A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due...
- Autores:
-
Gelvez-Almeida, Elkin
Barrientos, Ricardo
Vilches, Karina
Mora, Marco
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/16177
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/16177
https://doi.org/10.1109/ACCESS.2023.3338544
https://ieeexplore.ieee.org/document/10336814
- Palabra clave:
- High-performance computing
Moore–Penrose generalized inverse matrix
Neural networks with random weights
Parallel computing
Strassen algorithm
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivs 3.0 United States
id |
USIMONBOL2_5b546eaf13bc3c31783ae86356a9f4ea |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/16177 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
title |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
spellingShingle |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures High-performance computing Moore–Penrose generalized inverse matrix Neural networks with random weights Parallel computing Strassen algorithm |
title_short |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
title_full |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
title_fullStr |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
title_full_unstemmed |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
title_sort |
A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures |
dc.creator.fl_str_mv |
Gelvez-Almeida, Elkin Barrientos, Ricardo Vilches, Karina Mora, Marco |
dc.contributor.author.none.fl_str_mv |
Gelvez-Almeida, Elkin Barrientos, Ricardo Vilches, Karina Mora, Marco |
dc.subject.keywords.eng.fl_str_mv |
High-performance computing Moore–Penrose generalized inverse matrix Neural networks with random weights Parallel computing Strassen algorithm |
topic |
High-performance computing Moore–Penrose generalized inverse matrix Neural networks with random weights Parallel computing Strassen algorithm |
description |
The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2025-01-30T14:40:25Z |
dc.date.available.none.fl_str_mv |
2025-01-30T14:40:25Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.none.fl_str_mv |
Artículo científico |
dc.identifier.citation.eng.fl_str_mv |
E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544 |
dc.identifier.issn.none.fl_str_mv |
21693536 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/16177 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ACCESS.2023.3338544 |
dc.identifier.url.none.fl_str_mv |
https://ieeexplore.ieee.org/document/10336814 |
identifier_str_mv |
E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544 21693536 |
url |
https://hdl.handle.net/20.500.12442/16177 https://doi.org/10.1109/ACCESS.2023.3338544 https://ieeexplore.ieee.org/document/10336814 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.eng.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 United States |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 United States http://creativecommons.org/licenses/by-nc-nd/3.0/us/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
dc.source.eng.fl_str_mv |
IEEE Access |
dc.source.spa.fl_str_mv |
Vol. 11 (2023) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/41fc5bda-2418-432c-a8ea-5a0b7f85a322/download https://bonga.unisimon.edu.co/bitstreams/c178d497-f3df-4982-8b2f-af8de65a2e6b/download https://bonga.unisimon.edu.co/bitstreams/467bb43f-0243-4df0-adce-8f0a5edbb0d7/download https://bonga.unisimon.edu.co/bitstreams/99085f00-7045-45f1-9a7b-0aca46714f5c/download https://bonga.unisimon.edu.co/bitstreams/6bbe6cc2-b6eb-48ce-afc0-e8cbbe94467e/download |
bitstream.checksum.fl_str_mv |
f2cb821350d7349fbbf841f6f495cdf3 2f656a26de8af8c32aaacd5e2a33538c 733bec43a0bf5ade4d97db708e29b185 eb9e4e084c6d98eb4fbec392df3f5373 98e23e36be9f68d39ebba03ffeec7777 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1834107402084941824 |
spelling |
Gelvez-Almeida, Elkinf7e2f3b2-3f16-4e8f-8009-79edc27e7a23600Barrientos, Ricardo766d5e14-34a0-49d1-a205-24903bc6bb12600Vilches, Karinabed06609-2211-4fe0-a6d5-1fed4a93d002600Mora, Marco7c36f8e4-0f3b-43d8-9735-3c7c5f71c5526002025-01-30T14:40:25Z2025-01-30T14:40:25Z2023E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.333854421693536https://hdl.handle.net/20.500.12442/16177https://doi.org/10.1109/ACCESS.2023.3338544https://ieeexplore.ieee.org/document/10336814The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios.pdfengInstitute of Electrical and Electronics Engineers (IEEE)Attribution-NonCommercial-NoDerivs 3.0 United Stateshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2IEEE AccessVol. 11 (2023)A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architecturesinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1High-performance computingMoore–Penrose generalized inverse matrixNeural networks with random weightsParallel computingStrassen algorithmJ. C. A. Barata and M. S. Hussein, "The Moore–Penrose pseudoinverse: A tutorial review of the theory", Brazilian J. Phys., vol. 42, no. 1, pp. 146-165, Apr. 2012.X.-D. Zhang, A Matrix Algebra Approach to Artificial Intelligence, Singapore:Springer, 2020.A. K. Malik, R. Gao, M. A. Ganaie, M. Tanveer and P. N. Suganthan, "Random vector functional link network: Recent developments applications and future directions", Appl. Soft Comput., vol. 143, Aug. 2023.P. Courrieu, "Fast computation of Moore–Penrose inverse matrices", Neural Inf. Process.-Lett. Rev., vol. 8, no. 2, pp. 25-29, Aug. 2005.J. K. Baksalary and O. M. Baksalary, "Particular formulae for the Moore–Penrose inverse of a columnwise partitioned matrix", Linear Algebra Appl., vol. 421, no. 1, pp. 16-23, Feb. 2007.M. D. Petković and P. S. Stanimirović, "Generalized matrix inversion is not harder than matrix multiplication", J. Comput. Appl. Math., vol. 230, no. 1, pp. 270-282, Aug. 2009.M. Petkovic and P. Stanimirovic, "Block recursive computation of generalized inverses", Electron. J. Linear Algebra, vol. 26, pp. 394-405, Jan. 2013.F. Toutounian and A. Ataei, "A new method for computing Moore–Penrose inverse matrices", J. Comput. Appl. Math., vol. 228, no. 1, pp. 412-417, Jun. 2009.V. Katsikis and D. Pappas, "Fast computing of the Moore–Penrose inverse matrix", Electron. J. Linear Algebra, vol. 17, pp. 637-650, Jan. 2008.V. N. Katsikis, D. Pappas and A. Petralias, "An improved method for the computation of the Moore–Penrose inverse matrix", Appl. Math. Comput., vol. 217, no. 23, pp. 9828-9834, Aug. 2011.A. Marco and J.-J. Martínez, "Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices", J. Comput. Appl. Math., vol. 350, pp. 299-308, Apr. 2019.W. Li and Z. Li, "A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix", Appl. Math. Comput., vol. 215, no. 9, pp. 3433-3442, Jan. 2010.H. Chen and Y. Wang, "A family of higher-order convergent iterative methods for computing the Moore–Penrose inverse", Appl. Math. Comput., vol. 218, no. 8, pp. 4012-4016, Dec. 2011.P. S. Stanimirović, V. N. Katsikis, S. Srivastava and D. Pappas, "A class of quadratically convergent iterative methods", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3125-3146, May 2019.R. Behera, J. K. Sahoo, R. N. Mohapatra and M. Z. Nashed, "Computation of generalized inverses of tensors via t-product", Numer. Linear Algebra With Appl., vol. 29, no. 2, pp. e2416, 2022.V. Stanojević, L. Kazakovtsev, P. S. Stanimirović, N. Rezova and G. Shkaberina, "Calculating the Moore–Penrose generalized inverse on massively parallel systems", Algorithms, vol. 15, no. 10, pp. 348, Sep. 2022.J. Ma, F. Gao and Y. Li, "An efficient method to compute different types of generalized inverses based on linear transformation", Appl. Math. Comput., vol. 349, pp. 367-380, May 2019.P. S. Stanimirović, A. Kumar and V. N. Katsikis, " Further efficient hyperpower iterative methods for the computation of generalized inverses A T S ( 2) ", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3323-3339, May 2019P. S. Stanimirović, V. N. Katsikis and D. Kolundžija, "Inversion and pseudoinversion of block arrowhead matrices", Appl. Math. Comput., vol. 341, pp. 379-401, Jan. 2019.P. S. Stanimirović, F. Roy, D. K. Gupta and S. Srivastava, "Computing the Moore–Penrose inverse using its error bounds", Appl. Math. Comput., vol. 371, Apr. 2020.X. Chen and J. Ji, "A divide-and-conquer approach for the computation of the Moore–Penrose inverses", Appl. Math. Comput., vol. 379, Aug. 2020.N. Aldhafeeri, D. Pappas, I. P. Stanimirović and M. Tasić, "Representations of generalized inverses via full-rank QDR decomposition", Numer. Algorithms, vol. 86, no. 3, pp. 1327-1337, Mar. 2021.A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, New York, NY, USA:Springer, 2003.G. Wang, Y. Wei, S. Qiao, P. Lin and Y. Chen, Generalized Inverses: Theory and Computations, vol. 53, 2018.R. Penrose, "A generalized inverse for matrices", Math. Proc. Cambridge Philos. Soc., vol. 51, no. 3, pp. 406-413, Jul. 1955.V. Strassen, "Gaussian elimination is not optimal", Numerische Math., vol. 13, no. 4, pp. 354-356, Aug. 1969.H. D. Macedo, "Gaussian elimination is not optimal revisited", J. Log. Algebr. Methods Program., vol. 85, no. 5, pp. 999-1010, Aug. 2016.R. A. Horn and F. Zhang, "Basic properties of the Schur complement" in The Schur Complement and Its Applications, New York, NY, USA:Springer, pp. 17-46, 2005.D. H. Bailey, K. Lee and H. D. Simon, "Using Strassen’s algorithm to accelerate the solution of linear systems", J. Supercomput., vol. 4, no. 4, pp. 357-371, Jan. 1991.S. Lu, X. Wang, G. Zhang and X. Zhou, "Effective algorithms of the Moore–Penrose inverse matrices for extreme learning machine", Intell. Data Anal., vol. 19, no. 4, pp. 743-760, Jul. 2015.ORIGINALPDF.pdfPDF.pdfapplication/pdf6323234https://bonga.unisimon.edu.co/bitstreams/41fc5bda-2418-432c-a8ea-5a0b7f85a322/downloadf2cb821350d7349fbbf841f6f495cdf3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8905https://bonga.unisimon.edu.co/bitstreams/c178d497-f3df-4982-8b2f-af8de65a2e6b/download2f656a26de8af8c32aaacd5e2a33538cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/467bb43f-0243-4df0-adce-8f0a5edbb0d7/download733bec43a0bf5ade4d97db708e29b185MD53TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain55997https://bonga.unisimon.edu.co/bitstreams/99085f00-7045-45f1-9a7b-0aca46714f5c/downloadeb9e4e084c6d98eb4fbec392df3f5373MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5638https://bonga.unisimon.edu.co/bitstreams/6bbe6cc2-b6eb-48ce-afc0-e8cbbe94467e/download98e23e36be9f68d39ebba03ffeec7777MD5520.500.12442/16177oai:bonga.unisimon.edu.co:20.500.12442/161772025-01-31 03:00:17.381http://creativecommons.org/licenses/by-nc-nd/3.0/us/Attribution-NonCommercial-NoDerivs 3.0 United Statesopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |