarcía Ceballos, Carlos Alberto2025-04-28T19:54:06Z2025-04-28T19:54:06Z2025https://hdl.handle.net/11059/15762Universidad Tecnológica de PereiraRepositorio Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/home: figuras, tablasEste documento es un compendio de las propuestas desarrolladas en una investigación enfocada a la protección de redes de distribución con recursos energéticos distribuidos integrados a través de inversores. El tema es de gran relevancia ya que los sistemas de distribución que integran recursos energéticos distribuidos son cada vez más comunes debido a ventajas ambientales, económicas y técnicas; donde el sistema de protecciones es indispensable para garantizar una operación segura. Dado que los aspectos fundamentales de cada propuesta se encuentran publicados en revistas indexadas, este do- cumento resume cada aporte y su metodolog ́ıa central. En su conjunto, las propuesta general presenta un modelo de la red de distribución y los generadores basados en inversores; también muestra la aplicación del relé de distancia en redes de distribución1. Introducción-- 4 1.1. Motivación -- 4 1.2. Justificación -- 7 1.3. Estado del arte -- 9 2. Objetivos -- 13 2.1. Objetivo general -- 13 2.2. Objetivos específicos -- 13 3. Aspectos teóricos -- 14 3.1. Control local del IIDER -- 14 3.1.1. Lazo interno - tensiones de referencia para el VSI -- 14 3.1.2. Lazo externo - corrientes de referencia para el lazo interno -- 17 3.2. An ́alisis de sistemas de potencia bajo falla -- 18 3.2.1. An ́alisis usando componentes de secuencia -- 18 3.2.2. An ́alisis usando componentes de fase (ABC) -- 23 3.3. Relé de distancia -- 25 4. Modelado del IIDER -- 27 4.1. Desarrollo asociado al modelado y control del IIDER -- 27 4.1.1. Control PI del lazo de control -- 27 4.1.2. Limitación de corriente del IIDER -- 28 4.1.3. Estabilidad de redes basadas en IIDER -- 30 4.2. Resultados sobre la operaci ́on del IIDER -- 31 4.2.1. Caso operaci ́on del IIDER ante falla trif ́asica -- 31 4.2.2. Caso operaci ́on del IIDER ante falla fase-fase -- 34 i 4.2.3. Caso de falla fase-tierra -- 36 4.3. Conclusiones -- 39 5. Protecci ́on de una ADN con rel ́e de distancia -- 41 5.1. Estimaci ́on de la impedancia de falla incluyendo el efecto del tipo de carga combinado con la resistencia de falla -- 41 5.2. Estimaci ́on de la impedancia de falla incluyendo el efecto de la resistencia de falla combinado con los efectos infeed y remoto de un IIDER -- 42 5.3. Estimaci ́on de la impedancia de falla incluyendo efectos nocivos de las redes de distribuci ́on -- 43 5.3.1. Ecuaciones de inter ́es para el an ́alisis circuital de la zona protegida 46 5.3.2. Algoritmos de estimaci ́on de la distancia de falla -- 49 5.4. Resultados respecto a la protecci ́on de ADNs -- 53 5.4.1. Resultados considerando medidas a lo largo de la zona protegida 53 5.4.2. Resultados considerando an ́alisis circuital en la zona protegida y solo medidas locales -- 54 5.4.3. Resultados de aplicaci ́on respecto a la variabilidad del recurso primario -- 56 5.5. Conclusiones -- 58 6. Publicaciones -- 60 6.1. Propuestas sobre el modelado de redes de distribuci ́on activas y de recursos energ ́eticos distribuidos integrados a través de inversores -- 60 6.1.1. Enfoque iterativo para ajustar m ́ultiples IIDER en micro-redes -- 60 6.1.2. An ́alisis de la implementación de un convertidor formador de red considerando el efecto del recurso energ ́etico primario -- 60 6.1.3. An ́alisis de estabilidad para micro-redes considerando modo de operaci ́on aislado -- 61 6.1.4. Estrategias de limitación de corriente para el control de convertidores seguidores de red en aplicaci ́on a micro-redes -- 61 6.2. Propuestas sobre la protecci ́on de redes de distribución con recursos energéticos distribuidos integrados a través de inversores -- 62 ii 6.2.1. Estimaci ́on de la impedancia de falla para protecciones basadas en distancia en una red de distribuci ́on activa -- 62 6.2.2. Mejora de la protecci ́on basada en distancia para altas impedancias de falla y considerando modelos de carga din ́amicos -- 62 6.2.3. Mejora de la protecci ́on basada en distancia para redes de distribución con IIDER -- 63 7. Limitaciones, trabajos futuros y conclusiones generales 64 7.1. Limitaciones en las propuestas presentadas -- 64 7.1.1. Limitaciones en el modelo del sistema -- 64 7.1.2. Limitaciones en las estrategias de protección -- 65 7.2. Trabajos futuros -- 66 7.3. Conclusiones generales -- 68 A. Ap ́endice. Implementación de modelos -- 1 A.1. Implementaci ́on del IIDER -- 1 A.1.1. Etapa de control para el IIDER como seguidor de red -- 1 A.1.2. Etapa de potencia para el IIDER como seguidor de red -- 3 A.2. Sistema de prueba -- 5 A.2.1. Parametrización del IIDER -- 5 A.2.2. Parametrización de la red de prueba -- 6DoctoradoDoctor(a) en Ingeniería94 páginasapplication/pdfspaUniversidad Tecnológica de PereiraDoctorado en IngenieríaFacultad de IngenieríasPereira620 - Ingeniería y operaciones afinesIndustrias eléctricasRelés eléctricosDistribución de energía eléctrica2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e InformáticaDistribuciónEnergía renovableInversoresModelamientoODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todosAnálisis y desarrollo de estrategias de protección basadas en la distancia para redes de distribución con recursos energéticos integrados a través de inversoresTrabajo de grado - Doctoradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesisPereira, Risaralda, Colombia[1] Sohad Abu-Elzait and Robert Parkin. Economic and environmental advantages of renewable-based microgrids over conventional microgrids. In 2019 IEEE Green Technologies Conference (GreenTech), pages 1–4. IEEE, 2019.[2] Meiqin Mao, Peng Jin, Liuchen Chang, and Haibo Xu. Economic analysis and optimal design on microgrids with ss-pvs for industries. IEEE Transactions on Sustainable Energy, 5(4):1328–1336, 2014.[3] Eltaib Said Elmubarak and Ali Mohamed Ali. Distributed generation: definitions, benefits, technologies & challenges. Int. J. Sci. Res.(IJSR), 5(7), 2016.[4] Hanling Yi, Mohammad H Hajiesmaili, Ying Zhang, Minghua Chen, and Xiaojun Lin. Impact of the uncertainty of distributed renewable generation on deregulated electricity supply chain. IEEE Transactions on Smart Grid, 9(6):6183–6193, 2017.[5] Seyed-Ehsan Razavi, Ehsan Rahimi, Mohammad Sadegh Javadi, Ali Esmaeel Nezhad, Mohamed Lotfi, Miadreza Shafie-khah, and Jo ̃ao PS Catal ̃ao. Impact of distributed generation on protection and voltage regulation of distribution sys- tems: A review. Renewable and Sustainable Energy Reviews, 105:157–167, 2019.[6] JO Petinrin and Mohamed Shaabanb. Impact of renewable generation on volta- ge control in distribution systems. Renewable and Sustainable Energy Reviews, 65:770–783, 2016.[7] Ahmed S Hassan, ElSaeed A Othman, Fahmy M Bendary, and Mohamed A Ebrahim. Optimal integration of distributed generation resources in active dis- tribution networks for techno-economic benefits. Energy Reports, 6:3462–3471, 2020.[8] Debadatta Amaresh Gadanayak. Protection algorithms of microgrids with in- verter interfaced distributed generation units—a review. Electric Power Systems Research, 192:106986, 2021.[9] Rodney Kizito, Xueping Li, Kai Sun, and Shuai Li. Optimal distributed generator placement in utility-based microgrids during a large-scale grid disturbance. IEEE Access, 8:21333–21344, 2020.[10] Yusuf Gupta, Suryanarayana Doolla, Kishore Chatterjee, and Bikash Chandra Pal. Optimal dg allocation and volt–var dispatch for a droop-based microgrid. IEEE Transactions on Smart Grid, 12(1):169–181, 2020.[11] Ling Ai Wong, Vigna K Ramachandaramurthy, Sara L Walker, and Janaka B Eka- nayake. Optimal placement and sizing of battery energy storage system considering the duck curve phenomenon. IEEE Access, 8:197236–197248, 2020.[12] Mostafa F Shaaban, Sayed Mohamed, Muhammad Ismail, Khalid A Qaraqe, and Erchin Serpedin. Joint planning of smart ev charging stations and dgs in eco- friendly remote hybrid microgrids. IEEE Transactions on Smart Grid, 10(5):5819– 5830, 2019.[13] Po-Chen Chen, Reynaldo Salcedo, Qingcheng Zhu, Francisco De Leon, Dariusz Czarkowski, Zhong-Ping Jiang, Vitaly Spitsa, Zivan Zabar, and Resk Ebrahem Uosef. Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks. IEEE Transactions on Power Delivery, 27(4):2020–2028, 2012.[14] Mostafa Farrokhabadi, Claudio A Ca ̃nizares, John W Simpson-Porco, Ehsan Nasr, Lingling Fan, Patricio A Mendoza-Araya, Reinaldo Tonkoski, Ujjwol Tamrakar, Nikos Hatziargyriou, Dimitris Lagos, et al. Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems, 35(1):13–29, 2019.[15] Ali Hooshyar and Reza Iravani. Microgrid protection. Proceedings of the IEEE, 105(7):1332–1353, 2017.[16] Shuang Xu, Yaosuo Xue, and Liuchen Chang. Review of power system support functions for inverter-based distributed energy resources-standards, control algo- rithms, and trends. IEEE open journal of Power electronics, 2:88–105, 2021.[17] Luka V Strezoski, Nikola R Vojnovic, Vladimir C Strezoski, Predrag M Vidovic, Marija D Prica, and Kenneth A Loparo. Modeling challenges and potential solu- tions for integration of emerging ders in dms applications: power flow and short- circuit analysis. Journal of Modern Power Systems and Clean Energy, 7(6):1365– 1384, 2019.[18] Hao Wen and Meghdad Fazeli. A low-voltage ride-through strategy using mixed potential function for three-phase grid-connected pv systems. Electric Power Sys- tems Research, 173:271–280, 2019.[19] Alexandros G Paspatis, George C Konstantopoulos, and Josep M Guerrero. En- hanced current-limiting droop controller for grid-connected inverters to guarantee stability and maximize power injection under grid faults. IEEE Transactions on Control Systems Technology, 29(2):841–849, 2019.[20] Gefei Kou, Le Chen, Philip VanSant, Francisco Velez-Cedeno, and Yilu Liu. Fault characteristics of distributed solar generation. IEEE Transactions on Power Deli- very, 35(2):1062–1064, 2019.[21] Nikolay Nikolaev, Kiril Dimitrov, and Yulian Rangelov. A comprehensive review of small-signal stability and power oscillation damping through photovoltaic inverters. Energies, 14(21):7372, 2021.[22] Simone Negri, Enrico Tironi, Gabrio Superti-Furga, and Marco Carminati. Vsc- based lvdc distribution network with ders: Equivalent circuits for leakage and ground fault currents evaluation. Renewable Energy, 177:1133–1146, 2021.[23] Hamid Reza Baghaee, Mojtaba Mirsalim, Gevork B Gharehpetian, and Heidar Ali Talebi. A new current limiting strategy and fault model to improve fault ride- through capability of inverter interfaced ders in autonomous microgrids. Sustaina- ble Energy Technologies and Assessments, 24:71–81, 2017.[24] UPME Unidad de Planeaci ́on Minero Energ ́etica. Estudio: Smart grids colom- bia visi ́on 2030 - mapa de ruta para la implementaci ́on de redes inteligentes en colombia, 2016.[25] Reddipalli Bhargav, Bhavesh R Bhalja, and Chandra P Gupta. A new impedance relay for the protection of low voltage dc microgrid. In 2020 IEEE Power & Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2020.[26] Yujie Yin, Yong Fu, Zhiying Zhang, and Amin Zamani. Protection of microgrid in- terconnection lines using distance relay with residual voltage compensation. IEEE Transactions on Power Delivery, 2021.[27] Seyed Fariborz Zarei and Saeed Khankalantary. Protection of active distribution networks with conventional and inverter-based distributed generators. Internatio- nal Journal of Electrical Power & Energy Systems, 129:106746, 2021.[28] Aristotelis M Tsimtsios, Anastasia S Safigianni, and Vassilis C Nikolaidis. Gene- ralized distance-based protection design for dg integrated mv radial distribution networks—part i: Guidelines. Electric Power Systems Research, 176:105949, 2019.