Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients?
The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations...
- Autores:
-
Mengual-Moreno, Edgardo
Nava, Manuel
Manzano, Alexander
Ariza, Daniela
D'MARCO, LUIS
Castro, Ana
Marquina, María A.
Corredor Pereira, Carlos
Checa-Ros, Ana
Bermudez, Valmore
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/16194
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/16194
https://doi.org/10.3390/biomedicines12020283
- Palabra clave:
- COVID-19
SARS-CoV-2
NAFLD
NASH
Liver injury
ACE2
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivs 3.0 United States
id |
USIMONBOL2_75ff5901cf6e34c43d373da06e33d4bc |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/16194 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
title |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
spellingShingle |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? COVID-19 SARS-CoV-2 NAFLD NASH Liver injury ACE2 |
title_short |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
title_full |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
title_fullStr |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
title_full_unstemmed |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
title_sort |
Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? |
dc.creator.fl_str_mv |
Mengual-Moreno, Edgardo Nava, Manuel Manzano, Alexander Ariza, Daniela D'MARCO, LUIS Castro, Ana Marquina, María A. Corredor Pereira, Carlos Checa-Ros, Ana Bermudez, Valmore |
dc.contributor.author.none.fl_str_mv |
Mengual-Moreno, Edgardo Nava, Manuel Manzano, Alexander Ariza, Daniela D'MARCO, LUIS Castro, Ana Marquina, María A. Corredor Pereira, Carlos Checa-Ros, Ana Bermudez, Valmore |
dc.subject.keywords.eng.fl_str_mv |
COVID-19 SARS-CoV-2 NAFLD NASH Liver injury ACE2 |
topic |
COVID-19 SARS-CoV-2 NAFLD NASH Liver injury ACE2 |
description |
The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient’s clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024 |
dc.date.accessioned.none.fl_str_mv |
2025-02-03T16:45:56Z |
dc.date.available.none.fl_str_mv |
2025-02-03T16:45:56Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.none.fl_str_mv |
Artículo científico |
dc.identifier.citation.none.fl_str_mv |
Mengual-Moreno, E.; Nava, M.; Manzano, A.; Ariza, D.; D’Marco, L.; Castro, A.; Marquina, M.A.; Hernández, M.; Corredor-Pereira, C.; Checa-Ros, A.; et al. Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? Biomedicines 2024, 12, 283. https://doi.org/10.3390/ biomedicines12020283 |
dc.identifier.issn.none.fl_str_mv |
22279059 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/16194 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/biomedicines12020283 |
identifier_str_mv |
Mengual-Moreno, E.; Nava, M.; Manzano, A.; Ariza, D.; D’Marco, L.; Castro, A.; Marquina, M.A.; Hernández, M.; Corredor-Pereira, C.; Checa-Ros, A.; et al. Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? Biomedicines 2024, 12, 283. https://doi.org/10.3390/ biomedicines12020283 22279059 |
url |
https://hdl.handle.net/20.500.12442/16194 https://doi.org/10.3390/biomedicines12020283 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.eng.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 United States |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 United States http://creativecommons.org/licenses/by-nc-nd/3.0/us/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.source.eng.fl_str_mv |
