Skin prick test wheal detection in 3D images via convolutional neural networks

The skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, m...

Full description

Autores:
Pena, Juan C.
Pacheco, Jose A.
Marrugo Hernández, Andrés Guillermo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10658
Acceso en línea:
https://hdl.handle.net/20.500.12585/10658
Palabra clave:
SPT
Skin prick test
Wheal
3D image
Convolutional neural network
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_d0123821dacd2acc57f9ebb1756e27a8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10658
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Skin prick test wheal detection in 3D images via convolutional neural networks
title Skin prick test wheal detection in 3D images via convolutional neural networks
spellingShingle Skin prick test wheal detection in 3D images via convolutional neural networks
SPT
Skin prick test
Wheal
3D image
Convolutional neural network
LEMB
title_short Skin prick test wheal detection in 3D images via convolutional neural networks
title_full Skin prick test wheal detection in 3D images via convolutional neural networks
title_fullStr Skin prick test wheal detection in 3D images via convolutional neural networks
title_full_unstemmed Skin prick test wheal detection in 3D images via convolutional neural networks
title_sort Skin prick test wheal detection in 3D images via convolutional neural networks
dc.creator.fl_str_mv Pena, Juan C.
Pacheco, Jose A.
Marrugo Hernández, Andrés Guillermo
dc.contributor.author.none.fl_str_mv Pena, Juan C.
Pacheco, Jose A.
Marrugo Hernández, Andrés Guillermo
dc.subject.keywords.spa.fl_str_mv SPT
Skin prick test
Wheal
3D image
Convolutional neural network
topic SPT
Skin prick test
Wheal
3D image
Convolutional neural network
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, multiple approaches have been developed to improve the reproducibility of the test. This work aims to improve part of the automated reading of the SPT to improve the reliability of the wheal detection procedure through the use of convolutional neural networks (CNN). Our proposal starts from the 3D images of the SPT from the arm of patients. They are processed for global surface removal, and then a CNN is trained to produce an output mask that detects the wheals. Finally, the contour of each wheal and its largest diameter is obtained. Encouraging results with mean difference 0.966 mm and mean coefficient of variation 7.29% show that the proposed method provides reliable automated skin wheal detection.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-01
dc.date.accessioned.none.fl_str_mv 2022-04-06T13:07:09Z
dc.date.available.none.fl_str_mv 2022-04-06T13:07:09Z
dc.date.submitted.none.fl_str_mv 2022-04-05
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10658
dc.identifier.doi.none.fl_str_mv 10.1109/CI-IBBI54220.2021.9626125
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125.
10.1109/CI-IBBI54220.2021.9626125
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10658
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 5 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/1/CI_IB_BI_2021-final.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/4/CI_IB_BI_2021-final.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/5/CI_IB_BI_2021-final.pdf.jpg
bitstream.checksum.fl_str_mv 3d020c8fd791508f1df4806d5105a20e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
9e9e8962b383399361cf1254c7ab8b55
dbdb890949eb2fcd91fcbd13a8c0ba23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021672084176896
spelling Pena, Juan C.6db3d191-5eac-48fd-a8aa-2e3a207ae0ccPacheco, Jose A.e2a91273-e9bb-4291-9be3-6d6dd4d43c7fMarrugo Hernández, Andrés Guillermo3d6cd388-d48f-4669-934f-49ca4179f5422022-04-06T13:07:09Z2022-04-06T13:07:09Z2021-10-012022-04-05Pena, Juan & Pacheco, Jose & Marrugo, Andrés. (2021). Skin prick test wheal detection in 3D images via convolutional neural networks. 1-4. 10.1109/CI-IBBI54220.2021.9626125.https://hdl.handle.net/20.500.12585/1065810.1109/CI-IBBI54220.2021.9626125Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe skin prick test (SPT) is performed to diagnose different types of allergies. This medical procedure requires measuring the size of the skin wheals that appear when the test is performed. However, the manual measurement method is cumbersome and suffers from intraand inter-observer errors. Thus, multiple approaches have been developed to improve the reproducibility of the test. This work aims to improve part of the automated reading of the SPT to improve the reliability of the wheal detection procedure through the use of convolutional neural networks (CNN). Our proposal starts from the 3D images of the SPT from the arm of patients. They are processed for global surface removal, and then a CNN is trained to produce an output mask that detects the wheals. Finally, the contour of each wheal and its largest diameter is obtained. Encouraging results with mean difference 0.966 mm and mean coefficient of variation 7.29% show that the proposed method provides reliable automated skin wheal detection.5 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI) (2021)Skin prick test wheal detection in 3D images via convolutional neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1SPTSkin prick testWheal3D imageConvolutional neural networkLEMBCartagena de IndiasH. Pijnenborg, L. Nilsson, and S. Dreborg, “Estimation of skin prick test reactions with a scanning program,” Allergy, vol. 51, no. 11, pp. 782–788, 1996B. Buyuktiryaki, U. Sahiner, E. Karabulut, O. Cavkaytar, A. Tuncer, and B. Sekerel, “Optimizing the use of a skin prick test device on children,” International archives of allergy and immunology, vol. 162, pp. 65–70, 06 2013L. Heinzerling, A. Mari, K. Bergmann, M. Bresciani, G. Burbach, U. Darsow, S. Durham, W. Fokkens, M. Gjomarkaj, T. Haahtela, A. Todo Bom, S. Wohrl, H. Maibach, and R. Lockey, “The skin ¨ prick test – european standards,” Clinical and translational allergy, vol. 3, p. 3, 02 2013G. Konstantinou, P. J. Bousquet, T. Zuberbier, and N. Papadopoulos, “The longest wheal diameter is the optimal measurement for the evaluation of skin prick tests,” International archives of allergy and immunology, vol. 151, pp. 343–5, 10 2009.S. Wohrl, K. Vigl, M. Binder, G. Stingl, and M. Prinz, “Automated ¨ measurement of skin prick tests: an advance towards exact calculation of wheal size.,” Experimental Dermatology, vol. 15, pp. 119–124, Feb. 2006X. Justo, I. D´ıaz, J. Gil, and G. Gastaminza, “Prick test: evolution towards automated reading,” Allergy, vol. 71, no. 8, pp. 1095–1102, 2016W. McCann and D. Ownby, “The reproducibility of allergy skin test scoring and interpretation by board-certified/board-eligible allergists,” Annals of allergy, asthma & immunology, vol. 89, pp. 368–71, 11 2002.O. Bulan, “Improved wheal detection from skin prick test images,” Proc. SPIE, vol. 9024, pp. 138 – 147, 2014.J. Pineda, R. Vargas, L. A. Romero, J. Marrugo, J. Meneses, and A. G. Marrugo, “Robust automated reading of the skin prick test via 3d imaging and parametric surface fitting,” PLOS ONE, vol. 14, pp. 1–18, 10 2019.O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALCI_IB_BI_2021-final.pdfCI_IB_BI_2021-final.pdfapplication/pdf1828414https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/1/CI_IB_BI_2021-final.pdf3d020c8fd791508f1df4806d5105a20eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTCI_IB_BI_2021-final.pdf.txtCI_IB_BI_2021-final.pdf.txtExtracted texttext/plain14883https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/4/CI_IB_BI_2021-final.pdf.txt9e9e8962b383399361cf1254c7ab8b55MD54THUMBNAILCI_IB_BI_2021-final.pdf.jpgCI_IB_BI_2021-final.pdf.jpgGenerated Thumbnailimage/jpeg21306https://repositorio.utb.edu.co/bitstream/20.500.12585/10658/5/CI_IB_BI_2021-final.pdf.jpgdbdb890949eb2fcd91fcbd13a8c0ba23MD5520.500.12585/10658oai:repositorio.utb.edu.co:20.500.12585/106582023-05-26 16:26:02.233Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=