Density of the level sets of the metric mean dimension for homeomorphisms
Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set co...
- Autores:
 - 
                   Muentes Acevedo, Jeovanny de Jesus           
Romaña Ibarra, Sergio
Arias Cantillo, Raibel
 
- Tipo de recurso:
 
- Fecha de publicación:
 - 2023
 
- Institución:
 - Universidad Tecnológica de Bolívar
 
- Repositorio:
 - Repositorio Institucional UTB
 
- Idioma:
 -           eng          
 - OAI Identifier:
 - oai:repositorio.utb.edu.co:20.500.12585/12632
 - Acceso en línea:
 -           https://hdl.handle.net/20.500.12585/12632
          
https://doi.org/10.1007/s10884-023-10344-5
 - Palabra clave:
 -           Mean dimension          
Metric mean dimension
Topological entropy
Genericity
LEMB
 - Rights
 - openAccess
 - License
 - http://creativecommons.org/publicdomain/zero/1.0/
 
| Summary: | Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N). | 
|---|
