Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning

El proyecto titulado " algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de una compañía de producción industrial, empleando estrategias de machine learning", se desarrolla con el objetivo de identificar, analizar y fortalecer conocimientos adquiri...

Full description

Autores:
Londoño Trejos, Jorge Hernán
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Corporación Universitaria Remington
Repositorio:
Repositorio institucional Uniremington
Idioma:
spa
OAI Identifier:
oai:repositorio.uniremington.edu.co:123456789/7571
Acceso en línea:
https://repositorio.uniremington.edu.co/handle/123456789/7571
Palabra clave:
Línea de producto
Tabla de datos
Análisis de datos
Machine learning
Segmentación de datos
Clustering
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Análisis de datos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id URemingtn2_a8e25b27ca120f479838deec8168f26d
oai_identifier_str oai:repositorio.uniremington.edu.co:123456789/7571
network_acronym_str URemingtn2
network_name_str Repositorio institucional Uniremington
repository_id_str
dc.title.spa.fl_str_mv Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
title Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
spellingShingle Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
Línea de producto
Tabla de datos
Análisis de datos
Machine learning
Segmentación de datos
Clustering
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Análisis de datos
title_short Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
title_full Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
title_fullStr Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
title_full_unstemmed Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
title_sort Algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learning
dc.creator.fl_str_mv Londoño Trejos, Jorge Hernán
dc.contributor.advisor.none.fl_str_mv Briñez de León, Juan Carlos
dc.contributor.author.none.fl_str_mv Londoño Trejos, Jorge Hernán
dc.subject.spa.fl_str_mv Línea de producto
Tabla de datos
Análisis de datos
Machine learning
Segmentación de datos
Clustering
topic Línea de producto
Tabla de datos
Análisis de datos
Machine learning
Segmentación de datos
Clustering
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Análisis de datos
dc.subject.lemb.none.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Análisis de datos
description El proyecto titulado " algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de una compañía de producción industrial, empleando estrategias de machine learning", se desarrolla con el objetivo de identificar, analizar y fortalecer conocimientos adquiridos para el análisis de datos computacionales, que son procesados a través de la configuración de algoritmos, que luego nos darán una análisis detallado por medio de histogramas o tablas, para la toma de decisiones. A medida que avanza la lectura de este proyecto, se comparte un contexto general del mercado de balanceados a nivel nacional, datos aproximados del nivel de producción en el que se encuentra el sector, así mismo las oportunidades que con base en las cifras mencionados, amplía el panorama de la oportunidad de crecimiento en el que se encuentran las empresas que se dedican a la actividad elaboración y comercialización de alimento balanceado para animales. El proyecto inicia con la consolidación de un grupo de datos, basado en las ventas de una compañía de elaboración de alimento balaceado del municipio de Bello; esta data contiene registros de 6 meses de ventas de las diferentes líneas de producto que normalmente se encuentran en la industria. Estos datos son procesados por medio de la asignación de algoritmos computacionales. Para ello se realiza una limpieza de la información, descartando variables que puedan afectar el procesamiento de los datos, transformando aquellos registros que se encuentren en formato alfanumérico a datos numéricos. Se asignan los algoritmos computaciones para filtrar los datos. Luego se aplica el modelo tipo Kmeans, para segmentar los datos según las variables, en este caso, se espera realizar los agrupamientos a tan solo 6 grupos. Se procede a asignarles etiquetas (número del grupo) a la columna de línea de producto, buscando transformar el formato de datos de texto a numérico y con ello facilitar los demás pasos. Se genera el histograma para tener una visual de los agrupamientos que realizó, basado en la serie de algoritmos que se asignaron. Se identifican 3 grupos representativos, frente a otros 3 que pueden tener un a oportunidad de mejora. Partiendo del modelo de clustering aplicado, se asignan unas decisiones según los grupos previamente identificados, a los que se les otorga una serie de beneficios, y otros algunas condiciones especificas debido a las limitaciones a nivel económico y de comportamiento en la compra que pueda tener el cliente. Al final se comparte una serie de resultados obtenidos y las pautas a tener en cuenta al momento de la generación de la orden de compra, según las especificaciones técnicas y de proceso interno del cliente final.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-07-09T15:50:51Z
dc.date.available.none.fl_str_mv 2025-07-09T15:50:51Z
dc.date.issued.none.fl_str_mv 2025
dc.type.spa.fl_str_mv Trabajo de grado - Especialización
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.uniremington.edu.co/handle/123456789/7571
url https://repositorio.uniremington.edu.co/handle/123456789/7571
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Corporación Universitaria Remington, 2025
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos Reservados - Corporación Universitaria Remington, 2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 24 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universitaria Remington
dc.publisher.place.spa.fl_str_mv Medellín (Antioquia, Colombia)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.program.spa.fl_str_mv Especialización en Dirección de Operaciones y Mejoramiento Continuo
institution Corporación Universitaria Remington
bitstream.url.fl_str_mv https://repositorio.uniremington.edu.co/bitstreams/070e030e-3c55-4331-9902-71e89d0ed9db/download
https://repositorio.uniremington.edu.co/bitstreams/f96b54b4-7f44-4635-9c59-a19f5dc2db8d/download
https://repositorio.uniremington.edu.co/bitstreams/80df991f-3ee7-4f60-8089-463ce7ccb607/download
https://repositorio.uniremington.edu.co/bitstreams/b9efd4b3-9aae-4cf3-9261-1de287c61fca/download
https://repositorio.uniremington.edu.co/bitstreams/0e79814d-88c5-4c02-9f5e-8a4dda1f08cb/download
bitstream.checksum.fl_str_mv 9369092482f601f50188ba56d1130310
8a4605be74aa9ea9d79846c1fba20a33
a56b9199c548112371e2a5eba8b7e1c2
9624cad632d8e2f838842fe62d0fdff6
3e0a365c43b4675e0bb822b68d8966c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNIREMINGTON
repository.mail.fl_str_mv biblioteca@uniremington.edu.co
_version_ 1851059197880303616
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2025https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosLondoño Trejos, Jorge Hernán2025-07-09T15:50:51Z2025-07-09T15:50:51Z2025https://repositorio.uniremington.edu.co/handle/123456789/7571El proyecto titulado " algoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de una compañía de producción industrial, empleando estrategias de machine learning", se desarrolla con el objetivo de identificar, analizar y fortalecer conocimientos adquiridos para el análisis de datos computacionales, que son procesados a través de la configuración de algoritmos, que luego nos darán una análisis detallado por medio de histogramas o tablas, para la toma de decisiones. A medida que avanza la lectura de este proyecto, se comparte un contexto general del mercado de balanceados a nivel nacional, datos aproximados del nivel de producción en el que se encuentra el sector, así mismo las oportunidades que con base en las cifras mencionados, amplía el panorama de la oportunidad de crecimiento en el que se encuentran las empresas que se dedican a la actividad elaboración y comercialización de alimento balanceado para animales. El proyecto inicia con la consolidación de un grupo de datos, basado en las ventas de una compañía de elaboración de alimento balaceado del municipio de Bello; esta data contiene registros de 6 meses de ventas de las diferentes líneas de producto que normalmente se encuentran en la industria. Estos datos son procesados por medio de la asignación de algoritmos computacionales. Para ello se realiza una limpieza de la información, descartando variables que puedan afectar el procesamiento de los datos, transformando aquellos registros que se encuentren en formato alfanumérico a datos numéricos. Se asignan los algoritmos computaciones para filtrar los datos. Luego se aplica el modelo tipo Kmeans, para segmentar los datos según las variables, en este caso, se espera realizar los agrupamientos a tan solo 6 grupos. Se procede a asignarles etiquetas (número del grupo) a la columna de línea de producto, buscando transformar el formato de datos de texto a numérico y con ello facilitar los demás pasos. Se genera el histograma para tener una visual de los agrupamientos que realizó, basado en la serie de algoritmos que se asignaron. Se identifican 3 grupos representativos, frente a otros 3 que pueden tener un a oportunidad de mejora. Partiendo del modelo de clustering aplicado, se asignan unas decisiones según los grupos previamente identificados, a los que se les otorga una serie de beneficios, y otros algunas condiciones especificas debido a las limitaciones a nivel económico y de comportamiento en la compra que pueda tener el cliente. Al final se comparte una serie de resultados obtenidos y las pautas a tener en cuenta al momento de la generación de la orden de compra, según las especificaciones técnicas y de proceso interno del cliente final.EspecializaciónEspecialista en Dirección de Operaciones y Mejoramiento Continuo24 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasEspecialización en Dirección de Operaciones y Mejoramiento ContinuoLínea de productoTabla de datosAnálisis de datosMachine learningSegmentación de datosClusteringAprendizaje automático (Inteligencia artificial)Toma de decisionesAnálisis de datosAlgoritmo computacional para el análisis y toma de decisiones en datos de volumen en ventas de compañía de producción industrial, empleando estrategias de machine learningTrabajo de grado - Especializacióninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - EspecializaciónPublicationORIGINALRIU-POS-2025 Algoritmo computacional analisis.pdfRIU-POS-2025 Algoritmo computacional analisis.pdfapplication/pdf1566344https://repositorio.uniremington.edu.co/bitstreams/070e030e-3c55-4331-9902-71e89d0ed9db/download9369092482f601f50188ba56d1130310MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/f96b54b4-7f44-4635-9c59-a19f5dc2db8d/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG.pdfapplication/pdf231219https://repositorio.uniremington.edu.co/bitstreams/80df991f-3ee7-4f60-8089-463ce7ccb607/downloada56b9199c548112371e2a5eba8b7e1c2MD53TEXTRIU-POS-2025 Algoritmo computacional analisis.pdf.txtRIU-POS-2025 Algoritmo computacional analisis.pdf.txtExtracted texttext/plain22647https://repositorio.uniremington.edu.co/bitstreams/b9efd4b3-9aae-4cf3-9261-1de287c61fca/download9624cad632d8e2f838842fe62d0fdff6MD56THUMBNAILRIU-POS-2025 Algoritmo computacional analisis.pdf.jpgRIU-POS-2025 Algoritmo computacional analisis.pdf.jpgGenerated Thumbnailimage/jpeg3425https://repositorio.uniremington.edu.co/bitstreams/0e79814d-88c5-4c02-9f5e-8a4dda1f08cb/download3e0a365c43b4675e0bb822b68d8966c7MD55123456789/7571oai:repositorio.uniremington.edu.co:123456789/75712025-08-26 15:57:00.061https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2025open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=