Skin prick test wheal detection in 3D images via convolutional neural networks
The skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, m...
- Autores:
-
Pena, Juan C.
Pacheco, Jose A.
Marrugo Hernández, Andrés Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10658
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10658
- Palabra clave:
- SPT
Skin prick test
Wheal
3D image
Convolutional neural network
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_d0123821dacd2acc57f9ebb1756e27a8 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10658 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Skin prick test wheal detection in 3D images via convolutional neural networks |
title |
Skin prick test wheal detection in 3D images via convolutional neural networks |
spellingShingle |
Skin prick test wheal detection in 3D images via convolutional neural networks SPT Skin prick test Wheal 3D image Convolutional neural network LEMB |
title_short |
Skin prick test wheal detection in 3D images via convolutional neural networks |
title_full |
Skin prick test wheal detection in 3D images via convolutional neural networks |
title_fullStr |
Skin prick test wheal detection in 3D images via convolutional neural networks |
title_full_unstemmed |
Skin prick test wheal detection in 3D images via convolutional neural networks |
title_sort |
Skin prick test wheal detection in 3D images via convolutional neural networks |
dc.creator.fl_str_mv |
Pena, Juan C. Pacheco, Jose A. Marrugo Hernández, Andrés Guillermo |
dc.contributor.author.none.fl_str_mv |
Pena, Juan C. Pacheco, Jose A. Marrugo Hernández, Andrés Guillermo |
dc.subject.keywords.spa.fl_str_mv |
SPT Skin prick test Wheal 3D image Convolutional neural network |
topic |
SPT Skin prick test Wheal 3D image Convolutional neural network LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, multiple approaches have been developed to improve the reproducibility of the test. This work aims to improve part of the automated reading of the SPT to improve the reliability of the wheal detection procedure through the use of convolutional neural networks (CNN). Our proposal starts from the 3D images of the SPT from the arm of patients. They are processed for global surface removal, and then a CNN is trained to produce an output mask that detects the wheals. Finally, the contour of each wheal and its largest diameter is obtained. Encouraging results with mean difference 0.966 mm and mean coefficient of variation 7.29% show that the proposed method provides reliable automated skin wheal detection. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-01 |
dc.date.accessioned.none.fl_str_mv |
2022-04-06T13:07:09Z |
dc.date.available.none.fl_str_mv |
2022-04-06T13:07:09Z |
dc.date.submitted.none.fl_str_mv |
2022-04-05 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10658 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CI-IBBI54220.2021.9626125 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125. 10.1109/CI-IBBI54220.2021.9626125 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10658 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
5 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (2021) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/1/CI_IB_BI_2021-final.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/4/CI_IB_BI_2021-final.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/5/CI_IB_BI_2021-final.pdf.jpg |
bitstream.checksum.fl_str_mv |
3d020c8fd791508f1df4806d5105a20e 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 9e9e8962b383399361cf1254c7ab8b55 dbdb890949eb2fcd91fcbd13a8c0ba23 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021672084176896 |
spelling |
Pena, Juan C.6db3d191-5eac-48fd-a8aa-2e3a207ae0ccPacheco, Jose A.e2a91273-e9bb-4291-9be3-6d6dd4d43c7fMarrugo Hernández, Andrés Guillermo3d6cd388-d48f-4669-934f-49ca4179f5422022-04-06T13:07:09Z2022-04-06T13:07:09Z2021-10-012022-04-05Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125.https://hdl.handle.net/20.500.12585/1065810.1109/CI-IBBI54220.2021.9626125Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, multiple approaches have been developed to improve the reproducibility of the test. This work aims to improve part of the automated reading of the SPT to improve the reliability of the wheal detection procedure through the use of convolutional neural networks (CNN). Our proposal starts from the 3D images of the SPT from the arm of patients. They are processed for global surface removal, and then a CNN is trained to produce an output mask that detects the wheals. Finally, the contour of each wheal and its largest diameter is obtained. Encouraging results with mean difference 0.966 mm and mean coefficient of variation 7.29% show that the proposed method provides reliable automated skin wheal detection.5 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (2021)Skin prick test wheal detection in 3D images via convolutional neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1SPTSkin prick testWheal3D imageConvolutional neural networkLEMBCartagena de IndiasH. Pijnenborg, L. Nilsson, and S. Dreborg, “Estimation of skin prick test reactions with a scanning program,” Allergy, vol. 51, no. 11, pp. 782–788, 1996B. Buyuktiryaki, U. Sahiner, E. Karabulut, O. Cavkaytar, A. Tuncer, and B. Sekerel, “Optimizing the use of a skin prick test device on children,” International archives of allergy and immunology, vol. 162, pp. 65–70, 06 2013L. Heinzerling, A. Mari, K. Bergmann, M. Bresciani, G. Burbach, U. Darsow, S. Durham, W. Fokkens, M. Gjomarkaj, T. Haahtela, A. Todo Bom, S. Wohrl, H. Maibach, and R. Lockey, “The skin ¨ prick test – european standards,” Clinical and translational allergy, vol. 3, p. 3, 02 2013G. Konstantinou, P. J. Bousquet, T. Zuberbier, and N. Papadopoulos, “The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests,” International archives of allergy and immunology, vol. 151, pp. 343–5, 10 2009.S. Wohrl, K. Vigl, M. Binder, G. Stingl, and M. Prinz, “Automated ¨ measurement of skin prick tests: an advance towards exact calculation of wheal size.,” Experimental Dermatology, vol. 15, pp. 119–124, Feb. 2006X. Justo, I. D´ıaz, J. Gil, and G. Gastaminza, “Prick test: evolution towards automated reading,” Allergy, vol. 71, no. 8, pp. 1095–1102, 2016W. McCann and D. Ownby, “The reproducibility of allergy skin test scoring and interpretation by board-certified/board-eligible allergists,” Annals of allergy, asthma & immunology, vol. 89, pp. 368–71, 11 2002.O. Bulan, “Improved wheal detection from skin prick test images,” Proc. SPIE, vol. 9024, pp. 138 – 147, 2014.J. Pineda, R. Vargas, L. A. Romero, J. Marrugo, J. Meneses, and A. G. Marrugo, “Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting,” PLOS ONE, vol. 14, pp. 1–18, 10 2019.O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALCI_IB_BI_2021-final.pdfCI_IB_BI_2021-final.pdfapplication/pdf1828414https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/1/CI_IB_BI_2021-final.pdf3d020c8fd791508f1df4806d5105a20eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTCI_IB_BI_2021-final.pdf.txtCI_IB_BI_2021-final.pdf.txtExtracted texttext/plain14883https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/4/CI_IB_BI_2021-final.pdf.txt9e9e8962b383399361cf1254c7ab8b55MD54THUMBNAILCI_IB_BI_2021-final.pdf.jpgCI_IB_BI_2021-final.pdf.jpgGenerated Thumbnailimage/jpeg21306https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/5/CI_IB_BI_2021-final.pdf.jpgdbdb890949eb2fcd91fcbd13a8c0ba23MD5520.500.12585/10658oai:repositorio.utb.edu.co:20.500.12585/106582023-05-26 16:26:02.233Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |