An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing
Innovation is currently driving enhanced performance and productivity across various fields through process automation. However, identifying intricate details in images can often pose challenges due to morphological variations or specific conditions. Here, artificial intelligence (AI) plays a crucia...
- Autores:
-
Ayala Mantilla, Cristian Eduardo
Villarreal, Reynaldo
Chamorro-Solano, Sindy
Cantillo, Steffen
Pestana-Nobles, Roberto
Arquez, Sair
Vega-Sampayo, Yolanda
Pacheco-Londoño, Leonardo
Paez, Jheifer
Galan-Freyle, Nataly
Amar, Paola
- Tipo de recurso:
- Fecha de publicación:
- 2025
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/16593
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/16593
https://doi.org/10.1038/s41598-024-81680-9
https://www.nature.com/articles/s41598-024-81680-9#citeas
- Palabra clave:
- Artificial intelligence
Image segmentation
Convolutional neural network
Pixel
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
USIMONBOL2_7f319302dbf825f88c2cc22aa4a84ccc |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/16593 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
title |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
spellingShingle |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing Artificial intelligence Image segmentation Convolutional neural network Pixel |
title_short |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
title_full |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
title_fullStr |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
title_full_unstemmed |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
title_sort |
An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing |
dc.creator.fl_str_mv |
Ayala Mantilla, Cristian Eduardo Villarreal, Reynaldo Chamorro-Solano, Sindy Cantillo, Steffen Pestana-Nobles, Roberto Arquez, Sair Vega-Sampayo, Yolanda Pacheco-Londoño, Leonardo Paez, Jheifer Galan-Freyle, Nataly Amar, Paola |
dc.contributor.author.none.fl_str_mv |
Ayala Mantilla, Cristian Eduardo Villarreal, Reynaldo Chamorro-Solano, Sindy Cantillo, Steffen Pestana-Nobles, Roberto Arquez, Sair Vega-Sampayo, Yolanda Pacheco-Londoño, Leonardo Paez, Jheifer Galan-Freyle, Nataly Amar, Paola |
dc.subject.keywords.eng.fl_str_mv |
Artificial intelligence Image segmentation Convolutional neural network Pixel |
topic |
Artificial intelligence Image segmentation Convolutional neural network Pixel |
description |
Innovation is currently driving enhanced performance and productivity across various fields through process automation. However, identifying intricate details in images can often pose challenges due to morphological variations or specific conditions. Here, artificial intelligence (AI) plays a crucial role by simplifying the segmentation of images.This is achieved by training algorithms to detect specific pixels, thereby recognizing details within images. In this study, an algorithm incorporating modules based on Efficient Sub-Pixel Convolutional Neural Network forimage super-resolution, U-Net based Neural baseline for image segmentation, and image binarization for masking was developed. The combination of these modules aimed to identify capillary structures at pixel level. The method was applied on different datasets containing images of eye fundus, citrus leaves, printed circuit boards to test how well it could segment the capillary structures. Notably, the trained model exhibited versatility in recognizing capillary structures across various image types.When tested with the Set 5 and Set 14 datasets, a PSNR of 37.92 and SSIM of 0.9219 was achieved, surpassing significantly other image superresolution methods.The enhancement module processes the image using three different varaiables in the same way, which imposes a complexity of O(n) and takes 308,734 ms to execute; the segmentation module evaluates each pixel against its neighbors to correctly segment regions of interes, generating an O(n2) quadratic complexity and taking 687,509 ms to execute; the masking module makes several runs through the whole image and in several occasions it calls processes of O(n log n) complexity at 581686 microseconds to execute, which makes it not only the most complex but also the most exhaustive part of the program. This versatility, rooted in its pixel-level operation, enables the algorithm to identify initially unnoticed details, enhancing its applicability across diverse image datasets. This innovation holds significant potential for precisely studying certain structures’ characteristics while enhancing and processing images with high fidelity through AI-driven machine learning algorithms. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-19T16:45:37Z |
dc.date.available.none.fl_str_mv |
2025-05-19T16:45:37Z |
dc.date.issued.none.fl_str_mv |
2025 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.none.fl_str_mv |
Artículo científico |
dc.identifier.citation.eng.fl_str_mv |
Villarreal, R., Chamorro-Solano, S., Cantillo, S. et al. An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing. Sci Rep 14, 30332 (2024). https://doi.org/10.1038/s41598-024-81680-9 |
dc.identifier.issn.none.fl_str_mv |
2045-2322 (Electrónico) |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/16593 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1038/s41598-024-81680-9 |
dc.identifier.url.none.fl_str_mv |
https://www.nature.com/articles/s41598-024-81680-9#citeas |
identifier_str_mv |
Villarreal, R., Chamorro-Solano, S., Cantillo, S. et al. An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing. Sci Rep 14, 30332 (2024). https://doi.org/10.1038/s41598-024-81680-9 2045-2322 (Electrónico) |
url |
https://hdl.handle.net/20.500.12442/16593 https://doi.org/10.1038/s41598-024-81680-9 https://www.nature.com/articles/s41598-024-81680-9#citeas |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.eng.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Springer Nature |
dc.source.eng.fl_str_mv |
Scientific Reports Sci Rep |
dc.source.spa.fl_str_mv |
Vol. 14 No. 30332, (2024) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/d7ab1948-50a4-4da5-bcf6-fd36f0f960c9/download https://bonga.unisimon.edu.co/bitstreams/d1c6c288-6ed5-4cd4-85da-8ec9e69f886f/download https://bonga.unisimon.edu.co/bitstreams/ea4aa68a-0a70-4c8f-86cb-5488771f3109/download https://bonga.unisimon.edu.co/bitstreams/e4d99cfa-feb4-459d-a041-969231695216/download https://bonga.unisimon.edu.co/bitstreams/845a9f48-a7d5-4257-89a2-f174dca96e41/download |
bitstream.checksum.fl_str_mv |
4d6886bc7aea1b9b63914daf052279ca 3b6ce8e9e36c89875e8cf39962fe8920 2a1661e5960a7bab4fd8dda692fb677c 9dac9fa5f3fb5765be56513dd469a1a8 0044b51bbf4eb2fc16f3572514767128 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1834107463224262656 |
spelling |
Ayala Mantilla, Cristian Eduardo05c7672a-22b0-4f21-93e8-12b711722551600Villarreal, Reynaldo342430b4-b933-4003-bd80-2c8f9f588a13Chamorro-Solano, Sindy28beb811-d0b3-4eab-8cac-8529425284f4Cantillo, Steffenb652e7b0-5a14-40c3-a242-2a5674b88d34Pestana-Nobles, Roberto476a6194-e883-45a0-bfd9-926829c41cd5Arquez, Sairc488fba3-6042-474f-9021-cd081f277bcaVega-Sampayo, Yolandad274811e-8986-4b4f-bac0-e3a72d1d448ePacheco-Londoño, Leonardoea6f75e6-385b-440a-9279-58df0ae6941ePaez, Jheifer14a11eb4-4fa4-4fcd-ba07-b302b3ac2674Galan-Freyle, Nataly 9ae3ba45-04ef-4e2d-b8d5-4cae3e9f4364Amar, Paola068b9e3e-c393-4e51-ba30-fd1e64f453b12025-05-19T16:45:37Z2025-05-19T16:45:37Z2025Villarreal, R., Chamorro-Solano, S., Cantillo, S. et al. An innovative methodology for segmenting vessel like structures using artificial intelligence and image processing. Sci Rep 14, 30332 (2024). https://doi.org/10.1038/s41598-024-81680-92045-2322 (Electrónico)https://hdl.handle.net/20.500.12442/16593https://doi.org/10.1038/s41598-024-81680-9https://www.nature.com/articles/s41598-024-81680-9#citeasInnovation is currently driving enhanced performance and productivity across various fields through process automation. However, identifying intricate details in images can often pose challenges due to morphological variations or specific conditions. Here, artificial intelligence (AI) plays a crucial role by simplifying the segmentation of images.This is achieved by training algorithms to detect specific pixels, thereby recognizing details within images. In this study, an algorithm incorporating modules based on Efficient Sub-Pixel Convolutional Neural Network forimage super-resolution, U-Net based Neural baseline for image segmentation, and image binarization for masking was developed. The combination of these modules aimed to identify capillary structures at pixel level. The method was applied on different datasets containing images of eye fundus, citrus leaves, printed circuit boards to test how well it could segment the capillary structures. Notably, the trained model exhibited versatility in recognizing capillary structures across various image types.When tested with the Set 5 and Set 14 datasets, a PSNR of 37.92 and SSIM of 0.9219 was achieved, surpassing significantly other image superresolution methods.The enhancement module processes the image using three different varaiables in the same way, which imposes a complexity of O(n) and takes 308,734 ms to execute; the segmentation module evaluates each pixel against its neighbors to correctly segment regions of interes, generating an O(n2) quadratic complexity and taking 687,509 ms to execute; the masking module makes several runs through the whole image and in several occasions it calls processes of O(n log n) complexity at 581686 microseconds to execute, which makes it not only the most complex but also the most exhaustive part of the program. This versatility, rooted in its pixel-level operation, enables the algorithm to identify initially unnoticed details, enhancing its applicability across diverse image datasets. This innovation holds significant potential for precisely studying certain structures’ characteristics while enhancing and processing images with high fidelity through AI-driven machine learning algorithms.pdfengSpringer NatureAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Scientific ReportsSci RepVol. 14 No. 30332, (2024)An innovative methodology for segmenting vessel like structures using artificial intelligence and image processinginfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Artificial intelligenceImage segmentationConvolutional neural networkPixelKollem, S. R. & Panlal, B. Enhancement of images using morphological transformations. Int. J. Comput. Sci. Inf. Technol.4, https:// doi.org/10.5121/ijcsit.2012.4103 (2012).Shi, W. et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network (2016). arXiv:1609.05158.Shao, G. et al. Sub-pixel convolutional neural network for image super-resolution reconstruction. Electronics 12, 3572. https://doi.org/10.3390/electronics12173572 (2023).Constante, P., Gordon, A., Chang, O., Pruna, E. & Escobar, I. Neural networks for optic nerve detection in digital optic fundus images. In 2016 IEEE International Conference on Automatica (ICA-ACCA), 1–5, https://doi.org/10.1109/ICA-ACCA.2016.7778415 (2016).Bukowy, J. D. et al. Region-based convolutional neural nets for localization of glomeruli in trichrome-stained whole kidney sections. J. Am. Soc. Nephrol. 29, 2081–2088 (2018).Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1, NIPS’12, 1097–1105 (Curran Associates Inc., Red Hook, NY, USA, 2012).Mansar, Y. Vessel segmentation with python and keras (2019).Drive: Digital retinal images for vessel extraction (n.d.).Jinkai, Y., Guozhong, W. & Liangqi, Z. Region of interest coding based on convolutional neural network. J. Phys. Conf. Ser. 1907, 012028. https://doi.org/10.1088/1742-6596/1907/1/012028 (2021).Adamo, A. et al. Blood vessel detection algorithm for tissue engineering and quantitative histology. Ann. Biomed. Eng. 50, 387–400 (2022).Ooi, A. Z. H. et al. Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors 21, 6380. https://doi.org/10.3390/s21196380 (2021).Devane, V., Sahane, G., Khairmode, H. & Datkhile, G. Lane detection techniques using image processing. ITM Web of Conferences, vol. 40, 03011. https://doi.org/10.1051/itmconf/20214003011 (2021).McGarry, S. D. et al. Vessel metrics: A software tool for automated analysis of vascular structure in confocal imaging. Microvasc. Res. 151, 104610. https://doi.org/10.1016/j.mvr.2023.104610 (2024).Long, X. Deep learning tutorial for kaggle ultrasound nerve segmentation competition, using keras. https://github.com/keras-team/keras-io/blob/master/examples/vision/super_resolution_sub_pixel.py (2020).Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351 of LNCS, 234–241 (Springer, 2015). (available on arXiv:1505.04597 [cs.CV]).Bevilacqua, M., Roumy, A., Guillemot, C. M. & Alberi-Morel, M.-L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In British Machine Vision Conference (2012).Zeyde, R., Elad, M. & Protter, M. On single image scale-up using sparse-representations. In Curves and Surfaces (eds Boissonnat, J.-D. et al.) 711–730 (Springer, 2012).Hoover, A., Kouznetsova, V. & Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–10. https://doi.org/10.1109/42.845178 (2000).Citrus leaves dataset (n.d.).Huang, W. & Wei, P. A PCB dataset for defects detection and classification (2019). arXiv:1901.08204.Sara, U., Akter, M. & Uddin, M. Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. J. Comput. Commun. 7, 8–18. https://doi.org/10.4236/jcc.2019.73002 (2019).Deshpande, R. G., Ragha, L. L. & Sharma, S. K. Video quality assessment through PSNR estimation for different compression standards. Indones. J. Electr. Eng. Comput. Sci. 11, 918 (2018).Søgaard, J. et al. Applicability of existing objective metrics of perceptual quality for adaptive video streaming. Electron. Imaging 28, 1–7. https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-206 (2016).Kumar, R. & Moyal, V. Visual image quality assessment technique using FSIM. Int. J. Comput. Appl. Technol. Res. 2, 250–254. https://doi.org/10.7753/IJCATR0203.1008 (2013).Yang, W., Liu, J., Yang, S. & Quo, Z. Image super-resolution via nonlocal similarity and group structured sparse representation. In 2015 Visual Communications and Image Processing (VCIP) (IEEE, 2015).Kim, K. I. & Kwon, Y. Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1127–1133 (2010).Glasner, D., Bagon, S. & Irani, M. Super-resolution from a single image. In 2009 IEEE 12th International Conference on Computer Vision (IEEE, 2009).Dong, C., Loy, C. C., He, K. & Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision–ECCV 2014, Lecture Notes in Computer Science, 184–199 (Springer International Publishing, Cham, 2014).Huang, J.-B., Singh, A. & Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5197–5206 (2015).Sede BarranquillaMaestría en Gestión y Emprendimiento TecnológicoSistemas robóticos y control automáticoORIGINALPDF.pdfPDF.pdfapplication/pdf1289673https://bonga.unisimon.edu.co/bitstreams/d7ab1948-50a4-4da5-bcf6-fd36f0f960c9/download4d6886bc7aea1b9b63914daf052279caMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bonga.unisimon.edu.co/bitstreams/d1c6c288-6ed5-4cd4-85da-8ec9e69f886f/download3b6ce8e9e36c89875e8cf39962fe8920MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83000https://bonga.unisimon.edu.co/bitstreams/ea4aa68a-0a70-4c8f-86cb-5488771f3109/download2a1661e5960a7bab4fd8dda692fb677cMD53TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain58222https://bonga.unisimon.edu.co/bitstreams/e4d99cfa-feb4-459d-a041-969231695216/download9dac9fa5f3fb5765be56513dd469a1a8MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3720https://bonga.unisimon.edu.co/bitstreams/845a9f48-a7d5-4257-89a2-f174dca96e41/download0044b51bbf4eb2fc16f3572514767128MD5520.500.12442/16593oai:bonga.unisimon.edu.co:20.500.12442/165932025-05-20 03:04:06.341http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSAgYSBsYSBCaWJsaW90ZWNhIGRlIGxhIEluc3RpdHVjacOzbiBwYXJhIHF1ZSBpbmNsdXlhIHVuYSBjb3BpYSwgIGluZGV4ZSB5IGRpdnVsZ3VlIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgbGEgb2JyYSBtZW5jaW9uYWRhIGNvbiBlbCBmaW4gZGUgZmFjaWxpdGFyIGxvcyBwcm9jZXNvcyBkZSB2aXNpYmlsaWRhZCBlIGltcGFjdG8gZGUgbGEgbWlzbWEsIGNvbmZvcm1lIGEgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgcXVlIG1lKG5vcykgY29ycmVzcG9uZGUobikgeSBxdWUgaW5jbHV5ZW46IGxhIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGRpc3RyaWJ1Y2nDs24gYWwgcMO6YmxpY28sIHRyYW5zZm9ybWFjacOzbiwgZW4gY29uZm9ybWlkYWQgY29uIGxhIG5vcm1hdGl2aWRhZCB2aWdlbnRlIHNvYnJlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyByZWZlcmlkb3MgZW4gYXJ0LiAyLCAxMiwgMzAgKG1vZGlmaWNhZG8gcG9yIGVsIGFydCA1IGRlIGxhIGxleSAxNTIwLzIwMTIpLCB5IDcyIGRlIGxhIGxleSAyMyBkZSBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgYXJ0LiA0IHkgMTEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyBhcnQuIDExLCBEZWNyZXRvIDQ2MCBkZSAxOTk1LCBDaXJjdWxhciBObyAwNi8yMDAyIGRlIGxhIERpcmVjY2nDs24gTmFjaW9uYWwgZGUgRGVyZWNob3MgZGUgQXV0b3IKcGFyYSBsYXMgSW5zdGl0dWNpb25lcyBkZSBFZHVjYWNpw7NuIFN1cGVyaW9yLCBhcnQuIDE1IExleSAxNTIwIGRlIDIwMTIgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBlbiBsYSBtYXRlcmlhLi4KCkFsIHJlc3BlY3RvIGNvbW8gQXV0b3IoZXMpIG1hbmlmZXN0YW1vcyBjb25vY2VyIHF1ZToKCi0JTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4KIAotCUxhIGF1dG9yaXphY2nDs24gdGVuZHLDoSB1bmEgdmlnZW5jaWEgZGUgY2luY28gYcOxb3MgYSBwYXJ0aXIgZGVsIG1vbWVudG8gZGUgbGEgaW5jbHVzacOzbiBkZSBsYSBvYnJhIGVuIGVsIHJlcG9zaXRvcmlvLCBwcm9ycm9nYWJsZSBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBkZSBkdXJhY2nDs24gZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGVsIGF1dG9yIHkgcG9kcsOhIGRhcnNlIHBvciB0ZXJtaW5hZGEgdW5hIHZleiBlbCBhdXRvciBsbyBtYW5pZmllc3RlIHBvciBlc2NyaXRvIGEgbGEgaW5zdGl0dWNpw7NuLCBjb24gbGEgc2FsdmVkYWQgZGUgcXVlIGxhIG9icmEgZXMgZGlmdW5kaWRhIGdsb2JhbG1lbnRlIHkgY29zZWNoYWRhIHBvciBkaWZlcmVudGVzIGJ1c2NhZG9yZXMgeS9vIHJlcG9zaXRvcmlvcyBlbiBJbnRlcm5ldCBsbyBxdWUgbm8gZ2FyYW50aXphIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciByZXRpcmFkYSBkZSBtYW5lcmEgaW5tZWRpYXRhIGRlIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBlbiBsb3MgcXVlIHNlIGhheWEgaW5kZXhhZG8sICBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLgoKLQlMYSBhdXRvcml6YWNpw7NuIGRlIHB1YmxpY2FjacOzbiBjb21wcmVuZGUgZWwgZm9ybWF0byBvcmlnaW5hbCBkZSBsYSBvYnJhIHkgdG9kb3MgbG9zIGRlbcOhcyBxdWUgc2UgcmVxdWllcmEgcGFyYSBzdSBwdWJsaWNhY2nDs24gZW4gZWwgcmVwb3NpdG9yaW8uIElndWFsbWVudGUsIGxhIGF1dG9yaXphY2nDs24gcGVybWl0ZSBhIGxhIGluc3RpdHVjacOzbiBlbCBjYW1iaW8gZGUgc29wb3J0ZSBkZSBsYSBvYnJhIGNvbiBmaW5lcyBkZSBwcmVzZXJ2YWNpw7NuIChpbXByZXNvLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIEludGVybmV0LCBpbnRyYW5ldCwgbyBjdWFscXVpZXIgb3RybyBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIpLgoKLQlMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uCgotCUFsIGZpcm1hciBlc3RhIGF1dG9yaXphY2nDs24sIHNlIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgZXMgb3JpZ2luYWwgeSBubyBleGlzdGUgZW4gZWxsYSBuaW5ndW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MuIEVuIGNhc28gZGUgcXVlIGVsIHRyYWJham8gaGF5YSBzaWRvIGZpbmFuY2lhZG8gcG9yIHRlcmNlcm9zIGVsIG8gbG9zIGF1dG9yZXMgYXN1bWVuIGxhIHJlc3BvbnNhYmlsaWRhZCBkZWwgY3VtcGxpbWllbnRvIGRlIGxvcyBhY3VlcmRvcyBlc3RhYmxlY2lkb3Mgc29icmUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgbGEgb2JyYS4KCi0JRnJlbnRlIGEgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBwb3IgdGVyY2Vyb3MsIGVsIG8gbG9zIGF1dG9yZXMgc2Vyw6FuIHJlc3BvbnNhYmxlcywgZW4gbmluZ8O6biBjYXNvIGxhIHJlc3BvbnNhYmlsaWRhZCBzZXLDoSBhc3VtaWRhIHBvciBsYSBpbnN0aXR1Y2nDs24uCgotCUNvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZC4K |