[29] Zhi Chen, Xuejun Pei, Min Yang, Li Peng, and Puxin Shi. A novel protection scheme for inverter-interfaced microgrid (iim) operated in islanded mode. IEEE Transactions on Power Electronics, 33(9):7684–7697, 2017.[30] Kexing Lai, Mahesh S Illindala, and Mohammed A Haj-ahmed. Comprehensive protection strategy for an islanded microgrid using intelligent relays. In 2015 IEEE Industry Applications Society Annual Meeting, pages 1–11. IEEE, 2015.[31] Mao Yang, Jinxin Wang, and Jun An. Day-ahead optimization scheduling for islan- ded microgrid considering units frequency regulation characteristics and demand response. IEEE Access, 8:7093–7102, 2019.[32] Moslem Uddin, MF Romlie, MF Abdullah, ChiaKwang Tan, GM Shafiullah, and Ab Halim Abu Bakar. A novel peak shaving algorithm for islanded microgrid using battery energy storage system. Energy, 196:117084, 2020.[33] Ashutosh K Giri, Sabha Raj Arya, Rakesh Maurya, and B Chittibabu. Control of VSC for enhancement of power quality in off-grid distributed power generation. IET Renewable Power Generation, 14(5):771–778, 2020.[34] V Naresh Kumar and Sanjoy Kumar Parida. Parameter optimization of universal droop and internal model controller for multi inverter-fed dgs based on accurate small-signal model. IEEE Access, 7:101928–101940, 2019.[35] Quazi Nafees Ul Islam, Ashik Ahmed, and Saad Mohammad Abdullah. Optimi- zed controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (nswoa). Ain Shams Engineering Journal, 2021.[36] Sara Yazdani, Mehdi Ferdowsi, and Pourya Shamsi. Internal model based smooth transition of a three-phase inverter between islanded and grid-connected modes. IEEE Transactions on Energy Conversion, 35(1):405–415, 2019.[37] Mohammed H Qais, Hany M Hasanien, and Saad Alghuwainem. A grey wolf optimizer for optimum parameters of multiple pi controllers of a grid-connected pmsg driven by variable speed wind turbine. IEEE Access, 6:44120–44128, 2018.[38] Farheen Chishti, Shadab Murshid, and Bhim Singh. Natural genetics adapted control for an autonomous wind-battery based microgrid. IEEE Transactions on Industry Applications, 56(6):7156–7165, 2020.[39] Hossein Karimi, Mohammad TH Beheshti, Amin Ramezani, and Hamidreza Zarei- pour. Intelligent control of islanded ac microgrids based on adaptive neuro-fuzzy inference system. International[40] Muhammad Usama, Hazlie Mokhlis, Mahmoud Moghavvemi, Nurulafiqah Nadzi- rah Mansor, Majed A Alotaibi, Munir Azam Muhammad, and Abdullah Akram Bajwa. A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks. IEEE Access, 2021.[41] Bhaskar Patnaik, Manohar Mishra, Ramesh C Bansal, and Ranjan Kumar Jena. Ac microgrid protection–a review: Current and future prospective. Applied Energy, 271:115210, 2020.[42] Ali Hooshyar and Reza Iravani. A new directional element for microgrid protection. IEEE Transactions on Smart Grid, 9(6):6862–6876, 2017.[43] Giovanni Mu ̃noz-Arango, Juan Mora-Fl ́orez, and Sandra P ́erez-Londo ̃no. A power- based fault direction estimation method for active distribution networks. Results in Engineering, 21:101754, 2024.[44] Mohammad Hamidieh and Mona Ghassemi. Microgrids and resilience: A review. IEEE Access, 2022.[45] Paul M Anderson and Paul Anderson. Power system protection, volume 1307. Wiley-Interscience, 1999.[46] J Lewis Blackburn and Thomas J Domin. Protective relaying: principles and ap- plications. CRC press, 2006.[47] Kartika Dubey and Premalata Jena. Impedance angle-based differential protection scheme for microgrid feeders. IEEE Systems Journal, 2020.[48] Aristotelis M Tsimtsios and Vassilis C Nikolaidis. Setting zero-sequence compensa- tion factor in distance relays protecting distribution systems. IEEE Transactions on Power Delivery, 33(3):1236–1246, 2017.