Biomedicines |
dc.source.spa.fl_str_mv |
Vol. 12, No. 2 (2024) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/2c76dd9b-05b6-42b0-9c44-ed076bd5a5c6/download https://bonga.unisimon.edu.co/bitstreams/e2653da1-0924-4605-8e30-bf7e694d4ab3/download https://bonga.unisimon.edu.co/bitstreams/386a40f1-290b-47c5-8b77-18f5818777e3/download https://bonga.unisimon.edu.co/bitstreams/5af4934f-54ff-427d-92a6-316c99e0590b/download https://bonga.unisimon.edu.co/bitstreams/2de10c1a-91f3-4a3a-986b-a607c6e0eb0d/download |
bitstream.checksum.fl_str_mv |
f755c65ae171f3be2ca2d80136f59f15 2f656a26de8af8c32aaacd5e2a33538c 733bec43a0bf5ade4d97db708e29b185 dd88bf37f464cd73914c3a38c0d02349 90ad42cddeda36932e494c177ab3ca48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1834107453002743808 |
spelling |
Mengual-Moreno, Edgardo0c915a91-ea00-41f7-b70f-f27a977d86b6600Nava, Manuel56f688b1-eed4-41ba-bb8e-e2404646cce8600Manzano, Alexander541eb85f-204b-4898-8bf1-470b29c79a30600Ariza, Danielae116cf1c-7458-4bda-9d31-2d25ee9d2eb4600D'MARCO, LUIS6b7c2537-96e9-41e7-98d6-4afe3a2514d4600Castro, Ana542840db-6b79-4654-9321-1e0b9737ea93-1Marquina, María A.4ae44a33-ba55-45d1-8252-4fbc051c9a5d-1Corredor Pereira, Carlos121254aa-7e60-404a-b3d4-67eaa0f73d5d600Checa-Ros, Anaf958c6a0-b675-4e76-a74d-c72eb8437588600Bermudez, Valmoreff92f701-d296-4bec-b6ad-a8e289ea4d346002025-02-03T16:45:56Z2025-02-03T16:45:56Z2024Mengual-Moreno, E.; Nava, M.; Manzano, A.; Ariza, D.; D’Marco, L.; Castro, A.; Marquina, M.A.; Hernández, M.; Corredor-Pereira, C.; Checa-Ros, A.; et al. Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients? Biomedicines 2024, 12, 283. https://doi.org/10.3390/ biomedicines1202028322279059https://hdl.handle.net/20.500.12442/16194https://doi.org/10.3390/biomedicines12020283The novel disease produced by SARS-CoV-2 mainly harms the respiratory tract, but it has shown the capacity to affect multiple organs. Epidemiologic evidence supports the relationship between Coronavirus Disease 2019 (COVID-19) and pancreatic and hepatic injury development, identified by alterations in these organ function markers. In this regard, it is important to ascertain how the current prevalence of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) might affect COVID-19 evolution and complications. Although it is not clear how SARS-CoV-2 affects both the pancreas and the liver, a multiplicity of potential pathophysiological mechanisms seem to be implicated; among them, a direct viral-induced injury to the organ involving liver and pancreas ACE2 expression. Additionally, immune system dysregulation, coagulopathies, and drugs used to treat the disease could be key for developing complications associated with the patient’s clinical decline. This review aims to provide an overview of the available epidemiologic evidence regarding developing liver and pancreatic alterations in patients with COVID-19, as well as the possible role that NAFLD/NASH might play in the pathophysiological mechanisms underlying some of the complications associated with COVID-19. This review employed a comprehensive search on PubMed using relevant keywords and filters. From the initial 126 articles, those aligning with the research target were selected and evaluated for their methodologies, findings, and conclusions. It sheds light on the potential pathophysiological mechanisms underlying this relationship. As a result, it emphasises the importance of monitoring pancreatic and hepatic function in individuals affected by COVID-19.pdfengMDPIAttribution-NonCommercial-NoDerivs 3.0 United Stateshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomedicinesVol. 12, No. 2 (2024)Pancreatic and Hepatic Injury in COVID-19: A Worse Prognosis in NAFLD Patients?info:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1COVID-19SARS-CoV-2NAFLDNASHLiver injuryACE2Jones, D.L.; Baluja, M.Q.; Graham, D.W.; Corbishley, A.; McDonald, J.E.; Malham, S.K.; Hillary, L.S.; Connor, T.R.; Gaze, W.H.; Moura, I.B.; et al. Shedding of SARS-CoV-2 in Feces and Urine and Its Potential Role in Person-to-Person Transmission and the Environment-Based Spread of COVID-19. Sci. Total Environ. 2020, 749, 141364.Kulkarni, A.V.; Kumar, P.; Tevethia, H.V.; Premkumar, M.; Arab, J.P.; Candia, R.; Talukdar, R.; Sharma, M.; Qi, X.; Rao, P.N.; et al. Systematic Review with Meta-Analysis: Liver Manifestations and Outcomes in COVID-19. Aliment. Pharmacol. Ther. 2020, 52, 584–599.Lagana, S.M.; Kudose, S.; Iuga, A.C.; Lee, M.J.; Fazlollahi, L.; Remotti, H.E.; Del Portillo, A.; De Michele, S.; de Gonzalez, A.K.; Saqi, A.; et al. Hepatic Pathology in Patients Dying of COVID-19: A Series of 40 Cases Including Clinical, Histologic, and Virologic Data. Mod. Pathol. 2020, 33, 2147–2155.Alqahtani, S.A.; Schattenberg, J.M. Liver Injury in COVID-19: The Current Evidence. United Eur. Gastroenterol. J. 2020, 8, 509–519.de-Madaria, E.; Capurso, G. COVID-19 and Acute Pancreatitis: Examining the Causality. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 3–4.Huang, R.; Zhu, L.; Wang, J.; Xue, L.; Liu, L.; Yan, X.; Huang, S.; Li, Y.; Yan, X.; Zhang, B.; et al. Clinical Features of Patients With COVID-19 With Nonalcoholic Fatty Liver Disease. Hepatol. Commun. 2020, 4, 1758–1768.Steenblock, C.; Schwarz, P.E.H.; Ludwig, B.; Linkermann, A.; Zimmet, P.; Kulebyakin, K.; Tkachuk, V.A.; Markov, A.G.; Lehnert, H.; de Angelis, M.H.; et al. COVID-19 and Metabolic Disease: Mechanisms and Clinical Management. Lancet Diabetes Endocrinol. 2021, 9, 786–798Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224.Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922.Kumar-M, P.; Mishra, S.; Jha, D.K.; Shukla, J.; Choudhury, A.; Mohindra, R.; Mandavdhare, H.S.; Dutta, U.; Sharma, V. Coronavirus Disease (COVID-19) and the Liver: A Comprehensive Systematic Review and Meta-Analysis. Hepatol. Int. 2020, 14, 711–722.Lei, F.; Liu, Y.-M.; Zhou, F.; Qin, J.-J.; Zhang, P.; Zhu, L.; Zhang, X.-J.; Cai, J.; Lin, L.; Ouyang, S.; et al. Longitudinal Association Between Markers of Liver Injury and Mortality in COVID-19 in China. Hepatology 2020, 72, 389–398.Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin. Gastroenterol. Hepatol. 2020, 18, 2128–2130.e2.Wang, F.; Wang, H.; Fan, J.; Zhang, Y.; Wang, H.; Zhao, Q. Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia. Gastroenterology 2020, 159, 367–370.Bruno, G.; Fabrizio, C.; Santoro, C.R.; Buccoliero, G.B. Pancreatic Injury in the Course of Coronavirus Disease 2019: A Not-so-Rare Occurrence. J. Med. Virol. 2021, 93, 74–75.Kataria, S.; Sharif, A.; Ur Rehman, A.; Ahmed, Z.; Hanan, A. COVID-19 Induced Acute Pancreatitis: A Case Report and Literature Review. Cureus 2020, 12, e9169.Alves, A.M.; Yvamoto, E.Y.; Marzinotto, M.A.N.; de Sá Teixeira, A.C.; Carrilho, F.J. SARS-CoV-2 Leading to Acute Pancreatitis: An Unusual Presentation. Braz. J. Infect. Dis. 2020, 24, 561–564.Kumaran, N.K.; Karmakar, B.K.; Taylor, O.M. Coronavirus Disease-19 (COVID-19) Associated with Acute Necrotising Pancreatitis (ANP). BMJ Case Rep. 2020, 13, e237903.Rabice, S.R.; Altshuler, P.C.; Bovet, C.; Sullivan, C.; Gagnon, A.J. COVID-19 Infection Presenting as Pancreatitis in a Pregnant Woman: A Case Report. Case Rep. Womens Health 2020, 27, e00228.Cerda-Contreras, C.; Nuzzolo-Shihadeh, L.; Camacho-Ortiz, A.; Perez-Alba, E. Baricitinib as Treatment for COVID-19: Friend or Foe of the Pancreas? Clin. Infect. Dis. 2020, 73, e3977–e3978.Akarsu, C.; Karabulut, M.; Aydin, H.; Sahbaz, N.A.; Dural, A.C.; Yegul, D.; Peker, K.D.; Ferahman, S.; Bulut, S.; Dönmez, T.; et al. Association between Acute Pancreatitis and COVID-19: Could Pancreatitis Be the Missing Piece of the Puzzle about Increased Mortality Rates? J. Investig. Surg. 2020, 35, 119–125.Juhász, M.F.; Ocskay, K.; Kiss, S.; Hegyi, P.; Párniczky, A. Insufficient Etiological Workup of COVID-19-Associated Acute Pancreatitis: A Systematic Review. World J. Gastroenterol. 2020, 26, 6270–6278.McNabb-Baltar, J.; Jin, D.X.; Grover, A.S.; Redd, W.D.; Zhou, J.C.; Hathorn, K.E.; McCarty, T.R.; Bazarbashi, A.N.; Shen, L.; Chan, W.W. Lipase Elevation in Patients With COVID-19. Am. J. Gastroenterol. 2020, 115, 1286–1288.Barlass, U.; Wiliams, B.; Dhana, K.; Adnan, D.; Khan, S.R.; Mahdavinia, M.; Bishehsari, F. Marked Elevation of Lipase in COVID-19 Disease: A Cohort Study. Clin. Transl. Gastroenterol. 2020, 11, e00215.Rasch, S.; Herner, A.; Schmid, R.M.; Huber, W.; Lahmer, T. High Lipasemia Is Frequent in COVID-19 Associated Acute Respiratory Distress Syndrome. Pancreatology 2021, 21, 306–311.Zhang, J.; Liu, P.; Wang, M.; Wang, J.; Chen, J.; Yuan, W.; Li, M.; Xie, Z.; Dong, W.; Li, H.; et al. The Clinical Data from 19 Critically Ill Patients with Coronavirus Disease 2019: A Single-Centered, Retrospective, Observational Study. J. Public Health 2020, 30, 361–364.Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Acute Pancreatitis Classification Working Group Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut 2013, 62, 102–111.Jayanta, S.; Gupta, R.; Singh, M.P.; Patnaik, I.; Kumar, A.; Kochhar, R. Coronavirus Disease 2019 and the Pancreas. Pancreatology 2020, 20, 1567–1575.Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; et al. Plasma Glucose Levels and Diabetes Are Independent Predictors for Mortality and Morbidity in Patients with SARS. Diabet. Med. 2006, 23, 623–628.Gentile, S.; Strollo, F.; Mambro, A.; Ceriello, A. COVID-19, Ketoacidosis and New-Onset Diabetes: Are There Possible Cause and Effect Relationships among Them? Diabetes Obes. Metab. 2020, 22, 2507–2508.Rubino, F.; Amiel, S.A.; Zimmet, P.; Alberti, G.; Bornstein, S.; Eckel, R.H.; Mingrone, G.; Boehm, B.; Cooper, M.E.; Chai, Z.; et al. New-Onset Diabetes in COVID-19. N. Engl. J. Med. 2020, 383, 789–790.Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S.; et al. Practical Recommendations for the Management of Diabetes in Patients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 546–550.Apicella, M.; Campopiano, M.C.; Mantuano, M.; Mazoni, L.; Coppelli, A.; Del Prato, S. COVID-19 in People with Diabetes: Understanding the Reasons for Worse Outcomes. Lancet Diabetes Endocrinol. 2020, 8, 782–792.Mittal, S.; Madan, K.; Mohan, A.; Tiwari, P.; Hadda, V. Diabetes in COVID-19: Steroid Effect. J. Med. Virol. 2021, 93, 4166.Sosale, A.; Sosale, B.; Kesavadev, J.; Chawla, M.; Reddy, S.; Saboo, B.; Misra, A. Steroid Use during COVID-19 Infection and Hyperglycemia—What a Physician Should Know. Diabetes Metab. Syndr. 2021, 15, 102167.Hwang, J.L.; Weiss, R.E. Steroid-induced Diabetes: A Clinical and Molecular Approach to Understanding and Treatment. Diabetes Metab. Res. 2014, 30, 96–102.Cheung, N.W. Steroid-Induced Hyperglycaemia in Hospitalised Patients: Does It Matter? Diabetologia 2016, 59, 2507–2509.Keerthi, B.Y.; Sushmita, G.; Khan, E.A.; Thomas, V.; Cheryala, V.; Shah, C.; Kumar, G.R.; Haritha, V. New Onset Diabetes Mellitus in Post-COVID-19 Patients. J. Fam. Med. Prim. Care 2022, 11, 5961–5968.Sathish, T.; Kapoor, N.; Cao, Y.; Tapp, R.J.; Zimmet, P. Proportion of Newly Diagnosed Diabetes in COVID-19 Patients: A Systematic Review and Meta-Analysis. Diabetes Obes. Metab. 2021, 23, 870–874.Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637.Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of Angiotensin-Converting Enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422.Abramczyk, U.; Nowaczyński, M.; Słomczyński, A.; Wojnicz, P.; Zatyka, P.; Kuzan, A. Consequences of COVID-19 for the Pancreas. Int. J. Mol. Sci. 2022, 23, 864.Cure, E.; Cumhur Cure, M. COVID-19 May Affect the Endocrine Pancreas by Activating Na+/H+ Exchanger 2 and Increasing Lactate Levels. J. Endocrinol. Investig. 2020, 43, 1167–1168.Yang, J.-K.; Lin, S.-S.; Ji, X.-J.; Guo, L.-M. Binding of SARS Coronavirus to Its Receptor Damages Islets and Causes Acute Diabetes. Acta Diabetol. 2010, 47, 193–199.Muus, C.; Luecken, M.D.; Eraslan, G.; Waghray, A.; Heimberg, G.; Sikkema, L.; Kobayashi, Y.; Vaishnav, E.D.; Subramanian, A.; Smilie, C.; et al. Integrated Analyses of Single-Cell Atlases Reveal Age, Gender, and Smoking Status Associations with Cell Type-Specific Expression of Mediators of SARS-CoV-2 Viral Entry and Highlights Inflammatory Programs in Putative Target. biorXiv 2020Ding, Y.; He, L.; Zhang, Q.; Huang, Z.; Che, X.; Hou, J.; Wang, H.; Shen, H.; Qiu, L.; Li, Z.; et al. Organ Distribution of Severe Acute Respiratory Syndrome (SARS) Associated Coronavirus (SARS-CoV) in SARS Patients: Implications for Pathogenesis and Virus Transmission Pathways. J. Pathol. 2004, 203, 622–630.Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848.Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, Clinical Course, and Outcomes of Critically Ill Adults with COVID-19 in New York City: A Prospective Cohort Study. Lancet 2020, 395, 1763–1770.Hegyi, P.; Szakács, Z.; Sahin-Tóth, M. Lipotoxicity and Cytokine Storm in Severe Acute Pancreatitis and COVID-19. Gastroenterology 2020, 159, 824–827.Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T. How COVID-19 Induces Cytokine Storm with High Mortality. Inflamm. Regen. 2020, 40, 37.de Oliveira, C.; Khatua, B.; Noel, P.; Kostenko, S.; Bag, A.; Balakrishnan, B.; Patel, K.S.; Guerra, A.A.; Martinez, M.N.; Trivedi, S.; et al. Pancreatic Triglyceride Lipase Mediates Lipotoxic Systemic Inflammation. J. Clin. Investig. 2020, 130, 1931–1947.Pandanaboyana, S.; Moir, J.; Leeds, J.S.; Oppong, K.; Kanwar, A.; Marzouk, A.; Belgaumkar, A.; Gupta, A.; Siriwardena, A.K.; Haque, A.R.; et al. SARS-CoV-2 Infection in Acute Pancreatitis Increases Disease Severity and 30-Day Mortality: COVID PAN Collaborative Study. Gut 2021, 70, 1061–1069.Navina, S.; Acharya, C.; DeLany, J.P.; Orlichenko, L.S.; Baty, C.J.; Shiva, S.S.; Durgampudi, C.; Karlsson, J.M.; Lee, K.; Bae, K.T.; et al. Lipotoxicity Causes Multisystem Organ Failure and Exacerbates Acute Pancreatitis in Obesity. Sci. Transl. Med. 2011, 3, 107ra110.El-Kurdi, B.; Khatua, B.; Rood, C.; Snozek, C.; Cartin-Ceba, R.; Singh, V.P. Lipotoxicity in COVID-19 Study Group Mortality From Coronavirus Disease 2019 Increases With Unsaturated Fat and May Be Reduced by Early Calcium and Albumin Supplementation. Gastroenterology 2020, 159, 1015–1018.e4.Pons, S.; Fodil, S.; Azoulay, E.; Zafrani, L. The Vascular Endothelium: The Cornerstone of Organ Dysfunction in Severe SARS-CoV-2 Infection. Crit. Care 2020, 24, 353.Rotar, O.; Khomiak, I.; Polanskyy, O.; Muskovsky, Y.; Railianu, S.; Fishbach, M. Case Report of Fatal Acute Necrotizing Pancreatitis in Patient with COVID-19: We Should Be Aware Of Hemorrhagic Complications. J. Pancreas 2020, 21, 167–171.Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement Associated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19 Infection: A Report of Five Cases. Transl. Res. 2020, 220, 1–13.van Haren, F.M.P.; Sleigh, J.W.; Pickkers, P.; Van der Hoeven, J.G. Gastrointestinal Perfusion in Septic Shock. Anaesth. Intensive Care 2007, 35, 679–694.Hackert, T.; Hartwig, W.; Fritz, S.; Schneider, L.; Strobel, O.; Werner, J. Ischemic Acute Pancreatitis: Clinical Features of 11 Patients and Review of the Literature. Am. J. Surg. 2009, 197, 450–454.Nitsche, C.J.; Jamieson, N.; Lerch, M.M.; Mayerle, J.V. Drug Induced Pancreatitis. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 143–155.Morrison, A.R.; Johnson, J.M.; Ramesh, M.; Bradley, P.; Jennings, J.; Smith, Z.R. Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Tocilizumab. J. Med. Virol. 2020, 92, 1791–1792.Flaig, T.; Douros, A.; Bronder, E.; Klimpel, A.; Kreutz, R.; Garbe, E. Tocilizumab-Induced Pancreatitis: Case Report and Review of Data from the FDA Adverse Event Reporting System. J. Clin. Pharm. Ther. 2016, 41, 718–721.Badalov, N.; Baradarian, R.; Iswara, K.; Li, J.; Steinberg, W.; Tenner, S. Drug-Induced Acute Pancreatitis: An Evidence-Based Review. Clin. Gastroenterol. Hepatol. 2007, 5, 648–661.e3Nakamura, H.; Miyagi, K.; Otsuki, M.; Higure, Y.; Nishiyama, N.; Kinjo, T.; Nakamatsu, M.; Haranaga, S.; Tateyama, M.; Fujita, J. Acute Hypertriglyceridaemia Caused by Tocilizumab in a Patient with Severe COVID-19. Intern. Med. 2020, 59, 2945–2949.Elkhouly, M.A.; Salazar, M.J.; Simons-Linares, C.R. Hypertriglyceridemia-Associated Drug-Induced Acute Pancreatitis. Pancreas 2019, 48, 22–35.Reyes, J.V.; Patel, B.M.; Malik, F.; Gonzalez, M.O. Non-Steroidal Anti-Inflammatory Drug-Induced Acute Pancreatitis: A Case Report. Cureus 2019, 11, e5926.Ahmed, J.; Rizwan, T.; Malik, F.; Akhter, R.; Malik, M.; Ahmad, J.; Khan, A.W.; Chaudhary, M.A.; Usman, M.S. COVID-19 and Liver Injury: A Systematic Review and Meta-Analysis. Cureus 2020, 12, e9424.Abdulla, S.; Hussain, A.; Azim, D.; Abduallah, E.H.; Elawamy, H.; Nasim, S.; Kumar, S.; Naveed, H. COVID-19-Induced Hepatic Injury: A Systematic Review and Meta-Analysis. Cureus 2020, 12, e10923.Parohan, M.; Yaghoubi, S.; Seraji, A. Liver Injury Is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infection: A Systematic Review and Meta-Analysis of Retrospective Studies. Hepatol Res 2020, 50, 924–935.Wu, Z.-H.; Yang, D.-L. A Meta-Analysis of the Impact of COVID-19 on Liver Dysfunction. Eur. J. Med. Res. 2020, 25, 54.Shokri Afra, H.; Amiri-Dashatan, N.; Ghorbani, F.; Maleki, I.; Rezaei-Tavirani, M. Positive Association between Severity of COVID-19 Infection and Liver Damage: A Systematic Review and Meta-Analysis. Gastroenterol. Hepatol. Bed Bench 2020, 13, 292–304.Youssef, M.; Hussein, M.H.; Attia, A.S.; Elshazli, R.M.; Omar, M.; Zora, G.; Farhoud, A.S.; Elnahla, A.; Shihabi, A.; A Toraih, E.; et al. COVID-19 and Liver Dysfunction: A Systematic Review and Meta-Analysis of Retrospective Studies. J. Med. Virol. 2020, 92, 1825–1833.Wu, Y.; Li, H.; Guo, X.; Yoshida, E.M.; Mendez-Sanchez, N.; Levi Sandri, G.B.; Teschke, R.; Romeiro, F.G.; Shukla, A.; Qi, X. Incidence, Risk Factors, and Prognosis of Abnormal Liver Biochemical Tests in COVID-19 Patients: A Systematic Review and Meta-Analysis. Hepatol. Int. 2020, 14, 621–637.Bangash, M.N.; Patel, J.; Parekh, D. COVID-19 and the Liver: Little Cause for Concern. Lancet Gastroenterol. Hepatol. 2020, 5, 529–530.Li, Y.; Xiao, S.-Y. Hepatic Involvement in COVID-19 Patients: Pathology, Pathogenesis, and Clinical Implications. J. Med. Virol. 2020, 92, 1491–1494.Li, J.; Fan, J.-G. Characteristics and Mechanism of Liver Injury in 2019 Coronavirus Disease. J. Clin. Transl. Hepatol. 2020, 8, 13–17.Tian, S.; Xiong, Y.; Liu, H.; Niu, L.; Guo, J.; Liao, M.; Xiao, S.-Y. Pathological Study of the 2019 Novel Coronavirus Disease (COVID-19) through Postmortem Core Biopsies. Mod. Pathol. 2020, 33, 1007–1014.Wang, Y.; Liu, S.; Liu, H.; Li, W.; Lin, F.; Jiang, L.; Li, X.; Xu, P.; Zhang, L.; Zhao, L.; et al. SARS-CoV-2 Infection of the Liver Directly Contributes to Hepatic Impairment in Patients with COVID-19. J. Hepatol. 2020, 73, 807–816.Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419.Li, M.-Y.; Li, L.; Zhang, Y.; Wang, X.-S. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infect. Dis. Poverty 2020, 9, 45.Chai, X.; Hu, L.; Zhang, Y.; Han, W.; Lu, Z.; Ke, A.; Zhou, J.; Shi, G.; Fang, N.; Fan, J.; et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. biorXiv 2020.Guan, G.W.; Gao, L.; Wang, J.W.; Wen, X.J.; Mao, T.H.; Peng, S.W.; Zhang, T.; Chen, X.M.; Lu, F.M. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Zhonghua Gan Zang Bing Za Zhi 2020, 28, 100–106.Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal Liver Function Tests. J. Hepatol. 2020, 73, 566–574.Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of Inflammatory Markers with the Severity of COVID-19: A Meta-Analysis. Int. J. Infect. Dis. 2020, 96, 467–474.Li, L.; Li, S.; Xu, M.; Yu, P.; Zheng, S.; Duan, Z.; Liu, J.; Chen, Y.; Li, J. Risk Factors Related to Hepatic Injury in Patients with Corona Virus Disease 2019. MedRxiv 2020.Payen, D.; Cravat, M.; Maadadi, H.; Didelot, C.; Prosic, L.; Dupuis, C.; Losser, M.-R.; De Carvalho Bittencourt, M. A Longitudinal Study of Immune Cells in Severe COVID-19 Patients. Front. Immunol. 2020, 11, 580250.Tian, D.; Ye, Q. Hepatic Complications of COVID-19 and Its Treatment. J. Med. Virol. 2020, 92, 1818–1824.Liu, Q.; Wang, R.S.; Qu, G.Q.; Wang, Y.Y.; Liu, P.; Zhu, Y.Z.; Fei, G.; Ren, L.; Zhou, Y.W.; Liu, L. Gross Examination Report of a COVID-19 Death Autopsy. Fa Yi Xue Za Zhi 2020, 36, 21–23.Zhou, J.; Chu, H.; Li, C.; Wong, B.H.-Y.; Cheng, Z.-S.; Poon, V.K.-M.; Sun, T.; Lau, C.C.-Y.; Wong, K.K.-Y.; Chan, J.Y.-W.; et al. Active Replication of Middle East Respiratory Syndrome Coronavirus and Aberrant Induction of Inflammatory Cytokines and Chemokines in Human Macrophages: Implications for Pathogenesis. J. Infect. Dis. 2014, 209, 1331–1342.Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062.Moore, J.B.; June, C.H. Cytokine Release Syndrome in Severe COVID-19. Science 2020, 368, 473–474.Ramiro, S.; Mostard, R.L.M.; Magro-Checa, C.; van Dongen, C.M.P.; Dormans, T.; Buijs, J.; Gronenschild, M.; de Kruif, M.D.; van Haren, E.H.J.; van Kraaij, T.; et al. Historically Controlled Comparison of Glucocorticoids with or without Tocilizumab versus Supportive Care Only in Patients with COVID-19-Associated Cytokine Storm Syndrome: Results of the CHIC Study. Ann. Rheum. Dis. 2020, 79, 1143–1151.Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical Characteristics of 3062 COVID-19 Patients: A Meta-analysis. J. Med. Virol. 2020, 92, 1902–1914.Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. Lancet Respir. Med. 2020, 8, 475–481.Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and Diabetes as High-risk Factors for Severe Coronavirus Disease 2019 (COVID-19). Diabetes Metab Res Rev 2021, 37, e3377.ORIGINALPDF.pdfPDF.pdfapplication/pdf1215233https://bonga.unisimon.edu.co/bitstreams/2c76dd9b-05b6-42b0-9c44-ed076bd5a5c6/downloadf755c65ae171f3be2ca2d80136f59f15MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8905https://bonga.unisimon.edu.co/bitstreams/e2653da1-0924-4605-8e30-bf7e694d4ab3/download2f656a26de8af8c32aaacd5e2a33538cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/386a40f1-290b-47c5-8b77-18f5818777e3/download733bec43a0bf5ade4d97db708e29b185MD53TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain100433https://bonga.unisimon.edu.co/bitstreams/5af4934f-54ff-427d-92a6-316c99e0590b/downloaddd88bf37f464cd73914c3a38c0d02349MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5704https://bonga.unisimon.edu.co/bitstreams/2de10c1a-91f3-4a3a-986b-a607c6e0eb0d/download90ad42cddeda36932e494c177ab3ca48MD5520.500.12442/16194oai:bonga.unisimon.edu.co:20.500.12442/161942025-02-04 03:04:47.657http://creativecommons.org/licenses/by-nc-nd/3.0/us/Attribution-NonCommercial-NoDerivs 3.0 United Statesopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |