A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank

The industrial production of polypropylene–polyethylene composites (C-PP-PE) involves the generation of waste that is not usable, resulting in a significant environmental impact globally. In this research, we identified different concentrations of aluminum (8–410 ppm), chlorine (13–205 ppm), and iro...

Full description

Autores:
Hernández Fernández, Joaquín Alejandro
Ortega-Toro, Rodrigo
Espinosa Fuentes, Eduardo Antonio
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12764
Acceso en línea:
https://hdl.handle.net/20.500.12585/12764
Palabra clave:
DFT
Thermodynamic models
Catalyst
Polypropylene–polyethylene composites
Activation energy;
Degradation
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_8aa47c480dea6767288245877d13e7ff
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12764
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
title A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
spellingShingle A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
DFT
Thermodynamic models
Catalyst
Polypropylene–polyethylene composites
Activation energy;
Degradation
LEMB
title_short A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
title_full A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
title_fullStr A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
title_full_unstemmed A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
title_sort A study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tank
dc.creator.fl_str_mv Hernández Fernández, Joaquín Alejandro
Ortega-Toro, Rodrigo
Espinosa Fuentes, Eduardo Antonio
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquín Alejandro
Ortega-Toro, Rodrigo
Espinosa Fuentes, Eduardo Antonio
dc.subject.keywords.es_CO.fl_str_mv DFT
Thermodynamic models
Catalyst
Polypropylene–polyethylene composites
Activation energy;
Degradation
topic DFT
Thermodynamic models
Catalyst
Polypropylene–polyethylene composites
Activation energy;
Degradation
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The industrial production of polypropylene–polyethylene composites (C-PP-PE) involves the generation of waste that is not usable, resulting in a significant environmental impact globally. In this research, we identified different concentrations of aluminum (8–410 ppm), chlorine (13–205 ppm), and iron (4–100 ppm) residues originating from traces of the Ziegler–Natta catalyst and the triethylaluminum (TEAL) co-catalyst. These residues accelerate the generation of plastic waste and affect the thermo-kinetic performance of C-PP-PE, as well as the formation of volatile organic compounds that reduce the commercial viability of C-PP-PE. Several families of organic compounds were quantified by gas chromatography with mass spectrometry, and it is evident that these concentrations varied directly with the ppm of Al, Cl, and Fe present in C-PP-PE. This research used kinetic models of Coats–Redfern, Horowitz–Metzger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose. The activation energy values (Ea) were inversely correlated with Al, Cl, and Fe concentrations. In samples PP0 and W3, with low Al, Cl, and Fe concentrations, the values (Ea) were 286 and 224 kJ mol−1, respectively, using the Horowitz method. Samples W1 and W5, with a high ppm of these elements, showed Ea values of 80.83 and 102.99 kJ mol−1, respectively. This knowledge of the thermodynamic behavior and the elucidation of possible chemical reactions in the industrial production of C-PP-PE allowed us to search for a suitable remediation technique to give a new commercial life to C-PP-PE waste, thus supporting the management of plastic waste and improving the process—recycling to promote sustainability and industrial efficiency. One option was using the antioxidant additive Irgafos P-168 (IG-P168), which stabilized some of these C-PP-PE residues very well until thermal properties similar to those of pure C-PP-PE were obtained.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-14T21:24:27Z