[49] Nikhil Kumar Sharma and Subhransu Ranjan Samantaray. Pmu assisted integrated impedance angle-based microgrid protection scheme. IEEE Transactions on Power Delivery, 35(1):183–193, 2019.[50] Khalil El-Arroudi and Geza Joos. Performance of interconnection protection based on distance relaying for wind power distributed generation. IEEE Transactions on Power Delivery, 33(2):620–629, 2017.[51] Khaled A. Saleh and Mahmoud A. Allam. Synthetic harmonic distance relaying for inverter-based islanded microgrids. IEEE Open Access Journal of Power and Energy, 8:258–267, 2021.[52] Ankan Chandra, GK Singh, and Vinay Pant. Protection of ac microgrid integrated with renewable energy sources–a research review and future trends. Electric Power Systems Research, 193:107036, 2021.[53] Vassilis C Nikolaidis, Aristotelis M Tsimtsios, and Anastasia S Safigianni. In- vestigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with dg. IEEE Access, 6:11301–11312, 2018.[54] Nima Rezaei and M Nasir Uddin. State-of-the-art microgrid power protective rela- ying and coordination techniques. In Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pages 1–8, 2020.[55] Taoufik Qoria, Fran ̧cois Gruson, Fr ́ederic Colas, Xavier Kestelyn, and Xavier Gui- llaud. Current limiting algorithms and transient stability analysis of grid-forming vscs. Electric Power Systems Research, 189:106726, 2020.[56] Shuren Wang, Grain Adam, Khaled H Ahmed, and Barry Williams. Comparative evaluation of converter-based compensation schemes for vsc systems to achieve full- range active power transfer in very weak grids. Electric Power Systems Research, 210:108135, 2022.[57] Pengfei Hu, Weitong Jiang, Yanxue Yu, Daozhuo Jiang, and Josep M Guerre- ro. Transient stability improvement of grid-forming voltage source converters con- sidering current limitation. Sustainable Energy Technologies and Assessments, 54:102839, 2022.[58] Ebrahim Rokrok, Taoufik Qoria, Antoine Bruyere, Bruno Francois, and Xavier Guillaud. Transient stability assessment and enhancement of grid-forming con- verters embedding current reference saturation as current limiting strategy. IEEE Transactions on Power Systems, 37(2):1519–1531, 2021.[59] Kamran Zeb, Saif Ul Islam, Imran Khan, Waqar Uddin, M Ishfaq, Tiago Davi Curi Busarello, SM Muyeen, Iftikhar Ahmad, and HJ Kim. Faults and fault ride th- rough strategies for grid-connected photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews, 158:112125, 2022.[60] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Fault current limitation approaches for grid-following controlled ders in microgrid environments. Ain Shams Engineering Journal, page 102891, 2024.[61] Linbin Huang, Huanhai Xin, Zhen Wang, Leiqi Zhang, Kuayu Wu, and Jiabing Hu. Transient stability analysis and control design of droop-controlled voltage source converters considering current limitation. IEEE Transactions on Smart Grid, 10(1):578–591, 2017.[62] Vivek Nikam and Vaiju Kalkhambkar. A review on control strategies for microgrids with distributed energy resources, energy storage systems, and electric vehicles. International Transactions on Electrical Energy Systems, 31(1):e12607, 2021.[63] Daniela Yassuda Yamashita, Ionel Vechiu, and Jean-Paul Gaubert. A review of hierarchical control for building microgrids. Renewable and Sustainable Energy Reviews, 118:109523, 2020.[64] KS Rajesh, SS Dash, Ragam Rajagopal, and R Sridhar. A review on control of ac microgrid. Renewable and sustainable energy reviews, 71:814–819, 2017.[65] Ali Bidram and Ali Davoudi. Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4):1963–1976, 2012.[66] Daniel E Olivares, Ali Mehrizi-Sani, Amir H Etemadi, Claudio A Ca ̃nizares, Reza Iravani, Mehrdad Kazerani, Amir H Hajimiragha, Oriol Gomis-Bellmunt, Maryam Saeedifard, Rodrigo Palma-Behnke, et al. Trends in microgrid control. IEEE Transactions on smart grid, 5(4):1905–1919, 2014.