Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning
En este proyecto al cual se llamo “estrategia computacional para estimar cual es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de Machine Learning” sustenta el desarrollo e implementación d...
- Autores:
-
Realpe González, Giovanni
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/7570
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/7570
- Palabra clave:
- Machine Learning
Cocción de atún
Reducción de merma
Optimización de procesos
Random Forest
Industria atunera
Atún
Aprendizaje automático (Inteligencia artificial)
Mejoramiento de procesos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
| id |
URemingtn2_fc7e58e832dbd47142e01cfbe872436c |
|---|---|
| oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/7570 |
| network_acronym_str |
URemingtn2 |
| network_name_str |
Repositorio institucional Uniremington |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| title |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| spellingShingle |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning Machine Learning Cocción de atún Reducción de merma Optimización de procesos Random Forest Industria atunera Atún Aprendizaje automático (Inteligencia artificial) Mejoramiento de procesos |
| title_short |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| title_full |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| title_fullStr |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| title_full_unstemmed |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| title_sort |
Estrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learning |
| dc.creator.fl_str_mv |
Realpe González, Giovanni |
| dc.contributor.advisor.none.fl_str_mv |
Briñez de León, Juan Carlos |
| dc.contributor.author.none.fl_str_mv |
Realpe González, Giovanni |
| dc.subject.spa.fl_str_mv |
Machine Learning Cocción de atún Reducción de merma Optimización de procesos Random Forest Industria atunera |
| topic |
Machine Learning Cocción de atún Reducción de merma Optimización de procesos Random Forest Industria atunera Atún Aprendizaje automático (Inteligencia artificial) Mejoramiento de procesos |
| dc.subject.lemb.none.fl_str_mv |
Atún Aprendizaje automático (Inteligencia artificial) Mejoramiento de procesos |
| description |
En este proyecto al cual se llamo “estrategia computacional para estimar cual es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de Machine Learning” sustenta el desarrollo e implementación de un modelo de clasificación sirve para mejorar los procesos de cocción del atún en una de las plantas más grande de procesamiento de atún del Ecuador, ubicada en Posorja. La mayoría de las plantas que procesan atún funcionan con estructuras familiares y con sistemas de información poco robustos, lo que dificulta la toma de decisiones eficientes en los procesos críticos como lo es la cocción del atún, y sus decisiones se basan bajo su experiencia empírica. El proceso de cocción de atún tiene un impacto directo en el rendimiento del pescado y en la rentabilidad de esta categoría, esto debió a que la materia prima representa en el costo total de fabricación del atún, en las latas en un 52%, en pouch 62% y en los lomos congelados un 80%. Esta investigación se enfoca en analizar las principales variables y las mas criticas en el proceso de cocción del atún, como son; la especie, talla, peso de la pieza de atún, tempera de corte de las cocinas y el tiempo de cocción, así mismo el destino final del producto (latas, pouch o lomos congelados). Se utilizo la información histórica de este proceso de enero a mayo del 2025, con más de 4.100 registros. Con estos datos recopilados se entrenaron 10 modelos de clasificación con Python, siendo el modelo Decisión Tree y Random Forest con mayor nivel de accuracy del 98% de precisión. Los resultados de los modelos demostraron una alta correlación entre variables como la talla del atún y tiempo de cocción del atún, así como la temperatura a la cual se corta la cocina o se para el calentamiento y el rendimiento total final. El tener un adecuado dominio de estas variables nos permitirá disminuir la merma y maximizar el rendimiento final del atún después de la cocción, contribuyendo beneficios hasta por 1 millón de dólares mensuales para la categoría de atún. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-07-09T15:37:32Z |
| dc.date.available.none.fl_str_mv |
2025-07-09T15:37:32Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.type.spa.fl_str_mv |
Trabajo de grado - Especialización |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.content.spa.fl_str_mv |
Text |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/7570 |
| url |
https://repositorio.uniremington.edu.co/handle/123456789/7570 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2025 |
| dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2025 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
41 p. |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
| dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
| dc.publisher.program.spa.fl_str_mv |