dc.date.available.none.fl_str_mv 2024-11-14T21:24:27Z
dc.date.issued.none.fl_str_mv 2024-08-09
dc.date.submitted.none.fl_str_mv 2024-11-14
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Hernández Fernández, J.A.; Ortega-Toro, R.; Fuentes, E.A.E. A Study on the Early Degradation of the Non-Additive Polypropylene– Polyethylene Composite Sampled between the Polymerization Reactor and the Deactivation-Degassing Tank. J. Compos. Sci. 2024,8, 311. https://doi.org/10.3390/jcs8080311
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12764
dc.identifier.ark.none.fl_str_mv 10.3390/jcs8080311
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández Fernández, J.A.; Ortega-Toro, R.; Fuentes, E.A.E. A Study on the Early Degradation of the Non-Additive Polypropylene– Polyethylene Composite Sampled between the Polymerization Reactor and the Deactivation-Degassing Tank. J. Compos. Sci. 2024,8, 311. https://doi.org/10.3390/jcs8080311
10.3390/jcs8080311
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12764
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia, Cartagena-Bolivar
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.publisher.faculty.es_CO.fl_str_mv Ingeniería
dc.publisher.sede.es_CO.fl_str_mv Campus Tecnológico
dc.source.es_CO.fl_str_mv Journal of Composites Science
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/1/jcs-08-00311.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/4/jcs-08-00311.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/5/jcs-08-00311.pdf.jpg
bitstream.checksum.fl_str_mv 28195e4ec5581bea8d3257c7a28f7c4c
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
973b0ea4372f4572ad23b9c24b8de2aa
2b70cc74d98fe91e7435860daeb833f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1834107660250644480
spelling Hernández Fernández, Joaquín Alejandro5c97a10b-cbe8-4ee8-ae3d-5d53f31efd44Ortega-Toro, Rodrigod594d4c1-6ec9-4782-a84b-cee2853ea359Espinosa Fuentes, Eduardo Antoniocaa3b177-18ff-44db-8126-4e5c87aa3304Colombia, Cartagena-Bolivar2024-11-14T21:24:27Z2024-11-14T21:24:27Z2024-08-092024-11-14Hernández Fernández, J.A.; Ortega-Toro, R.; Fuentes, E.A.E. A Study on the Early Degradation of the Non-Additive Polypropylene– Polyethylene Composite Sampled between the Polymerization Reactor and the Deactivation-Degassing Tank. J. Compos. Sci. 2024,8, 311. https://doi.org/10.3390/jcs8080311https://hdl.handle.net/20.500.12585/1276410.3390/jcs8080311Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe industrial production of polypropylene–polyethylene composites (C-PP-PE) involves the generation of waste that is not usable, resulting in a significant environmental impact globally. In this research, we identified different concentrations of aluminum (8–410 ppm), chlorine (13–205 ppm), and iron (4–100 ppm) residues originating from traces of the Ziegler–Natta catalyst and the triethylaluminum (TEAL) co-catalyst. These residues accelerate the generation of plastic waste and affect the thermo-kinetic performance of C-PP-PE, as well as the formation of volatile organic compounds that reduce the commercial viability of C-PP-PE. Several families of organic compounds were quantified by gas chromatography with mass spectrometry, and it is evident that these concentrations varied directly with the ppm of Al, Cl, and Fe present in C-PP-PE. This research used kinetic models of Coats–Redfern, Horowitz–Metzger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose. The activation energy values (Ea) were inversely correlated with Al, Cl, and Fe concentrations. In samples PP0 and W3, with low Al, Cl, and Fe concentrations, the values (Ea) were 286 and 224 kJ mol−1, respectively, using the Horowitz method. Samples W1 and W5, with a high ppm of these elements, showed Ea values of 80.83 and 102.99 kJ mol−1, respectively. This knowledge of the thermodynamic behavior and the elucidation of possible chemical reactions in the industrial production of C-PP-PE allowed us to search for a suitable remediation technique to give a new commercial life to C-PP-PE waste, thus supporting the management of plastic waste and improving the process—recycling to promote sustainability and industrial efficiency. One option was using the antioxidant additive Irgafos P-168 (IG-P168), which stabilized some of these C-PP-PE residues very well until thermal properties similar to those of pure C-PP-PE were obtained.Universidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costa16 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Journal of Composites ScienceA study on the early degradation of the non-additive polypropylene–polyethylene composite sampled between the polymerization reactor and the deactivation-degassing tankinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1DFTThermodynamic modelsCatalystPolypropylene–polyethylene compositesActivation energy;DegradationLEMBCartagena de IndiasIngenieríaCampus TecnológicoInvestigadoresZweifel, H. Stabilization of Polymeric Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]Pospíšil, J.; Klemchuk, P.P. Oxidation Inhibition in Organic Materials; CRC Press: Boca Raton, FL, USA, 1990; Volumes 1 and 2. [Google Scholar]Scott, G. Atmospheric Oxidation and Antioxidants; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; Volume 1, ISBN 9780444896179. [Google Scholar] [CrossRef]Rabek, J.F. (Ed.) Photostabilization of Polymers: Priciples and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]Kleinhans, K.; Demets, R.; Dewulf, J.; Ragaert, K.; De Meester, S. Non-household end-use plastics: The ‘forgotten’plastics for the circular economy. Curr. Opin. Chem. Eng. 2021, 32, 100680. [Google Scholar] [CrossRef]Brems, A.; Dewil, R.; Baeyens, J.; Zhang, R. Gasification of plastic waste as waste-to-energy or waste-to-syngas recovery route. Solid Waste A Renew. Resour. 2013, 5, 241–263. [Google Scholar] [CrossRef]Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef] [PubMed]Pfaendner, R. Restabilization–30 years of research for quality improvement of recycled plastics review. Polym. Degrad. Stab. 2022, 203, 110082. [Google Scholar] [CrossRef]Alotaibi, M.; Aldhafeeri, T.; Barry, C. The Impact of Reprocessing with a Quad Screw Extruder on the Degradation of Polypropylene. Polymers 2022, 14, 2661. [Google Scholar] [CrossRef]Blázquez-Blázquez, E.; Díez-Rodríguez, T.M.; Pérez, E.; Cerrada, M.L. Recycling of metallocene isotactic polypropylene: Importance of antioxidants. J. Therm. Anal. Calorim. 2022, 147, 13363–13374. [Google Scholar] [CrossRef]Schweighuber, A.; Felgel-Farnholz, A.; Bögl, T.; Fischer, J.; Buchberger, W. Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polym. Degrad. Stab. 2021, 192, 109689. [Google Scholar] [CrossRef]Schyns, Z.O.; Shaver, M.P. Mechanical recycling of packaging plastics: A review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]Gabriel, D.S.; Saragih, R.H.P. Impact of repetitive recycling on optical properties of virgin and recycled polypropylene blends based on material value conservation paradigm. Mater. Sci. Forum 2021, 1020, 192–198. [Google Scholar] [CrossRef]Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-mechanical degradation of polypropylene (PP) and low-density polyethylene (LDPE) blends exposed to simulated recycling. Polym. Degrad. Stab. 2020, 182, 109390. [Google Scholar] [CrossRef]Lindqvist, K.; Andersson, M.; Boss, A.; Oxfall, H. Thermal and mechanical properties of blends containing PP and recycled XLPE cable waste. J. Polym. Environ. 2019, 27, 386–394. [Google Scholar] [CrossRef]Hernández-Fernández, J.; Castro-Suares, J.; Toloza, C. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef] [PubMed]La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]Hamskog, M.; Klügel, M.; Forsström, D.; Terselius, B.; Gijsman, P. The effect of base stabilization on the recyclability of polypropylene as studied by multi-cell imaging chemiluminescence and microcalorimetry. Polym. Degrad. Stab. 2004, 86, 557–566. [Google Scholar] [CrossRef]Hamskog, M.; Kluegel, M.; Forsstroem, D.; Terselius, B.; Gijsman, P. The effect of adding virgin material or extra stabilizer on the recyclability of polypropylene as studied by multi-cell imaging chemiluminescence and microcalorimetry. Polym. Degrad. Stab. 2006, 91, 429–436. [Google Scholar] [CrossRef]Ranjan, V.P.; Goel, S. Recyclability of polypropylene after exposure to four different environmental conditions. Resour. Conserv. Recycl. 2021, 169, 105494. [Google Scholar] [CrossRef]Knight, J.B.; Calvert, P.D.; Billingham, N.C. Localization of oxidation in polypropylene. Polymer 1985, 26, 1713–1718. [Google Scholar] [CrossRef]Billingham, N.C.; Calvert, P.D.; Knight, J.B. Application of ultraviolet microscopy to oxidation of polyolefin. In Proc. IUPAC, IUPAC, Macromol. Symp. 1982.Cicchetti, O.; De Simone, R.; Gratani, F. Titanium-catalysed-inhibited autoxidation of polypropylene and of its models. Eur. Polym. J. 1973, 9, 1205–1229. [Google Scholar] [CrossRef]Kresta, J.; Majer, J.; Veselý, K. Reactions of low molecular weight polypropylene induced by titanium compounds. J. Polym. Sci. Part C Polym. Symp. 1968, 22, 329–338. [Google Scholar] [CrossRef]Allen, N.S.; Fatinikun, K.O.; Henman, T.J. Thermal and photochemical oxidation of polypropylene. Influence of residual catalyst levels in unstabilised diluent and gas phase polymers. Eur. Polym. J. 1983, 19, 551–554. [Google Scholar] [CrossRef]Gijsman, P.; Fiorio, R. Long term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polym. Degrad. Stab. 2023, 208, 110260. [Google Scholar] [CrossRef]Goss, B.G.; Nakatani, H.; George, G.A.; Terano, M. Catalyst residue effects on the heterogeneous oxidation of polypropylene. Polym. Degrad. Stab. 2003, 82, 119–126. [Google Scholar] [CrossRef]Ahlblad, G.; Gijsman, P.; Terselius, B.; Jansson, A.; Möller, K. Thermo-oxidative stability of PP waste films studied by imaging chemiluminescence. Polym. Degrad. Stab. 2001, 73, 15–22. [Google Scholar] [CrossRef]Scheirs, J.; Delatycki, O.; Bigger, S.W.; Billingham, N.C. Staining techniques for detecting localized oxidation in high density polyethylene powders and films. Polym. Int. 1991, 26, 187–193. [Google Scholar]Celina, M.; George, G.A. A heterogeneous model for the thermal oxidation of solid polypropylene from chemiluminescence analysis. Polym. Degrad. Stab. 1993, 40, 323–335. [Google ScholarHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef] [PubMed]Ablblad, G.; Stenberg, B.; Terselius, B.; Reitberger, T. Imaging chemiluminescence instrument for the study of heterogeneous oxidation effects in polymers. Polym. Test. 1997, 16, 59–73. [Google Scholar] [CrossRef]Eriksson, P.; Reitberger, T.; Ahlblad, G.; Stenberg, B. Oxidation fronts in polypropylene as studied by imaging chemiluminescence. Polym. Degrad. Stab. 2001, 73, 177–183. [Google Scholar] [CrossRef]Nakatani, H.; Shibata, H.; Miyazaki, K.; Yonezawa, T.; Takeda, H.; Azuma, Y.; Watanabe, S. Studies on heterogeneous degradation of polypropylene/talc composite: Effect of iron impurity on the degradation behavior. J. Appl. Polym. Sci. 2010, 115, 167–173. [Google Scholar] [CrossRef]Drake, W.O.; Pauquet, J.-R.; Todesco, R.V. Polypropylene the Way Ahead, Madrid, Spain; PRI: London, UK, 1989. [Google Scholar]Richters, P. Initiation process in the oxidation of polypropylene. Macromolecules 1970, 3, 262–264. [Google Scholar] [CrossRef]Billingham, N.C. Localization of oxidation in polypropylene. In Makromolekulare Chemie. Macromolecular Symposia; Hüthig & Wepf Verlag: Basel, Switzerland, 1989; Volume 28, pp. 145–163. [Google Scholar]Blakey, I.; Billingham, N.; George, G.A. Use of 9,10-diphenylanthracene as a contrast agent in chemiluminescence imaging: The observation of spreading of oxidative degradation in thin polypropylene films. Polym. Degrad. Stab. 2007, 92, 2102–2109. [Google Scholar] [CrossRef]Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [Google Scholar] [CrossRef]Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [Google Scholar] [CrossRef] [PubMed]Pavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2022, 139, 51734. [Google Scholar] [CrossRef]Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [Google Scholar] [CrossRef] [PubMed]Hu, Q.; Tang, Z.; Yao, D.; Yang, H.; Shao, J.; Chen, H. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes. J. Clean. Prod. 2020, 260, 121102. [Google Scholar] [CrossRef]Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]Horowitz, H.H.; Metzger, G. A New Analysis of Thermogravimetric Traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar]Meng, X.; Yang, R. How formaldehyde affects the thermo-oxidative and photo-oxidative mechanism of polypropylene: A DFT/TD-DFT study. Polym. Degrad. Stab. 2022, 205, 110131. [Google Scholar] [CrossRef]Nguyen, H.M.; Tang, H.-Y.; Huang, W.-F.; Lin, M. Mechanisms for reactions of trimethylaluminum with molecular oxygen and water. Comput. Theor. Chem. 2014, 1035, 39–43. [Google Scholar]Naumkin, F.Y. Flat-structural Motives in Small Alumino−Carbon Clusters CnAlm (n = 2−3, m = 2−8). J. Phys. Chem. A 2008, 112, 4660–4668. [Google Scholar] [CrossRef] [PubMed]Martínez-Narro, G.; Royston, N.J.; Billsborough, K.L.; Phan, A.N. Kinetic modelling of mixed plastic waste pyrolysis. Chem. Thermodyn. Therm. Anal. 2023, 9, 100105. [Google Scholar] [CrossRef]Dubdub, I.; Al-Yaari, M. Pyrolysis of Mixed Plastic Waste: I. Kinet. Study. Mater. 2020, 13, 4912. [Google Scholar] [CrossRef]Gul, H.; Shah, A.U.H.A.; Gul, S.; Arjomandi, J.; Bilal, S. Study on the thermal decomposition kinetics and calculation of activation energy of degradation of poly (o-toluidine) using thermogravimetric analysis. Iran. J. Chem. Chem. Eng. (IJCCE) 2018, 37, 193–204. [Google Scholar]Cai, J.; Bi, L. Precision of the Coats and Redfern Method for the Determination of the Activation Energy without Neglecting the Low-Temperature End of the Temperature Integral. Energy Fuels 2008, 22, 2172–2174. [Google Scholar] [CrossRef]Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der El-ektrolyte. Z. Für Phys. Chem. 1889, 4U, 96–116. [Google Scholar] [CrossRef]Palmay, P.; Pillajo, L.; Andrade, M.; Medina, C.; Barzallo, D. Kinetic Analysis of Thermal Degradation of Recycled Polypropylene and Polystyrene Mixtures Using Regenerated Catalyst from Fluidized Catalytic Cracking Process (FCC). Polymers 2023, 15, 2035. [Google Scholar] [CrossRef]http://purl.org/coar/resource_type/c_6501ORIGINALjcs-08-00311.pdfjcs-08-00311.pdfapplication/pdf3085273https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/1/jcs-08-00311.pdf28195e4ec5581bea8d3257c7a28f7c4cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTjcs-08-00311.pdf.txtjcs-08-00311.pdf.txtExtracted texttext/plain66410https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/4/jcs-08-00311.pdf.txt973b0ea4372f4572ad23b9c24b8de2aaMD54THUMBNAILjcs-08-00311.pdf.jpgjcs-08-00311.pdf.jpgGenerated Thumbnailimage/jpeg8180https://repositorio.utb.edu.co/bitstream/20.500.12585/12764/5/jcs-08-00311.pdf.jpg2b70cc74d98fe91e7435860daeb833f7MD5520.500.12585/12764oai:repositorio.utb.edu.co:20.500.12585/127642024-11-15 00:15:34.758Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=