[67] Tine L Vandoorn, Juan C Vasquez, Jeroen De Kooning, Josep M Guerrero, and Lieven Vandevelde. Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE industrial electronics magazine, 7(4):42– 55, 2013.[68] Anders Bergheim Holvik. Virtual impedance techniques for power sharing control in ac islanded microgrids. Master’s thesis, NTNU, 2018.[69] P Kanakasabapathy et al. Control strategy for inverter based micro-grid. In 2014 POWER AND ENERGY SYSTEMS: TOWARDS SUSTAINABLE ENERGY, pa- ges 1–6. IEEE, 2014.[70] Mingzhang Li, Lihui Yang, Xikui Ma, and Mengqi Li. Generalised average mode- lling of grid-connected three-phase vsc with closed-loop vector control and regular- sampled modulation. IET Power Electronics, 13(12):2481–2491, 2020.[71] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Florez. Iterative approach for tuning multiple converter-integrated der in microgrids. International Transactions on Electrical Energy Systems, 2022, 2022.[72] C Garc ́ıa-Ceballos, K Ruiz-Gaviria, and J Mora-Fl ́orez. Implementation analysis for grid-forming converter considering primary energy source effect. In 2022 IEEE ANDESCON, pages 1–6. IEEE, 2022.[73] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Stability analysis frame- work for isolated microgrids with energy resources integrated using voltage source converters. Results in Engineering, 19:101252, 2023.[74] D Osorio-V ́asquez, C Garc ́ıa-Ceballos, and J Mora-Fl ́orez. Enhanced distance- based protection for high impedance faults considering dynamic load modelling. Results in Engineering, 22:102278, 2024.[75] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Compensated fault im- pedance estimation for distance-based protection in active distribution networks. International Journal of Electrical Power & Energy Systems, 151:109114, 2023.[76] C Garc ́ıa-Ceballos, S P ́erez-Londo ̃no, and J Mora-Fl ́orez. Integration of distributed energy resource models in the vsc control for microgrid applications. Electric Power Systems Research, 196:107278, 2021.[77] Ali Hooshyar, Maher A Azzouz, and Ehab F El-Saadany. Distance protec- tion of lines emanating from full-scale converter-interfaced renewable energy po- wer plants—part i: Problem statement. IEEE Transactions on Power Delivery, 30(4):1770–1780, 2014.[78] Authors James O. Owuor, Josiah L. Munda, and Adisa A. Jimoh. The ieee 34 node radial test feeder as a simulation testbench for distributed generation. In IEEE Africon ’11, pages 1–6, 2011.Comunidad académica y científica, Estudiantes, Docentes, InvestigadoresPublicationORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1830549https://repositorio.utp.edu.co/bitstreams/ace3e4f3-aa1c-4b6b-8b66-3d904fc8dab8/download3d76f4d1b97f333ddc57562c35139e38MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.utp.edu.co/bitstreams/c89e6ac3-2917-4b4a-84be-31a092abe415/download73a5432e0b76442b22b026844140d683MD52THUMBNAILImagen9.pngimage/png50473https://repositorio.utp.edu.co/bitstreams/6c57962b-ecf4-4fbe-8d82-8ca6de3b049d/download02a44fbb536890841616446ec1674aaaMD53Trabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg8042https://repositorio.utp.edu.co/bitstreams/392a713b-f7b5-47c7-ac91-78a6ed06ab2b/downloada81c840690145984d2df12a91665419eMD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102188https://repositorio.utp.edu.co/bitstreams/e85cce2d-f950-4bae-ac62-c8615f6b1dee/downloaddcb09b361ec00e04c2779db43a26d96fMD5411059/15762oai:repositorio.utp.edu.co:11059/157622025-04-29 05:01:12.738https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de la Ley 23 de 1982. En concordancia suscribo (suscribimos) este documento en el momento mismo que hago (hacemos) entrega de mi (nuestra) OBRA a la Biblioteca “Jorge Roa Martínez” de la Universidad Tecnológica de Pereira. Manifiesto (manifestamos) que la OBRA objeto de la presente autorizaciónopen.accesshttps://repositorio.utp.edu.coRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K