A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures

The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due...

Full description

Autores:
Gelvez-Almeida, Elkin
Barrientos, Ricardo
Vilches, Karina
Mora, Marco
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/16177
Acceso en línea:
https://hdl.handle.net/20.500.12442/16177
https://doi.org/10.1109/ACCESS.2023.3338544
https://ieeexplore.ieee.org/document/10336814
Palabra clave:
High-performance computing
Moore–Penrose generalized inverse matrix
Neural networks with random weights
Parallel computing
Strassen algorithm
Rights
openAccess
License
Attribution-NonCommercial-NoDerivs 3.0 United States
id USIMONBOL2_5b546eaf13bc3c31783ae86356a9f4ea
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/16177
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
title A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
spellingShingle A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
High-performance computing
Moore–Penrose generalized inverse matrix
Neural networks with random weights
Parallel computing
Strassen algorithm
title_short A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
title_full A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
title_fullStr A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
title_full_unstemmed A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
title_sort A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
dc.creator.fl_str_mv Gelvez-Almeida, Elkin
Barrientos, Ricardo
Vilches, Karina
Mora, Marco
dc.contributor.author.none.fl_str_mv Gelvez-Almeida, Elkin
Barrientos, Ricardo
Vilches, Karina
Mora, Marco
dc.subject.keywords.eng.fl_str_mv High-performance computing
Moore–Penrose generalized inverse matrix
Neural networks with random weights
Parallel computing
Strassen algorithm
topic High-performance computing
Moore–Penrose generalized inverse matrix
Neural networks with random weights
Parallel computing
Strassen algorithm
description The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2025-01-30T14:40:25Z
dc.date.available.none.fl_str_mv 2025-01-30T14:40:25Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.none.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544
dc.identifier.issn.none.fl_str_mv 21693536
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/16177
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/ACCESS.2023.3338544
dc.identifier.url.none.fl_str_mv https://ieeexplore.ieee.org/document/10336814
identifier_str_mv E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544
21693536
url https://hdl.handle.net/20.500.12442/16177
https://doi.org/10.1109/ACCESS.2023.3338544
https://ieeexplore.ieee.org/document/10336814
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.eng.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 United States
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Institute of Electrical and Electronics Engineers (IEEE)
dc.source.eng.fl_str_mv IEEE Access
dc.source.spa.fl_str_mv Vol. 11 (2023)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/41fc5bda-2418-432c-a8ea-5a0b7f85a322/download
https://bonga.unisimon.edu.co/bitstreams/c178d497-f3df-4982-8b2f-af8de65a2e6b/download
https://bonga.unisimon.edu.co/bitstreams/467bb43f-0243-4df0-adce-8f0a5edbb0d7/download
https://bonga.unisimon.edu.co/bitstreams/99085f00-7045-45f1-9a7b-0aca46714f5c/download
https://bonga.unisimon.edu.co/bitstreams/6bbe6cc2-b6eb-48ce-afc0-e8cbbe94467e/download
bitstream.checksum.fl_str_mv f2cb821350d7349fbbf841f6f495cdf3
2f656a26de8af8c32aaacd5e2a33538c
733bec43a0bf5ade4d97db708e29b185
eb9e4e084c6d98eb4fbec392df3f5373
98e23e36be9f68d39ebba03ffeec7777
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1834107402084941824
spelling Gelvez-Almeida, Elkinf7e2f3b2-3f16-4e8f-8009-79edc27e7a23600Barrientos, Ricardo766d5e14-34a0-49d1-a205-24903bc6bb12600Vilches, Karinabed06609-2211-4fe0-a6d5-1fed4a93d002600Mora, Marco7c36f8e4-0f3b-43d8-9735-3c7c5f71c5526002025-01-30T14:40:25Z2025-01-30T14:40:25Z2023E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.333854421693536https://hdl.handle.net/20.500.12442/16177https://doi.org/10.1109/ACCESS.2023.3338544https://ieeexplore.ieee.org/document/10336814The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios.pdfengInstitute of Electrical and Electronics Engineers (IEEE)Attribution-NonCommercial-NoDerivs 3.0 United Stateshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IEEE AccessVol. 11 (2023)A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architecturesinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1High-performance computingMoore–Penrose generalized inverse matrixNeural networks with random weightsParallel computingStrassen algorithmJ. C. A. Barata and M. S. Hussein, "The Moore–Penrose pseudoinverse: A tutorial review of the theory", Brazilian J. Phys., vol. 42, no. 1, pp. 146-165, Apr. 2012.X.-D. Zhang, A Matrix Algebra Approach to Artificial Intelligence, Singapore:Springer, 2020.A. K. Malik, R. Gao, M. A. Ganaie, M. Tanveer and P. N. Suganthan, "Random vector functional link network: Recent developments applications and future directions", Appl. Soft Comput., vol. 143, Aug. 2023.P. Courrieu, "Fast computation of Moore–Penrose inverse matrices", Neural Inf. Process.