Especialización en Dirección de Operaciones y Mejoramiento Continuo |
| institution |
Corporación Universitaria Remington |
| bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/93f5ddd7-9ded-4171-befa-7a407cecfac0/download https://repositorio.uniremington.edu.co/bitstreams/a6c405f2-a432-4730-91de-aa2426fcdc12/download https://repositorio.uniremington.edu.co/bitstreams/3bfb29e7-5460-4e8a-9a56-1a716381228b/download https://repositorio.uniremington.edu.co/bitstreams/ba78df3b-df10-45cd-b110-d6302e7eb003/download https://repositorio.uniremington.edu.co/bitstreams/e9ac8518-f968-4ec3-b61a-7ac90950ff2d/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 9be1d2a7ddfa0b8f3e5340bf4194f4ab 47eb82892435402a8ff97fa0128e0d5e a55c5230a86e3a13aca5607e92d90a54 01123e92160aa02d3adba8486c45a076 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
| repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
| _version_ |
1851059204942462976 |
| spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosRealpe González, Giovanni2025-07-09T15:37:32Z2025-07-09T15:37:32Z2025https://repositorio.uniremington.edu.co/handle/123456789/7570En este proyecto al cual se llamo “estrategia computacional para estimar cual es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de Machine Learning” sustenta el desarrollo e implementación de un modelo de clasificación sirve para mejorar los procesos de cocción del atún en una de las plantas más grande de procesamiento de atún del Ecuador, ubicada en Posorja. La mayoría de las plantas que procesan atún funcionan con estructuras familiares y con sistemas de información poco robustos, lo que dificulta la toma de decisiones eficientes en los procesos críticos como lo es la cocción del atún, y sus decisiones se basan bajo su experiencia empírica. El proceso de cocción de atún tiene un impacto directo en el rendimiento del pescado y en la rentabilidad de esta categoría, esto debió a que la materia prima representa en el costo total de fabricación del atún, en las latas en un 52%, en pouch 62% y en los lomos congelados un 80%. Esta investigación se enfoca en analizar las principales variables y las mas criticas en el proceso de cocción del atún, como son; la especie, talla, peso de la pieza de atún, tempera de corte de las cocinas y el tiempo de cocción, así mismo el destino final del producto (latas, pouch o lomos congelados). Se utilizo la información histórica de este proceso de enero a mayo del 2025, con más de 4.100 registros. Con estos datos recopilados se entrenaron 10 modelos de clasificación con Python, siendo el modelo Decisión Tree y Random Forest con mayor nivel de accuracy del 98% de precisión. Los resultados de los modelos demostraron una alta correlación entre variables como la talla del atún y tiempo de cocción del atún, así como la temperatura a la cual se corta la cocina o se para el calentamiento y el rendimiento total final. El tener un adecuado dominio de estas variables nos permitirá disminuir la merma y maximizar el rendimiento final del atún después de la cocción, contribuyendo beneficios hasta por 1 millón de dólares mensuales para la categoría de atún.EspecializaciónEspecialista en Dirección de Operaciones y Mejoramiento Continuo41 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasEspecialización en Dirección de Operaciones y Mejoramiento ContinuoMachine LearningCocción de atúnReducción de mermaOptimización de procesosRandom ForestIndustria atuneraAtúnAprendizaje automático (Inteligencia artificial)Mejoramiento de procesosEstrategia computacional para estimar cuál es la mejor ruta para generar el mejor rendimiento en la cocción del atún a partir de datos reales suministrados por manufactura de atún, utilizando algoritmos de machine learningTrabajo de grado - Especializacióninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - EspecializaciónPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/93f5ddd7-9ded-4171-befa-7a407cecfac0/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG.pdfapplication/pdf204157https://repositorio.uniremington.edu.co/bitstreams/a6c405f2-a432-4730-91de-aa2426fcdc12/download9be1d2a7ddfa0b8f3e5340bf4194f4abMD53TEXTRIU-POS-2025 Estrategia computacional estimar.pdf.txtRIU-POS-2025 Estrategia computacional estimar.pdf.txtExtracted texttext/plain38649https://repositorio.uniremington.edu.co/bitstreams/3bfb29e7-5460-4e8a-9a56-1a716381228b/download47eb82892435402a8ff97fa0128e0d5eMD56THUMBNAILRIU-POS-2025 Estrategia computacional estimar.pdf.jpgRIU-POS-2025 Estrategia computacional estimar.pdf.jpgGenerated Thumbnailimage/jpeg3258https://repositorio.uniremington.edu.co/bitstreams/ba78df3b-df10-45cd-b110-d6302e7eb003/downloada55c5230a86e3a13aca5607e92d90a54MD55ORIGINALRIU-POS-2025 Estrategia computacional estimar.pdfRIU-POS-2025 Estrategia computacional estimar.pdfapplication/pdf928912https://repositorio.uniremington.edu.co/bitstreams/e9ac8518-f968-4ec3-b61a-7ac90950ff2d/download01123e92160aa02d3adba8486c45a076MD51123456789/7570oai:repositorio.uniremington.edu.co:123456789/75702025-08-26 16:36:02.112https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2025open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