-Lett. Rev., vol. 8, no. 2, pp. 25-29, Aug. 2005.J. K. Baksalary and O. M. Baksalary, "Particular formulae for the Moore–Penrose inverse of a columnwise partitioned matrix", Linear Algebra Appl., vol. 421, no. 1, pp. 16-23, Feb. 2007.M. D. Petković and P. S. Stanimirović, "Generalized matrix inversion is not harder than matrix multiplication", J. Comput. Appl. Math., vol. 230, no. 1, pp. 270-282, Aug. 2009.M. Petkovic and P. Stanimirovic, "Block recursive computation of generalized inverses", Electron. J. Linear Algebra, vol. 26, pp. 394-405, Jan. 2013.F. Toutounian and A. Ataei, "A new method for computing Moore–Penrose inverse matrices", J. Comput. Appl. Math., vol. 228, no. 1, pp. 412-417, Jun. 2009.V. Katsikis and D. Pappas, "Fast computing of the Moore–Penrose inverse matrix", Electron. J. Linear Algebra, vol. 17, pp. 637-650, Jan. 2008.V. N. Katsikis, D. Pappas and A. Petralias, "An improved method for the computation of the Moore–Penrose inverse matrix", Appl. Math. Comput., vol. 217, no. 23, pp. 9828-9834, Aug. 2011.A. Marco and J.-J. Martínez, "Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices", J. Comput. Appl. Math., vol. 350, pp. 299-308, Apr. 2019.W. Li and Z. Li, "A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix", Appl. Math. Comput., vol. 215, no. 9, pp. 3433-3442, Jan. 2010.H. Chen and Y. Wang, "A family of higher-order convergent iterative methods for computing the Moore–Penrose inverse", Appl. Math. Comput., vol. 218, no. 8, pp. 4012-4016, Dec. 2011.P. S. Stanimirović, V. N. Katsikis, S. Srivastava and D. Pappas, "A class of quadratically convergent iterative methods", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3125-3146, May 2019.R. Behera, J. K. Sahoo, R. N. Mohapatra and M. Z. Nashed, "Computation of generalized inverses of tensors via t-product", Numer. Linear Algebra With Appl., vol. 29, no. 2, pp. e2416, 2022.V. Stanojević, L. Kazakovtsev, P. S. Stanimirović, N. Rezova and G. Shkaberina, "Calculating the Moore–Penrose generalized inverse on massively parallel systems", Algorithms, vol. 15, no. 10, pp. 348, Sep. 2022.J. Ma, F. Gao and Y. Li, "An efficient method to compute different types of generalized inverses based on linear transformation", Appl. Math. Comput., vol. 349, pp. 367-380, May 2019.P. S. Stanimirović, A. Kumar and V. N. Katsikis, " Further efficient hyperpower iterative methods for the computation of generalized inverses A T S ( 2) ", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3323-3339, May 2019P. S. Stanimirović, V. N. Katsikis and D. Kolundžija, "Inversion and pseudoinversion of block arrowhead matrices", Appl. Math. Comput., vol. 341, pp. 379-401, Jan. 2019.P. S. Stanimirović, F. Roy, D. K. Gupta and S. Srivastava, "Computing the Moore–Penrose inverse using its error bounds", Appl. Math. Comput., vol. 371, Apr. 2020.X. Chen and J. Ji, "A divide-and-conquer approach for the computation of the Moore–Penrose inverses", Appl. Math. Comput., vol. 379, Aug. 2020.N. Aldhafeeri, D. Pappas, I. P. Stanimirović and M. Tasić, "Representations of generalized inverses via full-rank QDR decomposition", Numer. Algorithms, vol. 86, no. 3, pp. 1327-1337, Mar. 2021.A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, New York, NY, USA:Springer, 2003.G. Wang, Y. Wei, S. Qiao, P. Lin and Y. Chen, Generalized Inverses: Theory and Computations, vol. 53, 2018.R. Penrose, "A generalized inverse for matrices", Math. Proc. Cambridge Philos. Soc., vol. 51, no. 3, pp. 406-413, Jul. 1955.V. Strassen, "Gaussian elimination is not optimal", Numerische Math., vol. 13, no. 4, pp. 354-356, Aug. 1969.H. D. Macedo, "Gaussian elimination is not optimal revisited", J. Log. Algebr. Methods Program., vol. 85, no. 5, pp. 999-1010, Aug. 2016.R. A. Horn and F. Zhang, "Basic properties of the Schur complement" in The Schur Complement and Its Applications, New York, NY, USA:Springer, pp. 17-46, 2005.D. H. Bailey, K. Lee and H. D. Simon, "Using Strassen’s algorithm to accelerate the solution of linear systems", J. Supercomput., vol. 4, no. 4, pp. 357-371, Jan. 1991.S. Lu, X. Wang, G. Zhang and X. Zhou, "Effective algorithms of the Moore–Penrose inverse matrices for extreme learning machine", Intell. Data Anal., vol. 19, no. 4, pp. 743-760, Jul. 2015.ORIGINALPDF.pdfPDF.pdfapplication/pdf6323234https://bonga.unisimon.edu.co/bitstreams/41fc5bda-2418-432c-a8ea-5a0b7f85a322/downloadf2cb821350d7349fbbf841f6f495cdf3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8905https://bonga.unisimon.edu.co/bitstreams/c178d497-f3df-4982-8b2f-af8de65a2e6b/download2f656a26de8af8c32aaacd5e2a33538cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/467bb43f-0243-4df0-adce-8f0a5edbb0d7/download733bec43a0bf5ade4d97db708e29b185MD53TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain55997https://bonga.unisimon.edu.co/bitstreams/99085f00-7045-45f1-9a7b-0aca46714f5c/downloadeb9e4e084c6d98eb4fbec392df3f5373MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5638https://bonga.unisimon.edu.co/bitstreams/6bbe6cc2-b6eb-48ce-afc0-e8cbbe94467e/download98e23e36be9f68d39ebba03ffeec7777MD5520.500.12442/16177oai:bonga.unisimon.edu.co:20.500.12442/161772025-01-31 03:00:17.381http://creativecommons.org/licenses/by-nc-nd/3.0/us/Attribution-NonCommercial-NoDerivs 3.0 United Statesopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u